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Abstract

We have been using symbolic model checking techniques to verify the
cache consistency protocols of the Encore Gigimax multiprocessor. These
are exceedingly complex protocols designed to ensure consistency at the
individual cache line level between caches residing on separate backplanes,
and use both “snoopy” cache techniques, and message passing between
backplanes. Automatic analysis of our formal model uncovered execution
traces leading to failures which had not been found in the design phase
or in simulation. Symbolic model checking techniques made it possible
to search exhaustively the very large state space of the model. Although
this technique has shown great promise in early experiments, this is the
first time it has been applied to a real industrial design. The paper covers
the abstraction methods by which the formal model was constructed, an
introduction to symbolic model checking methods, our experience con-
structing and analyzing the Gigamax protocol model, and a few practical
remarks about how this kind of formal analysis fits into the design cycle.
In addition, there are a few words about future plans for the Gigamax
experiment, including the application of structural induction methods to
the model, and the successive refinement of the model to levels of greater
detail.

1 Introduction

This paper describes the application of an automatic formal verification method
called symbolic model checking to a complex, real-life hardware system. The
system is the memory hierarchy of the Gigamax multiprocessor, under develop-
ment at Encore Computer Corporation. The complexity of this system, which
uses both snooping cache methods and a message passing protocol to maintain



consistency of distributed caches, led the designers to consider automatic ver-
ification as a debugging tool, since it wasn’t clear that traditional simulation
methods could provide a sufficient degree of confidence in the system’s correct-
ness. After studying the system architecture, we constructed a formal model of
the system at a level of abstraction which we felt would provide useful informa-
tion about the design’s correctness; without overwhelming detail. This model
was then analyzed using a relatively new technique called symbolic model check-
ing. A symbolic model checker performs an exhaustive search of the model’s
state space without explicitly constructing the global state graph. Instead, it
represents the value of predicates over the state space in symbolic form, in this
case using the canonical “Boolean decision diagram” form. Checking the model
for two important properties of a distributed memory system (consistency and
absence of deadlock) exposed a number of design errors. As the design evolved
to correct these errors, the model was easily adapted, and was able to quickly
provide an analysis of any new errors introduced by design changes. It is hoped
that the results of this experiment will provide an additional argument for con-
structing abstract formal models of complex protocols before proceeding with
detailed design.

The first part of this paper sketches the symbolic model checking method
of automatic verification. A more detailed description of the method is given
in [BCM*90, BCMD90]. Section 2 provides an overview of the Gigamax memory
architecture. Section 3 describes the construction of the formal model and the
principle of abstraction on which it is based. The formal specification is then
discussed in section 4, and some of the analysis results are described in section 5.
Particular attention is given to relating the aspects of the model which result in
efficient performance of the symbolic model checker. These aspects of the model
would seem to be fairly general and common to many computer system designs.
Finally, since the verification of the Gigamax protocols is ongoing research,
we describe the directions which we expect the research to take in section 6.
For techniques related to symbolic model checking see [Bry88, CBM89, BF89a,
BF89b].

2 Symbolic Model Checking

A model checker is a program which can decide whether a given finite model
satisfies a formula in a logic. For example, given the transition structure of a
finite state computation, a model checker can determine the truth of a formula
in branching time temporal logic (CTL) in time which is linear in the size of
the model and the size of the formula [CES86]. CTL is a propositional logic,
with additional operators for expressing temporal relationships. For example,
if ¢ is a formula, then Fg is true if ¢ holds at some time in the future. The
path quantified formula VF ¢ holds if g holds at some time in all possible futures,
while dF ¢ holds if ¢ holds at some time in some possible future. A typical model



checking program for CTL first constructs a complete state graph of the sys-
tem, then uses efficient algorithms for graph reachability and strongly connected
components to label the states satisfying each subformula of the specification.
Examples of finite state systems which have been verified, or partially verified,
using this type of CTL model checker can be found in [CBBG87, CLM89].

