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• Can “creativity” be “automated”?
• Can reasoning be reduced to computation ?

• Intuition: NO, reasoning is genuinely human

• “Computers are stupid , they only blindly execute their program”
• “Computers can compute but they cannot really reason ”

• Reality: YES, to a large extent : Automated Reasoning (AR)

• A well-established field of Artificial Intelligence (50+ years)
• Rich gamut of approaches, books, tools, applications, results

• . . . Reasoning can be reduced to computation (to some extent)
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• Who I am

• Professor at UCL / SST / EPL (engineering school)
• Researcher at UCL / SST / ICTEAM / INGI (computer science)

• What I study

• Verifying computer systems
• Proving correctness or (more often) finding bugs
• Model-checking (mostly), solvers (as tools)

• What I teach

• Beginner programming (Java), system modelling and analysis,
• (automated) program proofs , automated reasoning
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Les métamorphoses du calcul

Une étonnante histoire de mathématiques
Le Pommier, 2007
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• The vertices of every planar graph can be colored with at most four
colors so that no two adjacent vertices receive the same color

• Or equivalently, any map may be colored using no more than four
colors in such a way that no two adjacent regions receive the same
color
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Wikipedia: Four color theorem

• Conjectured in 1852 (Guthrie)

• Bogus proofs in 1879, 1880

• Theoretical progress until the 60’s–70’s

• But still no proof

• Proof in 1976 (Appel, Haken)

• Problem reduced to 1936 possible configurations
• Each checked one by one by computer (specific program)
• Still need to trust the program !

• Proof in Coq in 2004 (Werner, Gonthier )

• General-purpose theorem prover
• Still need to trust Coq . . .
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• Robbins algebra : (A,∨,¬) satisfying
a ∨ (b ∨ c) = (a ∨ b) ∨ c (associativity)
a ∨ b = b ∨ a (commutativity)
¬(¬(a ∨ b) ∨ ¬(a ∨ ¬b)) = a (Robbins’s axiom)

• Boolean algebra : (A,∨,∧,¬, 0, 1) satisfying
a ∨ (b ∨ c) = (a ∨ b) ∨ c (associativity)
a ∨ b = b ∨ a (commutativity)
a ∨ (a ∧ b) = a (absorption)
a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) (distributivity)
a ∨ ¬a = 1 (complements)
. . . and their duals wrt. ∧/∨, 0/1
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a ∨ (b ∨ c) = (a ∨ b) ∨ c (associativity)
a ∨ b = b ∨ a (commutativity)
¬(¬(a ∨ b) ∨ ¬(a ∨ ¬b)) = a (Robbins’s axiom)

• Boolean algebra : (A,∨,∧,¬, 0, 1) satisfying
a ∨ (b ∨ c) = (a ∨ b) ∨ c (associativity)
a ∨ b = b ∨ a (commutativity)
a ∨ (a ∧ b) = a (absorption)
a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) (distributivity)
a ∨ ¬a = 1 (complements)
. . . and their duals wrt. ∧/∨, 0/1

• Conjecture : all Robbins algebra are Boolean
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W. McCune. Solution of the Robbins Problem. JAR 19(3), pp. 263–276, 1997.

• Problem posed around 1933 (Robbins)

• as a conjectured variant of another axiom set (Huntington)

• Work on the problem (Huntington, Robbins, Tarski) but no solution

• became a favorite of Tarski

• First attempts using automated reasoning in 1979 (Winker )

• using the Argonne Theorem Prover (→ Otter → Prover9)
• proved useful lemmas (by hand), still not solved

• Solution using automated reasoning in 1997 (McCune)

• using EQP = automated prover for equational logic
• found proof of the missing lemma
• after 14 attempts totaling five weeks of CPU time
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• Platform screen doors control software

• Starting/stopping trains, opening/closing train and platform doors
• Parts on-board, on wayside, at control center
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• Safety-critical code written in B

• Includes formal safety properties
• Supports formal refinement (from design to implementation)
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T. Lecomte, T. Servat, G. Pouzancre. Formal Methods in Satefy Critical Railway Systems. SBMF 2007.

• Safety-critical code written in B

• Includes formal safety properties
• Supports formal refinement (from design to implementation)

• Large project

• 115,000 lines of B
• 1,000 proof obligations, 92% fully automatic

• Seems to work!

