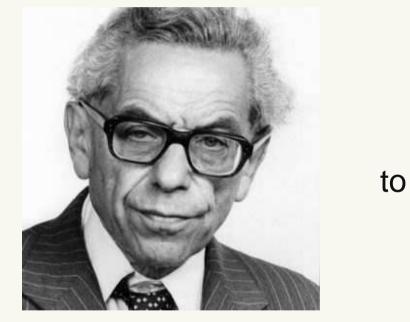
Informatique et preuve

Une brève histoire du raisonnement automatisé

Charles Pecheur Université catholique de Louvain

Séminaire fondements et notions fondamentales – 12 mars 2012

Replacing Scholars by Programs?



Paul Erdős

?

HAL 9000

From

• Can "creativity" be "automated"?

- Can "creativity" be "automated"?
- Can reasoning be reduced to computation?

- Can "creativity" be "automated"?
- Can reasoning be reduced to computation?
- Intuition: **NO**, reasoning is genuinely human
 - "Computers are **stupid**, they only blindly execute their program"
 - "Computers can compute but they cannot really reason"

- Can "creativity" be "automated"?
- Can reasoning be reduced to computation?
- Intuition: **NO**, reasoning is genuinely human
 - "Computers are **stupid**, they only blindly execute their program"
 - "Computers can compute but they cannot really reason"
- Reality: YES, to a large extent : Automated Reasoning (AR)
 - A well-established field of **Artificial Intelligence** (50+ years)
 - Rich gamut of approaches, books, tools, applications, results

- Can "creativity" be "automated"?
- Can reasoning be reduced to computation?
- Intuition: **NO**, reasoning is genuinely human
 - "Computers are **stupid**, they only blindly execute their program"
 - "Computers can compute but they cannot really reason"
- Reality: YES, to a large extent : Automated Reasoning (AR)
 - A well-established field of **Artificial Intelligence** (50+ years)
 - Rich gamut of approaches, books, tools, applications, results
- ... Reasoning **can** be reduced to computation (to some extent)

Why Do I Care?

• Who I am

- Professor at UCL / SST / EPL (engineering school)
- Researcher at UCL / SST / ICTEAM / INGI (computer science)

Why Do I Care?

• Who I am

- Professor at UCL / SST / EPL (engineering school)
- Researcher at UCL / SST / ICTEAM / INGI (computer science)

What I study

- Verifying computer systems
- Proving correctness or (more often) finding bugs
- Model-checking (mostly), solvers (as tools)

Why Do I Care?

• Who I am

- Professor at UCL / SST / EPL (engineering school)
- Researcher at UCL / SST / ICTEAM / INGI (computer science)

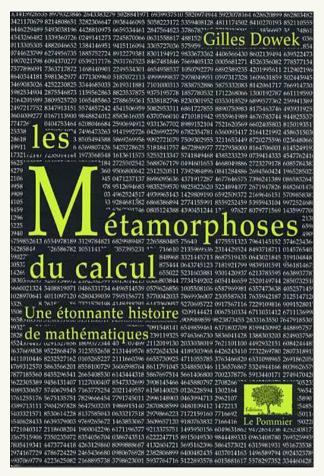
• What I study

- Verifying computer systems
- Proving correctness or (more often) finding bugs
- Model-checking (mostly), solvers (as tools)

• What I teach

- Beginner programming (Java), system modelling and analysis,
- (automated) program proofs, automated reasoning

Inspiring Reading



Gilles Dowek Les métamorphoses du calcul Une étonnante histoire de mathématiques Le Pommier, 2007

Contents

AR Examples Before AR The AR Problem AR Milestones AR Perspectives Bibliography AR Examples

The Four Colour Theorem

- The vertices of every planar graph can be colored with at most four colors so that no two adjacent vertices receive the same color
- Or equivalently, any map may be colored using no more than four colors in such a way that no two adjacent regions receive the same color
 compiled March 12, 2012— © Charles Pecheur 2012

- Conjectured in 1852 (Guthrie)
 - Bogus proofs in 1879, 1880

- Conjectured in 1852 (Guthrie)
 - Bogus proofs in 1879, 1880
- Theoretical **progress** until the 60's–70's
 - But still no proof

- Conjectured in 1852 (Guthrie)
 - Bogus proofs in 1879, 1880
- Theoretical progress until the 60's–70's
 - But still **no proof**
- **Proof** in 1976 (*Appel*, *Haken*)
 - Problem reduced to **1936 possible configurations**
 - Each checked one by one **by computer** (specific program)
 - Still need to trust the program!

- Conjectured in 1852 (Guthrie)
 - Bogus proofs in 1879, 1880
- Theoretical **progress** until the 60's–70's
 - But still **no proof**
- **Proof** in 1976 (*Appel*, *Haken*)
 - Problem reduced to **1936 possible configurations**
 - Each checked one by one **by computer** (specific program)
 - Still need to trust the program!
- Proof in **Coq** in 2004 (*Werner, Gonthier*)
 - General-purpose theorem prover
 - Still need to trust Coq...

Robbins Algebra are Boolean

• Robbins algebra: (A, \lor, \neg) satisfying $a \lor (b \lor c) = (a \lor b) \lor c$ $a \lor b = b \lor a$ $\neg(\neg(a \lor b) \lor \neg(a \lor \neg b)) = a$

(associativity) (commutativity) (Robbins's axiom)

Boolean algebra: (A, ∨, ∧, ¬, 0, 1) satisfying a ∨ (b ∨ c) = (a ∨ b) ∨ c a ∨ b = b ∨ a a ∨ (a ∧ b) = a a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) a ∨ ¬a = 1 ... and their duals wrt. ∧/∨, 0/1

(associativity) (commutativity) (absorption) (distributivity) (complements)

Robbins Algebra are Boolean

• Robbins algebra: (A, \lor, \neg) satisfying $a \lor (b \lor c) = (a \lor b) \lor c$ $a \lor b = b \lor a$ $\neg(\neg(a \lor b) \lor \neg(a \lor \neg b)) = a$