A symbolic model checker differs from an explicit model checker in its rep-
resentation of structures. Instead of representing a set of states by labeling the
global state graph, we represent it with a logical formula which is satisfied in a
given state if and only if the state is a member of the set. Consider, for example,
a distributed system in which each component of the system holds a copy of a
data object. A protocol insures that all valid copies are consistent, and at least
one copy is valid. A simple expression in first order logic which defines the set
of reachable states of the system is

Vi, j[Valid(i) A Valid(§) — (value(i) = value(j))] A Ji[valid(i)]

Here, we have defined the state in terms of a unary predicate Valid on com-
ponents, and a unary function wvelue from components to data values. If the
formula is interpreted over a set of components of cardinality n, and a set of
data values of cardinality m, then the formula concisely represents a set of
O(m2") states.

This is not to suggest that first order finitary logic would be a reasonable
choice for a symbolic representation in automatic verification; only that symbolic
forms can be much more compact than enumeration. The first order formalism
has a number of useful properties, however, from a theoretical point of view.
For example, we can perform the usual set theoretic operations directly on this
representation, using disjunction for union and negation for complementation.
The transition relation of a system can be represented by a formula 7 of two free
variables z and y, which is true if and only if (z,y) is a transition. If we repre-
sent the set of initial states of a system by a formula f of one free variable z,
then the parametric form Ay[3z[r A f]](z) represents the set of states reachable
in one transition. We can read this formula as representing the set of all states y
such that there exists a state « such that (z, y) is a valid transition and  is ini-
tial. Thus we can compute a representation of the set of states reachable in one
transition by a purely syntactic transformation on formulas. We can also induc-
tively characterize useful sets such as the set of states reachable in any number
of transitions from an initial set, or the set of states satisfying a formula in CTL,
using the Mu-Calculus fixed point notation [BCM*90]. For example, the set of
states reachable in any number of transitions from the initial state is expressed
by the Mu-Calclulus formula pS[f V Ay[3z[T A S]]()]. This fixed point expres-
sion expands to a series of formulas representing the state sets reachable after
0,1,2,... transitions from the initial states. Thus, the fixed point expansion is
effectively a symbolic breadth first expansion of the state space. The series of
formulas represented by the fixed point expression is guaranteed to converge if



the ranges of the variables are finite, and if the fixed point parameter S only
appears under an even number of negations. Since detecting this convergence
depends on being able to decide the equivalence of two consecutive formulas in
the series, it is desirable (though not absolutely necessary) to be able to keep
formulas in a canonical form.

In practice, we can apply various canonical forms for propositional formulas,
such as Boolean Decision Diagrams (BDD’s) [Bry86] or Typed Decision Graphs
(TDG’s) [Bil87]. Both are forms of binary decision trees, in which variables are
restricted to appear in a fixed order. Heuristically, this ordering results in many
occurrences of identical subtrees, which can be shared in the representation,
giving the formula a DAG (directed acyclic graph) structure. This sharing
of subformulas is particularly useful in representing the reachable state set of
loosely coupled systems, where each component of the system has only weak
knowledge of the state of the rest of the system. There are efficient algorithms
for reducing formulas of QBF, essentially first order logic over the set {0,1},
into the BDD or TDG canonical forms. In this way, we can build, for example,
a CTL model checker which operates entirely on symbolic forms. The efficiency
of a symbolic model checker depends on how concisely these canonical forms
represent the transition relation and the series of formulas resulting from fixed
point expansions, in particular, the set of reachable states of the system. For
example, consider the construction of a BDD for the reachable state set of the
distributed data object described above. At each level of the DAG structured
decision tree, there are only m+1 subtrees, representing the m different possible
data values, plus the possibility that no component at or below that level is valid.
Thus the size of the BDD representing the reachable state set is O(nm).

One final point worth mentioning about the current implementation of the
symbolic model checker is that, since BDD’s contain only Boolean variables,
the state of any system to be verified must be encoded in binary. This is
not a limitation in principle, especially for hardware designs, since they are
necessarily encoded in binary in order to be implemented in a digital technology.
In behavioral level models, however, it is useful to have a broader range of data
types, since the binary encoding of the system state is not relevant at this level,
and only adds spurious detail. It is reasonable to expect, however, that a model
checker based on structures similar to BDD’s but over multi-valued variables
would allow the model to be expressed more concisely at a high level, but provide
a similar efficiency in representation.