• No bug found after 9 years of operation
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• Mesopotamia, since 2500 BC

• Add, multiply, divide, area of rectangles, triangles, disks, . . .
• With given numbers: computing

• Pythagoras, 500 BC:

• For all rectangle triangles (a, b, c): a2 + b2 = c2

• Infinitely many (a, b, c): reasoning

(images from Wikipedia)
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All men are mortal.
Socrates is a man.

Therefore, Socrates is mortal.
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• Aristote, 350 BC:
All men are mortal.
Socrates is a man.

Therefore, Socrates is mortal.

• Syllogisms : First general reasoning rules

• Stoı̈cians 300 BC:
If Socrates is a man, then Socrates is mortal.

Socrates is a man.
Therefore, Socrates is mortal.

• Modus ponens : roots of propositional logic

• Seen as philosophy , not mathematics!

• Euclid’s Elements did not (explicitly) use them!
• Too crude: needs functions, predicates
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• Reducing reasoning to computing is an old idea

• “Reason [. . . ] is nothing but reckoning [= calculating]”
(T. Hobbes, 1651)

• Characteristica Universalis (Leibniz, 1646–1716)

• An (unrealized) universal language to express mathematical,
scientific, and philosophic concepts

• Calculus ratiocinator (calculus of reasoning): an (unrealized)
universal logical calculation



Characteristica Universalis
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(image from Wikipedia)
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• Calculus of logic (Boole, 1815–1864)

• Propositional (Boolean!) logic, set-theoretic reasoning
• Formal rules without interpretation

• Begriffsschrift (Frege, 1879)

• “A formula language, modelled on that of arithmetic, of pure
thought”

• First-order logic, Quantifiers , sets
• Russell’s paradox ({x | x /∈ x})

• Principia Mathematica (Whitehead and Russell, 1910)

• Type theory
• Formal foundations of mathematics
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(image from Wikipedia)
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• Hilbert’s program (Hilbert, 1922)

• (Science program, not computer!)
• Goal: formalize all of mathematics
• Goal: prove completeness, consistency, . . .
• Reduce everything (integers, reals, functions, integration,

geometry, . . . ) to logic with (few) axioms
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• Hilbert’s program (Hilbert, 1922)

• (Science program, not computer!)
• Goal: formalize all of mathematics
• Goal: prove completeness, consistency, . . .
• Reduce everything (integers, reals, functions, integration,

geometry, . . . ) to logic with (few) axioms

• The incompleteness theorems (Gödel, 1931)

• Any “rich enough” formal system is incomplete
• i.e. some valid statements cannot be proven
• Essential limit to Hilbert’s goal
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• Formalization of computation = decidability

• . . . before creation of computers!
• Turing machines (Turing, 1936)
• λ-calculus (Church, 1936)
• Halting problem is not decidable
• First-order logic is not decidable
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• Formalization of computation = decidability

• . . . before creation of computers!
• Turing machines (Turing, 1936)
• λ-calculus (Church, 1936)
• Halting problem is not decidable
• First-order logic is not decidable

• Then came the computers (1940’s, WWII)

• . . . and the first attempts to compute proofs
• Artificial intelligence (McCarthy, 1956)
• Lisp (1956), Prolog (1972)



The AR Problem
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What’s logic ?

• Facts : logic formulae φ (syntax)

∀a, b, c, n ∈ N : n ≥ 3 ⇒ an + bn 6= cn

• Reasoning : logic proofs φ1, . . . , φn ⊢ φ

• Generally from an initial set of axioms Ax (aka theory)
• A theorem is a φ such that Ax ⊢ φ
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What’s logic ?

• Facts : logic formulae φ (syntax)

∀a, b, c, n ∈ N : n ≥ 3 ⇒ an + bn 6= cn

• Reasoning : logic proofs φ1, . . . , φn ⊢ φ

• Generally from an initial set of axioms Ax (aka theory)
• A theorem is a φ such that Ax ⊢ φ

• A proof system defines allowable proofs

• Using rules, tableaux, truth tables, . . .
• Synthetic (from Ax to φ) or analytic (from φ to Ax)
• Many allowed choices : which rule, axiom, lemma, . . .
• Needs strategies , may stray away

• Proof = Rules + Strategy = Computing + Reasoning
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What’s a useful logic?