(associativity) (commutativity) (Robbins's axiom)

Boolean algebra: (A, ∨, ∧, ¬, 0, 1) satisfying a ∨ (b ∨ c) = (a ∨ b) ∨ c a ∨ b = b ∨ a a ∨ (a ∧ b) = a a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) a ∨ ¬a = 1 ...and their duals wrt. ∧/∨, 0/1

(associativity) (commutativity) (absorption) (distributivity) (complements)

• Conjecture: all Robbins algebra are Boolean

- **Problem posed** around 1933 (*Robbins*)
 - as a conjectured variant of another axiom set (*Huntington*)

- Problem posed around 1933 (Robbins)
 - as a conjectured variant of another axiom set (*Huntington*)
- Work on the problem (Huntington, Robbins, Tarski) but no solution
 - became a favorite of Tarski

- **Problem posed** around 1933 (*Robbins*)
 - as a conjectured variant of another axiom set (*Huntington*)
- Work on the problem (Huntington, Robbins, Tarski) but no solution
 - became a favorite of Tarski
- First attempts using automated reasoning in 1979 (*Winker*)
 - using the Argonne Theorem Prover (\rightarrow Otter \rightarrow Prover9)
 - proved useful lemmas (by hand), still not solved

- Problem posed around 1933 (Robbins)
 - as a conjectured variant of another axiom set (*Huntington*)
- Work on the problem (Huntington, Robbins, Tarski) but no solution
 - became a favorite of Tarski
- **First attempts** using automated reasoning in 1979 (*Winker*)
 - using the Argonne Theorem Prover (\rightarrow Otter \rightarrow Prover9)
 - proved useful lemmas (by hand), still not solved
- **Solution** using automated reasoning in 1997 (*McCune*)
 - using EQP = automated prover for equational logic
 - found proof of the missing lemma
 - after 14 attempts totaling five weeks of CPU time

Paris Métro Ligne 14

- Platform screen doors control software
 - Starting/stopping trains, opening/closing train and platform doors
 - Parts on-board, on wayside, at control center

T. Lecomte, T. Servat, G. Pouzancre. Formal Methods in Satefy Critical Railway Systems. SBMF 2007.

- Safety-critical code written in B
 - Includes formal safety properties
 - Supports **formal refinement** (from design to implementation)

T. Lecomte, T. Servat, G. Pouzancre. Formal Methods in Satefy Critical Railway Systems. SBMF 2007.

- Safety-critical code written in B
 - Includes formal safety properties
 - Supports **formal refinement** (from design to implementation)
- Large project
 - 115,000 lines of B
 - **1,000 proof** obligations, 92% fully automatic

T. Lecomte, T. Servat, G. Pouzancre. Formal Methods in Satefy Critical Railway Systems. SBMF 2007.

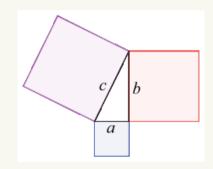
- Safety-critical code written in B
 - Includes formal safety properties
 - Supports **formal refinement** (from design to implementation)
- Large project
 - 115,000 lines of B
 - **1,000 proof** obligations, 92% fully automatic
- Seems to work!
 - No bug found after 9 years of operation

Before AR

- Mesopotamia, since 2500 BC
 - Add, multiply, divide, area of rectangles, triangles, disks, ...
 - With given numbers: computing



- Mesopotamia, since 2500 BC
 - Add, multiply, divide, area of rectangles, triangles, disks, ...
 - With given numbers: computing



- Pythagoras, 500 BC:
 - For all rectangle triangles (a, b, c): $a^2 + b^2 = c^2$
 - Infinitely many (a, b, c): reasoning

• Aristote, 350 BC:

All men are mortal. Socrates is a man. Therefore, Socrates is mortal.

• Syllogisms: First general reasoning rules

• Aristote, 350 BC:

All men are mortal. Socrates is a man. Therefore, Socrates is mortal.

• Syllogisms: First general reasoning rules

• Stoïcians 300 BC:

If Socrates is a man, then Socrates is mortal. Socrates is a man. Therefore, Socrates is mortal.

Modus ponens: roots of propositional logic

• Aristote, 350 BC:

All men are mortal. Socrates is a man. Therefore, Socrates is mortal.

• Syllogisms: First general reasoning rules

• Stoïcians 300 BC:

If Socrates is a man, then Socrates is mortal. Socrates is a man. Therefore, Socrates is mortal.

- Modus ponens: roots of propositional logic
- Seen as **philosophy**, not mathematics!
 - Euclid's Elements did not (explicitly) use them!
 - Too crude: needs functions, predicates

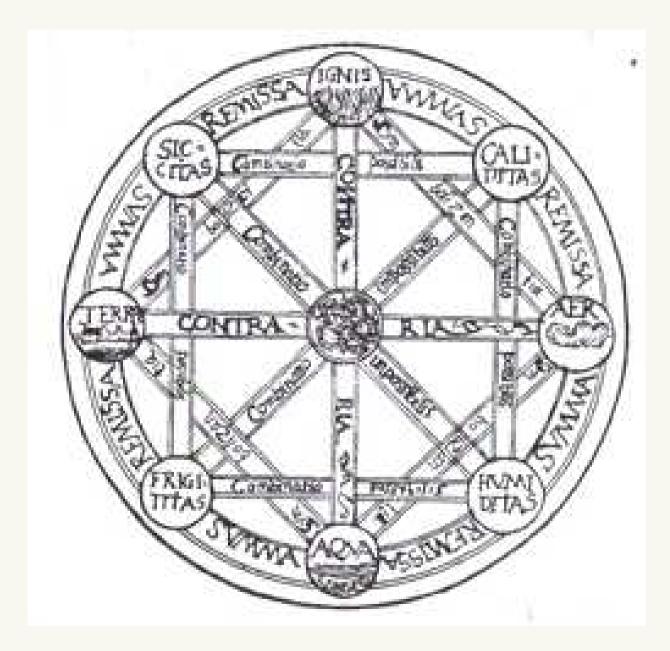
Reasoning as Computing?