3 The Gigamax Memory Architecture

The Gigamax is a distributed, shared memory multiprocessor under develop-
ment for DARPA at Encore Computer Corporation. The gross architecture of
the Gigamax memory system is depicted in figure 1. The system is organized
into a network of processor clusters. Each cluster is an Encore Multimax with
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Figure 1: Gigamax memory architecture

a high speed, split transaction bus (called a nanobus), hosting a number of pro-
cessor boards, some main memory, and a special interface card called a UIC.
The UIC links the cluster into a star network. This network is centered around
a global cluster, housing a collection of UIC’s which link the global bus to each
processor cluster. The processor boards within one cluster use a snooping cache
protocol, similar to the protocols described in [AB86], but adapted for a split
transaction bus. When a processor encounters a read (write) miss in its local
cache, it issues a read public (read private) command on the nanobus, along
with a tag indicating the source of the command. It then frees the bus for other
transactions, while waiting for the memory, which is pipelined, to respond. The
response to a read command contains the tag as a destination, and may be
overlapped with any bus cycle which doesn’t use the data part of the bus.

Each cache has a bus watcher, which keeps a copy of the cache tags. When
the bus watcher detects an address on the bus which hits in the local cache, it
may intervene by asserting the memory bypass signal on the bus and/or send-
ing a command to the local cache to flush or invalidate the line. The specific
response depends on the type of bus command and the state stored in the tag
memory. Assertion of the memory bypass signal prevents the memory from re-
sponding to the command, and indicates that the asserting cache will respond to
the command in the future with a write response command, which has the effect
of simultaneously updating the contents of the main memory, and supplying the
data to the original requester.

A simplified bus watcher state diagram is given in figure 2. The bus com-
mands not mentioned previously are write modified, which occurs when a mod-
ified line is replaced in the cache, and write invalidate, which is used by non-
caching devices and as an invalidation signal from remote clusters. Of particular
interest are transitions to and from the owned state. A bus watcher enters the



owned state when it’s cache issues a read private command. Any other bus
watcher in the owned state at this time asserts memory bypass, sends a flush
private command to its local cache, and enters a special transitional state called
Xown. Later, this cache will issue a write response private command on the
bus, at which time the requester’s cache goes valid, and the responder’s bus
watcher goes to the invalid state. In order to prevent any other requesters from
interfering with this two phase ownership transfer process, an interlock is set
in the requesting cache’s bus watcher, which causes all future accesses to the
address in question to be stalled until the ownership transfer is complete.

Each UIC also has a bus watcher which keeps track of addresses from the
local main memory which are checked out in remote clusters. This allows the
UIC to intervene on the bus on behalf of caches in remote clusters, eliminating
the need for all processors to share the same bus. This system differs from
a directory based cache system in that the UIC does not store the identities
of all the other caches holding checked out copies. Instead, the tags stored in
the global bus UIC’s allow invalidate, flush public and flush private commands
to be routed to all appropriate clusters. The UIC decides which command, if
any, should be forwarded to the link based on it’s bus watcher state, the bus
command type, whether or not the address is local, and the response of other
bus watchers to the command. The global bus UIC’s are identical to the cluster
UIC’s, except in their address decoding.

As an example if the Gigamax operation, consider the case where a miss
occurs on a read in a local processor cache and where the address is located in a
remote memory. This causes the local cache to issue a read public command on
the bus. An interlock circuit is set to cancel any future access to that address
while this command is pending. Now let’s consider two cases:

e There is a cache in the local cluster in the owned state. The bus watcher of
this cache intervenes in the transaction by asserting memory bypass. The
requesting cache’s bus watcher enters the shareded state, while the inter-
vening bus watcher enters the transitional state Xown, sending a flush
public command to it’s local cache. Later, this cache issues a write re-
sponse public command which causes its bus watchers to transition from
the Xown state to the shared state, and the interlock to be canceled. The
UIC forwards this write response public command to the link with a null
destination field, which causes the data to be written back to the remote
main memory, since memory is now the implicit owner.

e No other local cache has a valid copy, but a cache in a different cluster is in
the owned state. The local UIC forwards the read public command to the
link (its default behavior for remote addresses). The command is issued on
the global bus, setting an interlock on the global bus for this address. The
global bus UIC connected to the cluster with the owned copy intervenes,
forwarding the read public command to this cluster, and entering the Xown
state. Eventually, a write response public returns from the remote cluster,
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its global UIC goes to the shared state, the write response publicis returned
to the local cluster, and the interlock is canceled on the global bus. Since
main memory again becomes the implicit owner, the write response public
is also forwarded to the main memory.