• Means something: interpretations M (aka models)

• Propositions, predicates, functions, sets, numbers, programs, ...
• Semantics : M |= φ if φ is true in/about/for M
• Consequence : φ1, . . . , φn |= φ
• Validity : Ax |= φ
• Satisfiability : Ax 6|= ¬φ

• Reasons properly

• Soundness : all proofs are valid

Ax ⊢ φ ⇒ Ax |= φ

• Completeness : all valid facts can be proven

Ax |= φ ⇒ Ax ⊢ φ
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What’s computing ?

• An effective way to produce outputs from inputs
• Many models: Turing machines, Lambda calculus, recursive

functions, . . .

• All equivalent (Turing-complete)
• Nothing better (Church thesis)
• Also Lisp, C, Java, Mathlab, ...
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What’s computing ?

• An effective way to produce outputs from inputs
• Many models: Turing machines, Lambda calculus, recursive

functions, . . .

• All equivalent (Turing-complete)
• Nothing better (Church thesis)
• Also Lisp, C, Java, Mathlab, ...

What’s deciding a problem?

• Computing a yes-or-no answer to (any instance of) the problem
• Some things are undecidable

• Does a program terminate?
• Is a (context-free) grammar unambiguous?
• Does a Diophantine equation have solutions?
• Is a logic formula valid ? (Entscheidungsproblem)
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• Proofs systems can be used to enumerate proofs

• E.g.: all proofs of length 0 (axioms), then length 1, etc.
• Fair: will find a proof if there is one. . .
• . . . but will go forever if there isn’t
• Very dumb and inefficient, but we can be smarter

• We have at least a semi-decision procedure
(for theorems at least, for validity if complete )
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• Proofs systems can be used to enumerate proofs

• E.g.: all proofs of length 0 (axioms), then length 1, etc.
• Fair: will find a proof if there is one. . .
• . . . but will go forever if there isn’t
• Very dumb and inefficient, but we can be smarter

• We have at least a semi-decision procedure
(for theorems at least, for validity if complete )

• Common approaches

• Reduce formulae to normal forms (easier for computing)
• Part of the theory “built-in” the method (e.g. equality),

the rest provided as ordinary formulae Ax
• Proof by refutation : (un)satisfiability of Ax ∧ ¬φ



Some Decidability Results

compiled March 12, 2012— c©Charles Pecheur 2012 28 / 51

• Propositional logic is decidable

• Finitely many cases (exponentially many: NP-complete)
• SAT solvers
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• Propositional logic is decidable

• Finitely many cases (exponentially many: NP-complete)
• SAT solvers

• First-order logic is only semi-decidable

• Related to halting problem (Church, 1936; Turing, 1937)

• Arithmetics (on integers) is not decidable

• No complete, consistent, effective proof system (Gödel, 1931)
• Can’t even enumerate valid facts
• Inductive reasoning can’t be effectively mechanized
• Arithmetics on reals is decidable !

• Many quantifier-free fragments are decidable

• Enough for many applications



Decidability and Complexity of Some Theories

compiled March 12, 2012— c©Charles Pecheur 2012 29 / 51

Theory full CQFF
propositional NP-comp. Θ(n)
first-order no Θ(n)
equality (uninterpreted fct.) no O(n log n)
N,+,× (Peano) no no

N,+ (Pressburger) O(22
2
kn

) NP-comp.
R,+,× O(22

kn

) O(22
kn

)

R,+ (or Q,+) O(22
kn

) PTIME
recursive data structures no O(n log n)
acyclic recursive data struct. not elementary Θ(n)
arrays no NP-comp.