- Reducing reasoning to computing is an old idea
 - "Reason [...] is nothing but reckoning [= calculating]" (T. Hobbes, 1651)

Reasoning as Computing?

- Reducing **reasoning** to **computing** is an **old idea**
 - "Reason [...] is nothing but reckoning [= calculating]" (T. Hobbes, 1651)
- Characteristica Universalis (Leibniz, 1646–1716)
 - An (unrealized) universal language to express mathematical, scientific, and philosophic concepts
 - Calculus ratiocinator (calculus of reasoning): an (unrealized) universal logical calculation

Characteristica Universalis



(image from Wikipedia)

Formalizing Logics

- Calculus of logic (Boole, 1815–1864)
 - **Propositional** (Boolean!) logic, **set-theoretic** reasoning
 - Formal rules without interpretation

Formalizing Logics

- Calculus of logic (Boole, 1815–1864)
 - **Propositional** (Boolean!) logic, **set-theoretic** reasoning
 - Formal rules without interpretation
- *Begriffsschrift* (Frege, 1879)
 - "A formula language, modelled on that of arithmetic, of pure thought"
 - First-order logic, **Quantifiers**, sets
 - Russell's paradox $(\{x \mid x \notin x\})$

Formalizing Logics

- Calculus of logic (Boole, 1815–1864)
 - **Propositional** (Boolean!) logic, **set-theoretic** reasoning
 - Formal rules without interpretation
- *Begriffsschrift* (Frege, 1879)
 - "A formula language, modelled on that of arithmetic, of pure thought"
 - First-order logic, **Quantifiers**, sets
 - Russell's paradox $(\{x \mid x \notin x\})$
- Principia Mathematica (Whitehead and Russell, 1910)
 - **Type** theory
 - Formal foundations of **mathematics**

Frege's Begriffsschrift

Basic concept	Frege's notation	Modern notations
Judging	$\vdash A$, $\vdash A$	$p(\mathbf{A}) = 1$ $p(\mathbf{A}) = i$
Negation	—— A	¬ A ; ~A
Conditional (implication)	——————————————————————————————————————	$\mathbf{B} \rightarrow \mathbf{A}$ $\mathbf{B} \supset \mathbf{A}$
Universal quantification	u Φ(u)	$orall \mathbf{y}: \mathbf{\Phi}(\mathbf{y})$
Existential quantification	Φ(ų)	$\exists \mathbf{y}: \mathbf{\Phi}(\mathbf{y})$
Content identity (equal sign)	$A \equiv B$	A = B

(image from Wikipedia)

Reasoning as Computing...or Not?

- Hilbert's program (Hilbert, 1922)
 - (Science program, not computer!)
 - Goal: formalize all of mathematics
 - Goal: **prove** completeness, consistency, ...
 - **Reduce** everything (integers, reals, functions, integration, geometry, ...) to logic with (few) axioms

Reasoning as Computing...or Not?

- Hilbert's program (Hilbert, 1922)
 - (Science program, not computer!)
 - Goal: formalize all of mathematics
 - Goal: **prove** completeness, consistency, ...
 - **Reduce** everything (integers, reals, functions, integration, geometry, ...) to logic with (few) axioms
- The incompleteness theorems (Gödel, 1931)
 - Any "rich enough" formal system is **incomplete**
 - i.e. some valid statements cannot be proven
 - Essential limit to Hilbert's goal

Deciding is Computing

- Formalization of computation = **decidability**
 - ... before creation of computers!
 - **Turing machines** (Turing, 1936)
 - λ -calculus (Church, 1936)
 - Halting problem is not decidable
 - First-order logic is not decidable

Deciding is Computing

- Formalization of computation = **decidability**
 - ... before creation of computers!
 - **Turing machines** (Turing, 1936)
 - λ -calculus (Church, 1936)
 - Halting problem is not decidable
 - First-order logic is not decidable
- Then came the **computers** (1940's, WWII)
 - ... and the first attempts to **compute proofs**
 - Artificial intelligence (McCarthy, 1956)
 - Lisp (1956), Prolog (1972)

The AR Problem

Logics

What's logic?

• Facts: logic formulae ϕ (syntax)

 $\forall a, b, c, n \in \mathbb{N} : n \ge 3 \Rightarrow a^n + b^n \neq c^n$

- **Reasoning**: logic **proofs** $\phi_1, \ldots, \phi_n \vdash \phi$
 - Generally from an initial set of **axioms** Ax (aka theory)
 - A **theorem** is a ϕ such that $Ax \vdash \phi$

Logics

What's logic?

• Facts: logic formulae ϕ (syntax)

 $\forall a, b, c, n \in \mathbb{N} : n \ge 3 \Rightarrow a^n + b^n \neq c^n$

- **Reasoning**: logic **proofs** $\phi_1, \ldots, \phi_n \vdash \phi$
 - Generally from an initial set of **axioms** Ax (aka theory)
 - A **theorem** is a ϕ such that $Ax \vdash \phi$
- A proof system defines allowable proofs
 - Using rules, tableaux, truth tables, ...
 - Synthetic (from Ax to ϕ) or analytic (from ϕ to Ax)
 - Many allowed choices: which rule, axiom, lemma, ...
 - Needs **strategies**, may stray away

Logics

What's logic?

• Facts: logic formulae ϕ (syntax)

 $\forall a, b, c, n \in \mathbb{N} : n \ge 3 \Rightarrow a^n + b^n \neq c^n$

- **Reasoning**: logic **proofs** $\phi_1, \ldots, \phi_n \vdash \phi$
 - Generally from an initial set of **axioms** Ax (aka theory)
 - A **theorem** is a ϕ such that $Ax \vdash \phi$
- A proof system defines allowable proofs
 - Using rules, tableaux, truth tables, ...
 - Synthetic (from Ax to ϕ) or analytic (from ϕ to Ax)
 - Many allowed choices: which rule, axiom, lemma, ...
 - Needs **strategies**, may stray away

• Proof = Rules + Strategy = Computing + Reasoning

Models

What's a **useful** logic?