These examples must serve to illustrate the protocol, since the complete
set of rules governing the bus watchers, interlocks, and command forwarding
is too complex to enumerate here. The interactions described above are fairly
straightforward cases, but a number of unexpected things can happen when
requests for the same location occur simultaneously on different clusters. When
this happens, local state changes occur which are not immediately reflected in
the state of remote UIC’s, because of the latency in communication. This leads
to highly complex interactions between clusters, and as we will see, can lead to

deadlock.

4 Constructing the Formal Model

There are a number of issues involved in constructing a formal model for auto-
matic verification. The most important of these is choosing the right level of
abstraction. The process of abstraction allows us to construct a model which is
manageable in complexity. A model, in the temporal logic framework, is called
a Kripke structure. The Kripke structure is a directed graph. The nodes of this
graph are states, each of which is labeled with the truth values of some propo-
sitions about the world, and the arcs are transitions which define the possible
sequences of states (computations) which might be observed. Formal abstrac-
tion means, in a sense, throwing away some information about the state of the
system in order to simplify the model. In the process, some states become indis-
tinguishable. Thus each state in an abstract model may correspond to several
states in a more detailed or refined model (see figure 3). In order to make the
abstract model a sound basis for reasoning about the system, it is constructed
conservatively: if insufficient information exists in the abstract model to deter-
mine whether a transition is possible, one assumes that the transition might
occur. Thus, throwing away information about the system state results in a less
deterministic model, such that each computation in the detailed model corre-
sponds to a computation on the abstract model. Because of this conservative
construction, the abstract model preserves a certain class of temporal properties
called safety properties. The application of this kind of abstraction, formally
a homomorphism between the two structures, has been extensively studied by
Kurshan [Kur86]. Using w-automata as the basic structures, it is possible to con-
struct homomorphisms which preserve a more general class of properties, called
w-regular properties. These properties include those characterized as liveness
properties, and all properties expressible in linear temporal logic (LTL).
Because model checking techniques are in some measure limited by the num-
ber of states of the model, and cache memory system has a very large amount
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of state, some kind of abstraction is necessary.! The first abstraction we make
in modeling the system is to focus on a single memory address in the system,
and throw away any information about other addresses. This abstraction will,
of course have an impact on the kinds of questions we can answer about the
system. For example, with no information about transactions on other memory
locations, it is not possible to determine when a given address is replaced in a
given cache. It must therefore be assumed that replacement may occur at any
time. While this may prevent us from proving certain properties of the system,
it has the advantage that properties we do prove hold independently of the cache
replacement policy. Thus, by taking a bird’s eye view, we can prove properties
of a general class of systems rather than a particular implementation. As we
will see, some useful properties of the system can be proved by considering only
the information associated with one memory address. These results may be
generalized to the other memory addresses by symmetry arguments. In other
cases, bugs in the design may be found automatically, even though not enough
information exists in the model to prove that the system is correct.

The abstract model of the Gigamax architecture is depicted in figure 4. The
cluster model contains two processors, a local memory, and the UIC. The global
bus model contains a UIC linking it to one cluster model, and a set of abstract
UIC/cluster models, which represent the combination of a UIC card connected
to a remote cluster. Thus, different components in the model are represented at
different levels of detail. Each component of the model maintains only the state
information relating to the address under analysis. For example, the processor
board components store the bus watcher state of that address (invalid, shared,
owned, etc.), one bit of the data held in the cache, and the state of the interlock

n fact, viewing any physical system as a discrete, or digital, system is a kind of abstrac-
tion, though it is such a common abstraction that it is often thought of as reality.
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system wis-a-vis that address. It also stores some information about commands
to the local cache that are pending. The UIC components record similar state
information, but also keep track of the messages enqueued in the communication
link. The link maintains two queues of messages traveling in each direction.
One of these queues holds read private and read public commands, while the
other queue holds all other types of commands. Since the model only contains
information about messages associated with the address in question, the number
of entries in a queue at any given time is not known. This introduces some
uncertainty into the transit time of messages in the system.