(CQFF = conjunctive quantifier-free formulae)
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• Finding mathematical proofs

• Is this conjecture a theorem?
• Compute the mundane parts, guide strategic choices

• Checking existing proofs

• Detect human mistakes, document, re-organize, simplify
• Experimental mathematics

• Verifying artifacts

• Ax models the artifact, φ the specification

• Synthesizing artifacts

• Constructive proof of ∃x.φ(x)



AR Milestones
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• Deciding linear arithmetics (Presburger 1929)

• Decision algorithm for first-order formulae over (N,+)
• By quantifier elimination
• Very inefficient! (O(22
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• Deciding linear arithmetics (Presburger 1929)

• Decision algorithm for first-order formulae over (N,+)
• By quantifier elimination
• Very inefficient! (O(22
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• Along the same lines:

• Decision algorithm for (N,×) (Skolem 1930)
• Decision algorithm for (R,+,×) (Tarski 1931)
• NB: Euclidean geometry reducible to (R,+,×)
• NB: (N,+,×) (Peano) is not decidable (Gödel 1931)
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• Deciding linear arithmetics (Presburger 1929)

• Decision algorithm for first-order formulae over (N,+)
• By quantifier elimination
• Very inefficient! (O(22

2
cn

))

• Along the same lines:

• Decision algorithm for (N,×) (Skolem 1930)
• Decision algorithm for (R,+,×) (Tarski 1931)
• NB: Euclidean geometry reducible to (R,+,×)
• NB: (N,+,×) (Peano) is not decidable (Gödel 1931)

• Reasoning reduced to computing !



Computer Proofs: First Steps

compiled March 12, 2012— c©Charles Pecheur 2012 33 / 51

• Logic Theory Machine (Newell, Shaw, Simon 1957)

• Proofs from Principia Mathematica
• Natural deduction in propositional logic, heuristic
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Computer Proofs: First Steps

compiled March 12, 2012— c©Charles Pecheur 2012 33 / 51

• Logic Theory Machine (Newell, Shaw, Simon 1957)

• Proofs from Principia Mathematica
• Natural deduction in propositional logic, heuristic
• (though propositional logic is decidable!)

• Geometry Machine (Gelertner 1963)

• Proofs for elementary geometry
• Similar approach
• (decidable but impractical)



Computer Proofs: First Steps

compiled March 12, 2012— c©Charles Pecheur 2012 33 / 51

• Logic Theory Machine (Newell, Shaw, Simon 1957)

• Proofs from Principia Mathematica
• Natural deduction in propositional logic, heuristic
• (though propositional logic is decidable!)

• Geometry Machine (Gelertner 1963)

• Proofs for elementary geometry
• Similar approach
• (decidable but impractical)

• Symbolic Integrator (Slagle 1963)

• Symbolic resolution of integrals
• First “expert system”



Computer Proofs: First Steps

compiled March 12, 2012— c©Charles Pecheur 2012 33 / 51

• Logic Theory Machine (Newell, Shaw, Simon 1957)

• Proofs from Principia Mathematica
• Natural deduction in propositional logic, heuristic
• (though propositional logic is decidable!)

• Geometry Machine (Gelertner 1963)

• Proofs for elementary geometry
• Similar approach
• (decidable but impractical)

• Symbolic Integrator (Slagle 1963)

• Symbolic resolution of integrals
• First “expert system”

• Human-like proofs!
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• Solving propositional logic satisfiability (SAT)
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• Solving propositional logic satisfiability (SAT)

• Computationally hard (NP-complete)
• The heart of proof search

• Davis-Putnam-Logemann-Loveland (DPLL ) algorithm (1962)
• Basic principle:

• Put problem in clausal form (CNF) ℓ1 ∨ . . . ∨ ℓn
• While possible, apply Boolean Constraint Propagation :

ℓ ¬ℓ ∨ ℓ1 ∨ . . . ∨ ℓn

ℓ1 ∨ . . . ∨ ℓn

• Otherwise, choose a literal ℓ and try ℓ then ¬ℓ (case-split )

• Computer-like proofs, not intuitive but efficient!
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• DPLL-based SAT solvers widely used today

• Lots of improvements, very efficient implementations
• Berkmin, Chaff, zChaff, Minisat, . . .
• Inside many applications
• Often good performance in practice

images from http://www.isi.edu/ szekely/antsebook/ebook/
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The Resolution method (Robinson 1965)

• Key idea: unification

mgu(x+ 0, a2 + y) = {x 7→ a2, y 7→ 0)

• Binary resolution rule:

ℓ1 ∨ . . . ∨ ℓn ∨ ℓ ¬ℓ′ ∨ ℓ′
1
∨ . . . ∨ ℓ′

m

ℓ1σ ∨ . . . ∨ ℓnσ ∨ ℓ′
1
σ ∨ . . . ∨ ℓ′

m
σ

σ = mgu(ℓ, ℓ′)

• This single rule (+ factoring) provides a
complete proof method for first-order logic !