- **Means** something: **interpretations** *M* (aka models)
 - Propositions, predicates, functions, sets, numbers, programs, ...
 - Semantics: $M \models \phi$ if ϕ is true in/about/for M
 - **Consequence**: $\phi_1, \ldots, \phi_n \models \phi$
 - Validity: $Ax \models \phi$
 - Satisfiability: $Ax \not\models \neg \phi$
- Reasons properly
 - Soundness: all proofs are valid

 $Ax \vdash \phi \quad \Rightarrow \quad Ax \models \phi$

• **Completeness**: all **valid facts** can be **proven**

$$Ax \models \phi \quad \Rightarrow \quad Ax \vdash \phi$$

Computing

What's **computing**?

- An effective way to produce outputs from inputs
- Many models: Turing machines, Lambda calculus, recursive functions, ...
 - All equivalent (Turing-complete)
 - Nothing better (Church thesis)
 - Also Lisp, C, Java, Mathlab, ...

Computing

What's **computing**?

- An effective way to produce outputs from inputs
- Many models: Turing machines, Lambda calculus, recursive functions, ...
 - All equivalent (Turing-complete)
 - Nothing better (Church thesis)
 - Also Lisp, C, Java, Mathlab, ...

What's **deciding** a problem?

- **Computing** a **yes-or-no** answer to (any instance of) the problem
- Some things are **undecidable**
 - Does a program terminate?
 - Is a (context-free) grammar unambiguous?
 - Does a Diophantine equation have solutions?
- compiled March 12, 2012 Contarles Pecheur 2012 (Entscheidungsproblem)

Computing Proofs

- Proofs systems can be used to enumerate proofs
 - E.g.: all proofs of length 0 (axioms), then length 1, etc.
 - Fair: will find a proof if there is one...
 - ... but will go forever if there isn't
 - Very dumb and inefficient, but we can be smarter
- We have at least a semi-decision procedure (for theorems at least, for validity if complete)

Computing Proofs

- Proofs systems can be used to **enumerate** proofs
 - E.g.: all proofs of length 0 (axioms), then length 1, etc.
 - Fair: will find a proof if there is one...
 - ... but will go forever if there isn't
 - Very dumb and inefficient, but we can be smarter
- We have at least a semi-decision procedure (for theorems at least, for validity if complete)
- Common approaches
 - Reduce formulae to **normal forms** (easier for computing)
 - Part of the theory "built-in" the method (e.g. equality), the rest provided as ordinary formulae Ax
 - Proof by **refutation**: (un)**satisfiability** of $Ax \land \neg \phi$

- Propositional logic is decidable
 - Finitely many cases (exponentially many: NP-complete)
 - SAT solvers

- Propositional logic is decidable
 - Finitely many cases (exponentially many: NP-complete)
 - SAT solvers
- First-order logic is only semi-decidable
 - Related to halting problem (Church, 1936; Turing, 1937)

- Propositional logic is decidable
 - Finitely many cases (exponentially many: NP-complete)
 - SAT solvers
- First-order logic is only semi-decidable
 - Related to halting problem (Church, 1936; Turing, 1937)
- Arithmetics (on integers) is not decidable
 - No complete, consistent, effective proof system (Gödel, 1931)
 - Can't even enumerate valid facts
 - Inductive reasoning can't be effectively mechanized
 - Arithmetics on **reals** is **decidable**!

- Propositional logic is decidable
 - Finitely many cases (exponentially many: NP-complete)
 - SAT solvers
- First-order logic is only semi-decidable
 - Related to halting problem (Church, 1936; Turing, 1937)
- Arithmetics (on integers) is not decidable
 - No complete, consistent, effective proof system (Gödel, 1931)
 - Can't even enumerate valid facts
 - Inductive reasoning can't be effectively mechanized
 - Arithmetics on reals is decidable!
- Many quantifier-free fragments are decidable
 - Enough for many applications

Decidability and Complexity of Some Theories

Theory	full	CQFF	
propositional	NP-comp.	$\Theta(n)$	
first-order	no	$\Theta(n)$	
equality (uninterpreted fct.)	no	$O(n \log n)$	
$\mathbb{N}, +, imes$ (Peano)	no	no	
$\mathbb{N}, +$ (Pressburger)	$O(2^{2^{2^{kn}}})$	NP-comp.	
$\mathbb{R},+, imes$	$O(2^{2^{\kappa n}})$	$O(2^{2^{kn}})$	
$\mathbb{R},+$ (or $\mathbb{Q},+$)	$O(2^{2^{kn}})$	PTIME	
recursive data structures	no	$O(n\log n)$	
acyclic recursive data struct.	not elementary	$\Theta(n)$	
arrays	no	NP-comp.	
(CQFF = conjunctive quantifier-free formulae)			

- Finding mathematical proofs
 - Is this conjecture a theorem?
 - Compute the mundane parts, guide strategic choices

- Finding mathematical proofs
 - Is this conjecture a theorem?
 - Compute the mundane parts, guide strategic choices
- **Checking** existing proofs
 - Detect human mistakes, document, re-organize, simplify
 - Experimental mathematics

- Finding mathematical proofs
 - Is this conjecture a theorem?
 - Compute the mundane parts, guide strategic choices
- **Checking** existing proofs
 - Detect human mistakes, document, re-organize, simplify
 - Experimental mathematics
- Verifying artifacts
 - Ax models the artifact, ϕ the specification

- Finding mathematical proofs
 - Is this conjecture a theorem?
 - Compute the mundane parts, guide strategic choices
- **Checking** existing proofs
 - Detect human mistakes, document, re-organize, simplify
 - Experimental mathematics
- Verifying artifacts
 - Ax models the artifact, ϕ the specification
- Synthesizing artifacts
 - Constructive proof of $\exists x.\phi(x)$