4.1 Form of the model

The input format for the symbolic model checker is actually a complete mini-
HDL, with several useful theoretical properties which are not present in most
current HDL’s. Among these are a simple semantics based on first order logic,
the ability to underspecify a system (ie., non-determinism), and a notion of
module composition which allows the use of formal refinement techniques. The
transition relation of the model is specified in first order logic in terms of the
current and next values of the state variables, and optionally a collection of
auxiliary variables, which can be used to represent the value of communication
signals. The auxiliary variables are viewed as being implicitly existentially quan-
tified. A valid transition is an assignment to the current state and next state
variables which satisfies the state transition formula. Composition of modules
is accomplished by the logical conjunction of transition formulas. Therefore,
the logical properties of conjunction can be used in formal decompositions of
the model. Breaking a model into components and then formally refining the
component models is a technique which is of primary importance in managing
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the complexity of concurrent systems [Kur86]. This technique is justified in the
case of our mini-HDL by a simple, but quite useful property of conjunction: that
a — a’ and b — b’ implies (a Ab) — (a’ Ab'). This monotonicity property allows
components of a system to be refined separately while preserving certain classes
of properties of the composition. It also allows a simple induction technique
over unbounded arrays of processes [KM89).

The mini-HDL also has a highly general facility for defining and instantiating
module types, with substitution of parameters, generation of hierarchical names,
etc. It also adds a thin layer of syntactic sugar over the underlying logical
notation. Thus the case notation of figure 5 is used to describe a list if rules
to be used in prioritized order for transitions of a bus watcher from the owned
state. This notation is translated into logic using implication and conjunction,
but the case list form is much more readable. An additional feature of the
language allows the description of systems which have components operating
on separate clocks, such as the separate clusters in the Gigamax model. The
transitions of these components are interleaved arbitrarily. This interleaving
behavior can be modeled by taking the logical disjunction of the transition
relations. Empirically, however, it was found more efficient to represent these
relations with separate BDD’s and to form instead the logical disjunction of the
sets reached via each relation.

5 The Formal Specifications

Using the symbolic model checking algorithm, we can verify a variety of prop-
erties of the abstract model. The first part of the specification of the Gigamax
memory system has to do with the consistency of entries for the same address
in different caches. Since the Gigamax implements a weakly consistent shared
memory, the basic safety specification of the system is really a simple model
of a weakly consistent shared memory, as depicted in figure 6. In this model,
all writes occur to a single copy of the data, but reads are directed to a dis-
tributed set of copies, which are independently updated from time to time from
the master copy. Thus a cache with a shared copy may hold stale data, at least
for a short amount of time. Note that this abstract model is an incomplete
specification, since it does not detail the precise timing of update events. In
order to verify that the Gigamax model correctly implements it, we effectively
run both models in parallel and compare the outputs. Because the specifica-
tion is incomplete, we drive the arbitrary choices in the specification from the
implementation. In this way, we prove a refinement relation between imple-
mentation and specification rather than equivalence. The proof is by symbolic
breadth-first expansion of the state space of this parallel composition, using the
symbolic model checker. If at any state the outputs of the specification and im-
plementation fail to correspond, the proof fails and the search is traced back by
the model checker to produce a counterexample. Note that in this case, we are

11



case

Owned: case

Stall | Idle : next(Owned);

mycyc : case
WrInv & 'RC : next(Xmeml);
EchoRespPv & !RC : next(Owned);
WrRespPv & RC : next(Owned);
RdResp & RC: next(Owned);
WrRespPbAlt & RC : next(Owned);
WrMod & RC : next(Owned);
CNack : next(Owned);
RAPb : next(Xownl & 'F1PvPend);
RAPv : next(Xownl & F1PvPend);
else: next(errstate);
esac;

else : case
WrMod & 'RC : next(Invalid);
WrRespPbAlt & !'RC : next(Shared);
else : next(errstate);
esac;

esac;

esac

Figure 5: Fragment of Gigamax model text

12
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Figure 6: Model of weakly consistent shared memory

using a CTL model checker as a tool for testing a relationship between two finite
models, a technique which is often more convenient that specification directly
in CTL. The weak consistency property was the first one that we succeeded in
proving.