• Limitations of Resolution

• Clauses, generic rule ⇒ inefficient, lacks guidance
• Need more: equality, numbers, sets, induction, . . .
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• For proofs with equational theories

e.g. 0 + x = x
(x+ y) + z = x+ (y + z)
−x+ x = 0

• Combines resolution and replacing equals by equals
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Paramodulation (Robinson, Wos, 1969) another Robinson!

• For proofs with equational theories

e.g. 0 + x = x
(x+ y) + z = x+ (y + z)
−x+ x = 0

• Combines resolution and replacing equals by equals

• Paramodulation rule :

ℓ1 ∨ . . . ∨ ℓn ∨ s = t ℓ′[u] ∨ ℓ′
1
∨ . . . ∨ ℓ′

m

ℓ1σ ∨ . . . ∨ ℓnσ ∨ ℓ′σ[tσ] ∨ ℓ′
1
σ ∨ . . . ∨ ℓ′

m
σ

σ = mgu(s, u)

• Used for proof of Robbins conjecture
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• Term Rewriting

• Rules s → t used to reduce (= rewrite) s into t
• Repeat until irreducible normal form s↓

e.g. 0 + x → x
(x+ y) + z → x+ (y + z)
−x+ x → 0

⇒ (a+ 0) + b becomes a+ (0 + b) becomes a+ b
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• Term Rewriting

• Rules s → t used to reduce (= rewrite) s into t
• Repeat until irreducible normal form s↓

e.g. 0 + x → x
(x+ y) + z → x+ (y + z)
−x+ x → 0

⇒ (a+ 0) + b becomes a+ (0 + b) becomes a+ b

• Used for reasoning in equational theories

• Turn equations into rewrite rules
• If the rules are convergent ,

then s = t iff s↓ and t↓ are identical
• Knuth-Bendix procedure (1970) for checking convergence

• Also at the core of functional programming
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Prolog (Colmerauer 1972)
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ancestor(X,Z) :- parent(X,Y), ancestor(Y,Z).
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parent(philippe,elisabeth).

?- ancestor(albertII,X), ancestor(X,elisabeth).
X = albertII
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Prolog (Colmerauer 1972)

ancestor(X,X).
ancestor(X,Z) :- parent(X,Y), ancestor(Y,Z).
parent(albertII,philippe).
parent(philippe,elisabeth).

?- ancestor(albertII,X), ancestor(X,elisabeth).
X = albertII

• Logic clauses as program statements ,
logic reasoning as program execution !

• Based on SLD-resolution (Kowalski 1973)

• Resolution specialized on definite clauses

• Prolog adds many programming language features!
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• Higher-Order Logics

• Functions, sets, relations

• Type systems

• Numbers, lists, trees, . . .
• and functions/sets/relations thereof

• Inductive reasoning

• Forces interactive approaches = proof assistants

• Most problems are undecidable, huge search spaces
• Proof tactics and tacticals, proof planning
• Proof editors and browsers



Some Proof Assistants
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• LCF (Milner, 1972)

• Based on functional programming language ML
• Several descendants: HOL (Gordon, 88), Isabelle (Paulson,

1989)
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• LCF (Milner, 1972)

• Based on functional programming language ML
• Several descendants: HOL (Gordon, 88), Isabelle (Paulson,

1989)

• Coq (Coquand, Huet, 1984)

• Based on constructive logic
• Used to check the 4-colour theorem (Gonthier, Werner, 2004)

• PVS (Owre, Rushby, Shankar, 1992)

• Based on sequent calculus



Example: PVS Proof
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• Automated decision procedures (DPs) for specific theories

• Quantifier-free fragments
• (QF) Linear integers/reals ⇒ simplex algorithm
• (QF) Polynomials ⇒ Gröbner bases
• (QF) Equality on uninterpreted functions ⇒ congruence closure
• (QF) arrays, data structures ⇒ reduce to previous case
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• Automated decision procedures (DPs) for specific theories