AR Milestones

Before Computers

- Deciding linear arithmetics (Presburger 1929)
 - Decision algorithm for first-order formulae over $(\mathbb{N}, +)$
 - By quantifier elimination
 - Very inefficient! ($O(2^{2^{2^{cn}}})$)

Before Computers

- Deciding linear arithmetics (Presburger 1929)
 - Decision algorithm for first-order formulae over $(\mathbb{N}, +)$
 - By quantifier elimination
 - Very inefficient! ($O(2^{2^{2^{cn}}})$)
- Along the same lines:
 - Decision algorithm for (\mathbb{N}, \times) (Skolem 1930)
 - Decision algorithm for $(\mathbb{R}, +, \times)$ (Tarski 1931)
 - NB: Euclidean geometry reducible to $(\mathbb{R}, +, \times)$
 - NB: $(\mathbb{N}, +, \times)$ (Peano) is not decidable (Gödel 1931)

Before Computers

- Deciding linear arithmetics (Presburger 1929)
 - Decision algorithm for first-order formulae over $(\mathbb{N}, +)$
 - By quantifier elimination
 - Very inefficient! ($O(2^{2^{2^{cn}}})$)
- Along the same lines:
 - Decision algorithm for (\mathbb{N}, \times) (Skolem 1930)
 - Decision algorithm for $(\mathbb{R}, +, \times)$ (Tarski 1931)
 - NB: Euclidean geometry reducible to $(\mathbb{R}, +, \times)$
 - NB: $(\mathbb{N}, +, \times)$ (Peano) is not decidable (Gödel 1931)
- **Reasoning** reduced to **computing**!

- Logic Theory Machine (Newell, Shaw, Simon 1957)
 - Proofs from Principia Mathematica
 - Natural deduction in propositional logic, heuristic
 - (though propositional logic is decidable!)

- Logic Theory Machine (Newell, Shaw, Simon 1957)
 - Proofs from Principia Mathematica
 - Natural deduction in propositional logic, heuristic
 - (though propositional logic is decidable!)
- **Geometry Machine** (Gelertner 1963)
 - Proofs for elementary geometry
 - Similar approach
 - (decidable but impractical)

- Logic Theory Machine (Newell, Shaw, Simon 1957)
 - Proofs from Principia Mathematica
 - Natural deduction in propositional logic, heuristic
 - (though propositional logic is decidable!)
- **Geometry Machine** (Gelertner 1963)
 - Proofs for elementary geometry
 - Similar approach
 - (decidable but impractical)
- Symbolic Integrator (Slagle 1963)
 - Symbolic resolution of integrals
 - First "expert system"

- Logic Theory Machine (Newell, Shaw, Simon 1957)
 - Proofs from Principia Mathematica
 - Natural deduction in propositional logic, heuristic
 - (though propositional logic is decidable!)
- Geometry Machine (Gelertner 1963)
 - Proofs for elementary geometry
 - Similar approach
 - (decidable but impractical)
- Symbolic Integrator (Slagle 1963)
 - Symbolic resolution of integrals
 - First "expert system"
- Human-like proofs!

SAT Solving

- Solving propositional logic satisfiability (SAT)
 - Computationally hard (NP-complete)
 - The heart of proof search

SAT Solving

- Solving propositional logic satisfiability (SAT)
 - Computationally hard (NP-complete)
 - The heart of proof search
- Davis-Putnam-Logemann-Loveland (DPLL) algorithm (1962)

SAT Solving

- Solving **propositional logic** satisfiability (SAT)
 - Computationally hard (NP-complete)
 - The heart of proof search
- Davis-Putnam-Logemann-Loveland (DPLL) algorithm (1962)
- Basic principle:
 - Put problem in clausal form (CNF) $\ell_1 \vee \ldots \vee \ell_n$
 - While possible, apply **Boolean Constraint Propagation**:

$$\begin{array}{c|c} \ell & \neg \ell \lor \ell_1 \lor \ldots \lor \ell_n \\ \hline \ell_1 \lor \ldots \lor \ell_n \end{array}$$

• Otherwise, choose a literal ℓ and try ℓ then $\neg \ell$ (case-split)

SAT Solving

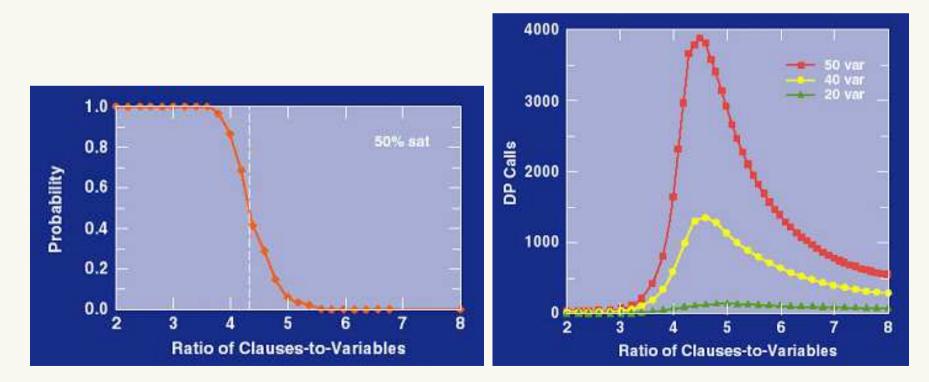
- Solving propositional logic satisfiability (SAT)
 - Computationally hard (NP-complete)
 - The heart of proof search
- Davis-Putnam-Logemann-Loveland (DPLL) algorithm (1962)
- Basic principle:
 - Put problem in clausal form (CNF) $\ell_1 \vee \ldots \vee \ell_n$
 - While possible, apply **Boolean Constraint Propagation**:

$$\begin{array}{c|c} \ell & \neg \ell \lor \ell_1 \lor \ldots \lor \ell_n \\ \hline \ell_1 \lor \ldots \lor \ell_n \end{array}$$

- Otherwise, choose a literal ℓ and try ℓ then $\neg \ell$ (case-split)
- **Computer-like** proofs, not intuitive but efficient!