Another safety property we wanted to check related to the internal diagnos-
tics in the Gigamax protocol. Each bus watcher in the system signals an error
when it sees an unexpected event on the bus. We wanted to verify that an error
could never be signaled during correct operation of the system. This proved
to be a particularly useful application of the model checker which turned up
numerous bugs in the design, since predicting by hand which bus events might
be seen by a bus watcher in any given state turned out to be an extremely
error prone process. In fact, it would have been possible for the model checker
to compute the conditions for signaling errors, although we had no tools for
directly translating this into the design.

Absence of deadlock is another important property for which we wished to
test the model. A deadlock occurs when one or more processors becomes locked
out from reaching the shared or owned state. For each bus watcher in the model,
we specify

VG[IFowned A IF shared].

In other words, from every reachable state, there exist computation paths lead-
ing to states in which the given bus watcher is in the owned and shared state
respectively. We refer to the absence of such a path as a deadlock. Because
this properties relies on the ezistence of computation paths, it isn’t necessarily
preserved by refinement. For example, since our abstract model of the Gigamax
has no state information relating to the scheduling of the bus, or the precise
response times of certain components, certain potential livelock conditions will
be ignored. From a practical point of view, however, the abstract model al-
lowed us to find two significant deadlocks in the protocol (one of which was not
found in simulation, and is described in the next section). Subsequent simu-
lation revealed additional deterministic livelocks using a detailed model of the
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communications links.

Ideally, we would like to show that all requests are eventually served. Un-
fortunately, because of the nature of the Gigamax bus protocols, this property
only holds in a probabilistic sense. In fact, the system has watchdog timers to
signal an interrupt in the very rare case when one processor is locked out for
an extended period of time. Since we have no formal machinery for proving
probabilistic properties of finite state systems, we concentrated on proving that
no processor is ever deterministically locked out.

6 Results of the Analysis

We now examine the performance of the symbolic model checking algorithm
in verifying the Gigamax model with respect to our specifications. The model
checker first constructs a BDD representation of the transition relation(s) of
the model. (Recall that the model’s behavior is an arbitrary interleaving of the
transitions of its asynchronous components.) The reached state set is then com-
puted by the fixed point expansion described in section 2 and is also represented
by a BDD. The CTL formulas in the specification are then evaluated. This uses
an algorithm which is similar to the fixed point expansion of the reachable state
space, but searches backward instead of forward. Thus, to find all of the states
which satisfy dFg, we begin with the set of states satisfying g, then search
backward in a breadth first way to find all of the states which can reach a state
satisfying g. This search is constrained within the set of states reachable from
the initial state, as this has been found empirically to reduce the size of the
BDD’s involved.

Table 1 summarizes three separate runs of the model checker. The first
run was to check the absence of deadlock property on a model with the data
part completed abstracted. The second run checked the consistency property,
and failed at a search depth of 5. The third run used a later model with a
second cluster expanded in detail, checking only safety properties. The number
of states here is comparable to that in the first run because of a simplification
of the model of the message queues. The table gives the largest number of
BDD nodes needed represent a transition relation (TR) and the reached state
set (RS), the total number of states searched (SS), and the depth of the search
(DS). A comparison of the number of reached states with the size of the BDD’s
is of particular interest, since traditional model checking algorithms must store
the entire global state graph. With state spaces as large as 10'3 states, it is clear
that the models could not have been handled directly using traditional model
checking methods. None of these three runs required more than a few minutes,
however, using a symbolic model checker running on a Sun3/60.