• Quantifier-free fragments
• (QF) Linear integers/reals ⇒ simplex algorithm
• (QF) Polynomials ⇒ Gröbner bases
• (QF) Equality on uninterpreted functions ⇒ congruence closure
• (QF) arrays, data structures ⇒ reduce to previous case

• Nelson-Oppem method (1979)

• Solve (QF) problems over multiple theories by combining DPs
• Split the problem and coordinate solutions
• Intuition: proof = logic (SAT) + theories (DP)

• Inside many tools: embedded automated reasoning
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• Principle: reduce programs to logic

• Base case: {x× x > 0} y := x× x {y > 0}
• Program properties reduce to (first-order) verification

conditions
• Prove with standard proof tools (solvers)
• Needs guidance: loop invariants, pre/post conditions, . . .
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• Principle: reduce programs to logic

• Base case: {x× x > 0} y := x× x {y > 0}
• Program properties reduce to (first-order) verification

conditions
• Prove with standard proof tools (solvers)
• Needs guidance: loop invariants, pre/post conditions, . . .

• Floyd’s inductive assertions (1967)

• Decompose a program in sequential basic paths
• Specify assertions at connection points
• Prove that each path preserves the assertions

• Hard problem: loops, recursion, pointers, objects, concurrency, ...
• Lots of conditions to check (thousands) but “easy” proofs
• Example: B method applied to Paris metro line



Example: Inductive Assertions
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i := 1

result := true result := false

i ≤ size(a) ?

i := i + 1

a[i] = e ?

Begin

End

F

T

F

T

LinearSearch(a, e)

--

i ≥ 1

∀ 1 ≤ j ≤ i-1 : a[j] ≠ e

result ≡ ∃ 1 ≤ j ≤ size(a) : a[j] = e
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• Model-Checking : check M |= φ for a given model M

• Rather than validity : M |= φ for all M
or consequence : M |= φ for all M such that M |= Ax

• By exhaustive exploration of M : semantic approach
• Fully automatic! (though computation-intensive)
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• Model-Checking : check M |= φ for a given model M

• Rather than validity : M |= φ for all M
or consequence : M |= φ for all M such that M |= Ax

• By exhaustive exploration of M : semantic approach
• Fully automatic! (though computation-intensive)

• Concretely, M = (the state space of) a computer program/system

• Very large (millions of states), state space explosion
• Even infinite, with symbolic approaches (⇒ solvers!)
• Explore all possible executions
• For all parameters, inputs, scheduling, timing

• φ = temporal logic

e.g. �¬(busya ∧ busyb)
�(send ⇒ ♦receive)



AR Perspectives
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• Richer logics

• Linear, separation logic (resources, memory)
• Non-monotonic, default logic (commonsense)
• Modal logic (time, knowledge, possibility)
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• Richer logics

• Linear, separation logic (resources, memory)
• Non-monotonic, default logic (commonsense)
• Modal logic (time, knowledge, possibility)

• Meta-reasoning

• Analyze proof goals, select proof methods
• Reflection, proof planning

• Embedded (automated) proving

• In computer algebra systems
• In computer/software analysis tools
• In planning and scheduling

• Algorithmic improvements

• CASC competition (8 divisions, 20+ categories in 2012)
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• Automated reasoning is a flourishing discipline

• Assists , rather than replaces, human proofs

• Experimental mathematics

• Comprehensive, interactive proof assistants for rich logics
• Efficient, automatic decision procedures for simpler theories

• Computers can do a lot of reasoning

• By reducing it to computing
• Is this still reasoning?
• The AI Effect: As soon as AI works, it is no longer called AI

• Will computer provers someday equal, then surpass humans?
That is the (weak) AI question!



Bibliography



Bibliography

compiled March 12, 2012— c©Charles Pecheur 2012 51 / 51

[1] A. Bundy. A Survey of Automated Deduction. Research Report
Nr. 1, Division of Informatics, University of Edinburgh, April 1999.

[2] M. Davis. The Early History of Automated Deduction. In: A.
Robinson, A. Voronkov (Eds.), Handbook of Automated
Reasoning, Elsevier, 2001.

[3] G. Dowek. Les métamorphoses du calcul : une étonnante
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