SAT Solvers Today

- DPLL-based SAT solvers widely used today
 - Lots of improvements, very efficient implementations
 - Berkmin, Chaff, zChaff, Minisat, ...
 - Inside many applications
 - Often good performance in practice



images from http://www.isi.edu/ szekely/antsebook/ebook/ compiled March 12, 2012— ©Charles Pecheur 2012

The **Resolution method** (Robinson 1965)

• Key idea: unification

$$mgu(x+0, a^2+y) = \{x \mapsto a^2, y \mapsto 0\}$$

The **Resolution method** (Robinson 1965)

• Key idea: unification

 $mgu(x+0, a^2+y) = \{x \mapsto a^2, y \mapsto 0\}$

• Binary resolution rule:

$$\ell_1 \vee \ldots \vee \ell_n \vee \ell \quad \neg \ell' \vee \ell'_1 \vee \ldots \vee \ell'_m$$
$$\ell_1 \sigma \vee \ldots \vee \ell_n \sigma \vee \ell'_1 \sigma \vee \ldots \vee \ell'_m \sigma$$

$$\sigma = mgu(\ell,\ell')$$

The **Resolution method** (Robinson 1965)

• Key idea: unification

 $mgu(x+0, a^2+y) = \{x \mapsto a^2, y \mapsto 0\}$

• Binary resolution rule:

$$\ell_1 \vee \ldots \vee \ell_n \vee \ell \quad \neg \ell' \vee \ell'_1 \vee \ldots \vee \ell'_m$$
$$\ell_1 \sigma \vee \ldots \vee \ell_n \sigma \vee \ell'_1 \sigma \vee \ldots \vee \ell'_m \sigma$$

$$\sigma = mgu(\ell, \ell')$$

 This single rule (+ factoring) provides a complete proof method for first-order logic!

The **Resolution method** (Robinson 1965)

• Key idea: unification

 $mgu(x+0, a^2+y) = \{x \mapsto a^2, y \mapsto 0\}$

• Binary resolution rule:

$$\ell_1 \vee \ldots \vee \ell_n \vee \ell \quad \neg \ell' \vee \ell'_1 \vee \ldots \vee \ell'_m$$
$$\ell_1 \sigma \vee \ldots \vee \ell_n \sigma \vee \ell'_1 \sigma \vee \ldots \vee \ell'_m \sigma$$

$$\sigma = mgu(\ell, \ell')$$

- This single rule (+ factoring) provides a complete proof method for first-order logic!
- Limitations of Resolution
 - Clauses, generic rule \Rightarrow inefficient, lacks guidance
 - Need more: equality, numbers, sets, induction, ...

Equational Reasoning

Paramodulation (Robinson, Wos, 1969)

another Robinson!

• For proofs with **equational theories**

e.g.
$$0 + x = x$$

 $(x + y) + z = x + (y + z)$
 $-x + x = 0$

• Combines resolution and replacing equals by equals

Equational Reasoning

Paramodulation (Robinson, Wos, 1969)

another Robinson!

• For proofs with **equational theories**

e.g.
$$0 + x = x$$

 $(x + y) + z = x + (y + z)$
 $-x + x = 0$

- Combines resolution and replacing equals by equals
- Paramodulation rule:

$$\frac{\ell_1 \vee \ldots \vee \ell_n \vee [s=t] \quad \ell'[u]] \vee \ell'_1 \vee \ldots \vee \ell'_m}{\ell_1 \sigma \vee \ldots \vee \ell_n \sigma \vee [\ell'\sigma[t\sigma]] \vee \ell'_1 \sigma \vee \ldots \vee \ell'_m \sigma} \quad \sigma = mgu(s,u)$$

Equational Reasoning

Paramodulation (Robinson, Wos, 1969)

another Robinson!

• For proofs with **equational theories**

e.g.
$$0 + x = x$$

 $(x + y) + z = x + (y + z)$
 $-x + x = 0$

- Combines resolution and replacing equals by equals
- Paramodulation rule:

$$\frac{\ell_1 \vee \ldots \vee \ell_n \vee [s=t] \quad [\ell'[u]] \vee \ell'_1 \vee \ldots \vee \ell'_m}{\ell_1 \sigma \vee \ldots \vee \ell_n \sigma \vee [\ell'\sigma[t\sigma]] \vee \ell'_1 \sigma \vee \ldots \vee \ell'_m \sigma} \quad [\sigma = mgu(s,u)]$$

• Used for proof of Robbins conjecture

Rewrite Systems

• Term Rewriting

- Rules $s \to t$ used to reduce (= rewrite) s into t
- Repeat until irreducible **normal form** $s\downarrow$

e.g.
$$0 + x \rightarrow x$$

 $(x + y) + z \rightarrow x + (y + z)$
 $-x + x \rightarrow 0$

$$\Rightarrow (a+0) + b$$
 becomes $a + (0+b)$ becomes $a + b$

Term Rewriting

- Rules $s \rightarrow t$ used to reduce (= rewrite) s into t
- Repeat until irreducible **normal form** $s\downarrow$

e.g.
$$0 + x \rightarrow x$$

 $(x + y) + z \rightarrow x + (y + z)$
 $-x + x \rightarrow 0$

 \Rightarrow (a+0) + b becomes a + (0+b) becomes a + b

- Used for reasoning in equational theories
 - Turn equations into rewrite rules
 - If the rules are convergent,
 then s = t iff s↓ and t↓ are identical
 - Knuth-Bendix procedure (1970) for checking convergence
- Also at the core of **functional programming**

Prolog (Colmerauer 1972)

```
ancestor(X,X).
ancestor(X,Z) :- parent(X,Y), ancestor(Y,Z).
parent(albertII,philippe).
parent(philippe,elisabeth).
```

```
?- ancestor(albertII,X), ancestor(X,elisabeth).
X = albertII
```

Prolog (Colmerauer 1972)

```
ancestor(X,X).
ancestor(X,Z) :- parent(X,Y), ancestor(Y,Z).
parent(albertII,philippe).
parent(philippe,elisabeth).
```

?- ancestor(albertII,X), ancestor(X,elisabeth).
X = albertII

• Logic clauses as program statements, logic reasoning as program execution!