Later, we will examine the sources of the symbolic model checker’s efficiency
for this problem. For now, though, we consider a counterexample of the absence
of deadlock specification which was discovered by the model checker. With
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|run| TR|RS| SS|DS|
1] 11146 | 1429 | 2.99 x 10° | 15

2 | 44100 | 898 | 1.04 x 1013 5
3| 8823|2550 | 3.30 x 10° | 20

Table 1: Quantitative results of symbolic model checking

reference to figure 4, the counterexample begins with a processor in cluster 2
holding an owned copy of an address checked out from the main memory of
cluster 1. It proceeds in the following steps.

1. A processor in cluster 1 encounters a read miss, and issues a read public
command. The UIC in cluster 1 intervenes in this request and sends a
flush public command (implemented by read public) to the global bus,
which stores the command in a queue. The processor in cluster 1 sets its
interlock.

2. A processor in cluster 3 encounters a read miss, and issues a read public
command. This command reaches the global bus, where the global UIC
for cluster 2 intervenes (since cluster 2 holds an owned copy), and a flush
public is sent to cluster 2.

3. The response from cluster 2 (a write response public command) is trans-
mitted via the global bus to cluster 3. This results in the global UIC bus
watchers for both clusters being in the shared state. Since main mem-
ory is now implicit owner, a write response public command, with null
destination, is sent to cluster 1 by the global UIC for cluster 1.

4. The write response public message reaches cluster 1, and the data are
deposited in main memory.

5. The processor in cluster 2 invalidates its copy by cache replacement, then
encounters a read miss and issues a read public command, which is for-
warded to the global bus. Since no global UIC is in the owned state, the
command is routed normally to cluster 1 and enqueued there. The global
bus UIC for cluster 2 sets its interlock.

6. The original read public command from step 1 is issued on the global bus,
but is blocked by the interlock held by cluster 2. Likewise the read public
from step 5 is issued on the cluster 1 bus, and is blocked by the interlock
set in step 1. Since neither interlock can be released until the request that
switched it on is satisfied, a deadlock occurs at this point.
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This is an example of the classic deadlock situation which occurs when two
processes attempt to obtain locks on two resources in different orders. Nonethe-
less, the sequence of events that lead to this situation were sufficiently complex
that the designers were unable to predict that the situation might occur. In
fact, the deadlock situation was found at a search depth of thirteen transitions.
At each step in this sequence, there were several alternatives that might have
averted the deadlock. Thus it is unlikely that this deadlock would be found by
a random simulation run, or a simulation run based on address traces.?

The fact the the model checker was able to print out automatically an exam-
ple of this deadlock highlights an important difference between a model checking
and a theorem proving approach to verification. In a theorem proving approach,
a failure to prove the system correct indicates either that the system is incor-
rect, or that insufficient resources were dedicated to the theorem proving pro-
cess (whether it is automatic, or only partially automatic). In the case of model
checking, if the system is incorrect, the model checker will produce a counterex-
ample demonstrating incorrect behavior. These counterexamples are of perhaps
even greater value than a proof that the system is correct, since such a proof is
useful only to the level of detail at which the system is modeled, and only if the
original specification was correct and complete.

Some explanation is in order for the remarkable efficiency of BDD represen-
tation used in the symbolic model checker. The efficiency in representing the
transition relation derives from the bounded amount of communication which
occurs over the system busses in each system cycle. In fact, the BDD represen-
tation of the transition relation of any finite state bus based system (including
“wired or” busses) is linear space in the number of bus clients. This can be shown
using automata theoretic arguments which are a bit too detailed to present here.
As to the efficiency of representing the set of reached states, we return to the
statement made in section 2 that BDD’s represent efficiently the set of reachable
states of loosely coupled systems, where each component of the system has only
weak knowledge of the state of the rest of the system.

We can quantify this notion using a quasi information theoretic measure.
We begin by partitioning the set of state variables of the model into compo-
nents of bounded size, according to the modular structure of the system. This
partitioning defines, in some sense, our notion of locality in the system. Our
definition of “loosely coupled”, is relative to this notion of locality, or granular-
ity. Roughly speaking, it measures how much we know about the state of some
subset of the components, given the state of the remaining components. Now
let A be the union of some subset of these components. Given a value assign-
ment V : A — D to the variables in A, let R|V be the set of reachable states

2In fact, the number of possible transitions from a given state ranges from 6 to 12. The
probability of a random simulation run executing this trace is therefore in the range 6712 =
7.7 x 10711 t0 12712 = 9.3 x 10—, The expected time for a random simulation to exhibit
this behavior would be somewhere between 2.4 years and 29 millenia, assuming the simulation
could be carried out at 10,000 steps per second.
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of the system which are consistent with V. We define K(A) to be the number
of distinct such subsets, for any V. We conjecture that in the Gigamax model,
K(A) is bounded by a small constant, for any subset A of components. This is
plausible because the possible states of the components not in A depend only
on a few conditions on the state of A, such as whether or not it contains any
processor in the owned state, or has any interlock set, or has a certain command
in some queue. If maxy K(A) is small compared to the number of reachable
states of the system, we say the system is loosely coupled. The size of the BDD
representation of a set is bounded by O(nmaxy K(A)), where n is the number
of variables in the system. Thus, the reachable state set of a loosely coupled
system 1s compactly represented by a BDD.

7 Future Plans and Conclusions

There are a number of limitations to the current work, which we will attempt to
address in the future. One obvious area of extension is in refining the model to
include more detail of the protocol implementation. A refined model, for exam-
ple, could reveal deterministic livelocks which are not apparent in the high level
model. Although verification at the architectural level has been useful, this has
not prevented significant problems from developing in aspects of the design be-
low this level of detail. Once the high level protocol is verified, it is important to
verify that the individual components of the system are implemented correctly.
Perhaps a more important problem is that the current model considers only one
memory address in the system. By including information about two or more
memory locations that may replace each other in the caches, more information
may be obtained about deadlocks relating to cache replacement. (Recall that
in the model, replacement may occur at any time. In actuality, replacement
will only occur when all associates are full. This more restricted behavior may
not lead to any consistency violations not present in the more general model,
but may lead, for example, to livelocks which would not otherwise occur). Also,
there are other properties of the model that should be verified if more than
one memory location is modeled. For example, the system guarantees write
sequentiality under certain circumstances, and this should be formally verified.

Another possible area of extension is proving that the system specifications
are satisfied for models with an arbitrary rather than a fixed number of bus
clients. This can in theory be accomplished using the induction method de-
scribed in [KM89]. An example of this process can already be seen in the
abstract UIC/cluster model. If this model can be shown to be a formal abstrac-
tion of a UIC model connected to a cluster bus which in turn is a collection of
UIC/cluster models, then an inductive argument will show that it is an abstrac-
tion of a hierarchy of any depth. The UIC/cluster model serves in this case as
a process invariant. Finding such invariants is the key to doing inductive proofs
about processes. To show that the system specification holds for a cluster bus
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with an arbitrary number of clients, it is sufficient to find a process invariant
which is an abstraction of itself with one added bus client, and which itself
satisfies the specification. This method is practical if such an invariant can be
constructed for realisticly complex models, such as the present one. At present,
only simple, fairly theoretical problems have been solved using this method, and
it will be interesting to see how well it transfers to practice.

What conclusions can we draw from this experience? It seems to support the
notion that formal modeling can be a valuable tool in the early phases of design
of a complex protocol, and can save a great deal of wasted effort in the detailed
design of systems which are flawed at the architectural level. The techniques
presented here are limited to systems which can be represented with finite state
models. This would seem to cover a fairly broad range of protocols implemented
in both hardware and software, however. Another apparent conclusion is that
the number of states of a system is not a very good measure of the complexity
of verifying the system automatically, and that other measures based on the
structure of the state space may be more appropriate. Using techniques of
abstraction and representations which are suitable to the problem space, such
as BDD’s, we can automatically prove properties of extremely complex systems.
Perhaps more importantly, automatic verification systems can produce examples
of behavior which contradicts the specification. Thus instead of asking the
question “What happens when this input sequence is applied”, we can ask the
question “What input sequence causes this system to fail”.
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