Prolog (Colmerauer 1972)

```
ancestor(X,X).
ancestor(X,Z) :- parent(X,Y), ancestor(Y,Z).
parent(albertII,philippe).
parent(philippe,elisabeth).
```

?- ancestor(albertII,X), ancestor(X,elisabeth).
X = albertII

- Logic clauses as program statements, logic reasoning as program execution!
- Based on SLD-resolution (Kowalski 1973)
 - Resolution specialized on definite clauses

• Prolog adds many programming language features!

Richer Logics

- Higher-Order Logics
 - Functions, sets, relations
- Type systems
 - Numbers, lists, trees, ...
 - and functions/sets/relations thereof
- Inductive reasoning
- Forces interactive approaches = proof assistants
 - Most problems are undecidable, huge search spaces
 - Proof tactics and tacticals, proof planning
 - Proof editors and browsers

- LCF (Milner, 1972)
 - Based on functional programming language ML
 - Several descendants: HOL (Gordon, 88), Isabelle (Paulson, 1989)

- LCF (Milner, 1972)
 - Based on functional programming language ML
 - Several descendants: HOL (Gordon, 88), Isabelle (Paulson, 1989)
- **Coq** (Coquand, Huet, 1984)
 - Based on constructive logic
 - Used to check the 4-colour theorem (Gonthier, Werner, 2004)

- LCF (Milner, 1972)
 - Based on functional programming language ML
 - Several descendants: HOL (Gordon, 88), Isabelle (Paulson, 1989)
- **Coq** (Coquand, Huet, 1984)
 - Based on constructive logic
 - Used to check the 4-colour theorem (Gonthier, Werner, 2004)
- **PVS** (Owre, Rushby, Shankar, 1992)
 - Based on sequent calculus

Example: PVS Proof

```
sum_plus :
  _____
{1}
      (FORALL (f: [nat -> nat], g: [nat -> nat], n: nat):
         sum((LAMBDA (n: nat): f(n) + g(n)), n) = sum(f, n) + sum(g, n))
Rule? (skolem!)
Skolemizing,
this simplifies to:
sum_plus :
  -----
{1}
      sum((LAMBDA (n: nat): f!1(n) + g!1(n)), n!1)
          = sum(f!1, n!1) + sum(g!1, n!1)
Rule? (lemma "nat_induction")
Applying nat_induction where
this simplifies to:
sum_plus :
{-1}
       (FORALL (p: pred[nat]):
         (p(0) \text{ AND (FORALL (j: nat): } p(j) \text{ IMPLIES } p(j + 1)))
             IMPLIES (FORALL (i: nat): p(i)))
[1]
      sum((LAMBDA (n: nat): f!1(n) + g!1(n)), n!1)
          = sum(f!1, n!1) + sum(g!1, n!1)
```

Decision Procedures

- Automated decision procedures (DPs) for specific theories
 - **Quantifier-free** fragments
 - (QF) Linear integers/reals ⇒ **simplex algorithm**
 - (QF) Polynomials ⇒ **Gröbner bases**
 - (QF) Equality on uninterpreted functions \Rightarrow congruence closure
 - (QF) arrays, data structures \Rightarrow reduce to previous case

Decision Procedures

- Automated decision procedures (DPs) for specific theories
 - **Quantifier-free** fragments
 - (QF) Linear integers/reals ⇒ simplex algorithm
 - (QF) Polynomials ⇒ Gröbner bases
 - (QF) Equality on uninterpreted functions ⇒ **congruence closure**
 - (QF) arrays, data structures \Rightarrow reduce to previous case
- **Nelson-Oppem** method (1979)
 - Solve (QF) problems over multiple theories by **combining DPs**
 - Split the problem and coordinate solutions
 - Intuition: **proof** = **logic** (SAT) + **theories** (DP)

Decision Procedures

- Automated decision procedures (DPs) for specific theories
 - **Quantifier-free** fragments
 - (QF) Linear integers/reals ⇒ **simplex algorithm**
 - (QF) Polynomials ⇒ Gröbner bases
 - (QF) Equality on uninterpreted functions ⇒ **congruence closure**
 - (QF) arrays, data structures \Rightarrow reduce to previous case
- **Nelson-Oppem** method (1979)
 - Solve (QF) problems over multiple theories by **combining DPs**
 - Split the problem and coordinate solutions
 - Intuition: **proof** = **logic** (SAT) + **theories** (DP)
- Inside many tools: **embedded** automated reasoning

Proving Programs

- Principle: reduce programs to logic
 - Base case: $\{x \times x > 0\} \ y := x \times x \ \{y > 0\}$
 - Program properties reduce to (first-order) verification conditions
 - Prove with standard proof tools (solvers)
 - Needs guidance: loop invariants, pre/post conditions, ...

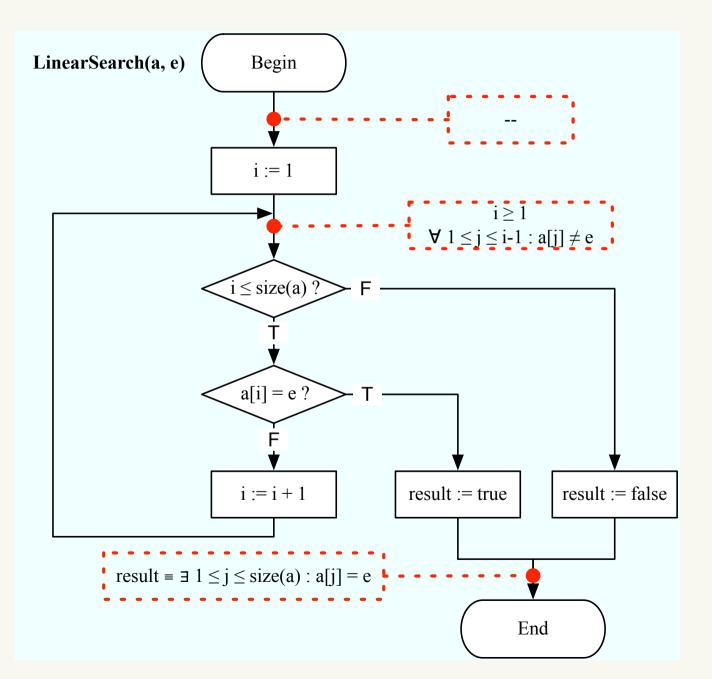
Proving Programs

- Principle: reduce programs to logic
 - Base case: $\{x \times x > 0\} \ y := x \times x \ \{y > 0\}$
 - Program properties reduce to (first-order) verification conditions
 - Prove with standard proof tools (solvers)
 - Needs guidance: loop invariants, pre/post conditions, ...
- Floyd's inductive assertions (1967)
 - Decompose a program in sequential **basic paths**
 - Specify **assertions** at connection points
 - Prove that each path preserves the assertions

Proving Programs

- Principle: reduce programs to logic
 - Base case: $\{x \times x > 0\} \ y := x \times x \ \{y > 0\}$
 - Program properties reduce to (first-order) verification conditions
 - Prove with standard proof tools (solvers)
 - Needs guidance: loop invariants, pre/post conditions, ...
- Floyd's inductive assertions (1967)
 - Decompose a program in sequential **basic paths**
 - Specify **assertions** at connection points
 - Prove that each path preserves the assertions
- Hard problem: loops, recursion, pointers, objects, concurrency, ...
- Lots of conditions to check (thousands) but "easy" proofs
- Example: B method applied to Paris metro line

Example: Inductive Assertions



Model-Checking

- Model-Checking: check $M \models \phi$ for a given model M
 - Rather than validity: $M \models \phi$ for all Mor consequence: $M \models \phi$ for all M such that $M \models Ax$
 - By exhaustive exploration of *M*: **semantic** approach
 - Fully automatic! (though computation-intensive)

Model-Checking

- Model-Checking: check $M \models \phi$ for a given model M
 - Rather than validity: $M \models \phi$ for all Mor consequence: $M \models \phi$ for all M such that $M \models Ax$
 - By exhaustive exploration of M: semantic approach
 - Fully automatic! (though computation-intensive)
- Concretely, M = (the state space of) a computer program/system
 - Very large (millions of states), state space explosion
 - Even infinite, with symbolic approaches (\Rightarrow solvers!)
 - Explore all possible **executions**
 - For all parameters, inputs, scheduling, timing
- ϕ = temporal logic
- e.g. $\Box \neg (busy_a \land busy_b)$ $\Box (send \Rightarrow \Diamond receive)$

AR Perspectives

- Richer logics
 - Linear, separation logic (resources, memory)
 - Non-monotonic, default logic (commonsense)
 - Modal logic (time, knowledge, possibility)

- Richer logics
 - Linear, separation logic (resources, memory)
 - Non-monotonic, default logic (commonsense)
 - Modal logic (time, knowledge, possibility)
- Meta-reasoning
 - Analyze proof goals, select proof methods
 - Reflection, proof planning

- Richer logics
 - Linear, separation logic (resources, memory)
 - Non-monotonic, default logic (commonsense)
 - Modal logic (time, knowledge, possibility)
- Meta-reasoning
 - Analyze proof goals, select proof methods
 - Reflection, proof planning
- Embedded (automated) proving
 - In computer algebra systems
 - In computer/software analysis tools
 - In planning and scheduling

- Richer logics
 - Linear, separation logic (resources, memory)
 - Non-monotonic, default logic (commonsense)
 - Modal logic (time, knowledge, possibility)
- Meta-reasoning
 - Analyze proof goals, select proof methods
 - Reflection, proof planning
- Embedded (automated) proving
 - In computer algebra systems
 - In computer/software analysis tools
 - In planning and scheduling
- Algorithmic improvements
 - CASC competition (8 divisions, 20+ categories in 2012)

• Automated reasoning is a flourishing discipline

- Automated reasoning is a **flourishing discipline**
- Assists, rather than replaces, human proofs
 - Experimental mathematics

- Automated reasoning is a flourishing discipline
- Assists, rather than replaces, human proofs
 - Experimental mathematics
- Comprehensive, interactive **proof assistants** for rich logics
- Efficient, automatic **decision procedures** for simpler theories

- Automated reasoning is a **flourishing discipline**
- Assists, rather than replaces, human proofs
 - Experimental mathematics
- Comprehensive, interactive **proof assistants** for rich logics
- Efficient, automatic **decision procedures** for simpler theories
- Computers can do **a lot of** reasoning
 - By reducing it to computing
 - Is this still reasoning?
 - The AI Effect: As soon as AI works, it is no longer called AI

- Automated reasoning is a **flourishing discipline**
- Assists, rather than replaces, human proofs
 - Experimental mathematics
- Comprehensive, interactive **proof assistants** for rich logics
- Efficient, automatic **decision procedures** for simpler theories
- Computers can do **a lot of** reasoning
 - By reducing it to computing
 - Is this still reasoning?
 - The AI Effect: As soon as AI works, it is no longer called AI
- Will computer provers someday equal, then surpass humans? That is the (weak) AI question!

Bibliography

- [1] A. Bundy. A Survey of Automated Deduction. Research Report Nr. 1, Division of Informatics, University of Edinburgh, April 1999.
- [2] M. Davis. The Early History of Automated Deduction. In: A. Robinson, A. Voronkov (Eds.), Handbook of Automated Reasoning, Elsevier, 2001.
- [3] G. Dowek. Les métamorphoses du calcul : une étonnante histoire de mathématiques. Le Pommier, 2007.
- [4] J. Harrison. A Short Survey of Automated Reasoning. in: Algebraic Biology 2007, Lecture Notes in Computer Science 4545, Springer, 2007.