
Informatique et preuve
Une brève histoire du raisonnement automatisé

Charles Pecheur
Université catholique de Louvain

Séminaire fondements et notions fondamentales – 12 mars 2012



Replacing Scholars by Programs?

compiled March 12, 2012— c©Charles Pecheur 2012 2 / 51

From

Paul Erdõs

to

HAL 9000

?



Computer Proofs?

compiled March 12, 2012— c©Charles Pecheur 2012 3 / 51

• Can “creativity” be “automated”?



Computer Proofs?

compiled March 12, 2012— c©Charles Pecheur 2012 3 / 51

• Can “creativity” be “automated”?
• Can reasoning be reduced to computation ?



Computer Proofs?

compiled March 12, 2012— c©Charles Pecheur 2012 3 / 51

• Can “creativity” be “automated”?
• Can reasoning be reduced to computation ?

• Intuition: NO, reasoning is genuinely human

• “Computers are stupid , they only blindly execute their program”
• “Computers can compute but they cannot really reason ”



Computer Proofs?

compiled March 12, 2012— c©Charles Pecheur 2012 3 / 51

• Can “creativity” be “automated”?
• Can reasoning be reduced to computation ?

• Intuition: NO, reasoning is genuinely human

• “Computers are stupid , they only blindly execute their program”
• “Computers can compute but they cannot really reason ”

• Reality: YES, to a large extent : Automated Reasoning (AR)

• A well-established field of Artificial Intelligence (50+ years)
• Rich gamut of approaches, books, tools, applications, results



Computer Proofs?

compiled March 12, 2012— c©Charles Pecheur 2012 3 / 51

• Can “creativity” be “automated”?
• Can reasoning be reduced to computation ?

• Intuition: NO, reasoning is genuinely human

• “Computers are stupid , they only blindly execute their program”
• “Computers can compute but they cannot really reason ”

• Reality: YES, to a large extent : Automated Reasoning (AR)

• A well-established field of Artificial Intelligence (50+ years)
• Rich gamut of approaches, books, tools, applications, results

• . . . Reasoning can be reduced to computation (to some extent)



Why Do I Care?

compiled March 12, 2012— c©Charles Pecheur 2012 4 / 51

• Who I am

• Professor at UCL / SST / EPL (engineering school)
• Researcher at UCL / SST / ICTEAM / INGI (computer science)



Why Do I Care?

compiled March 12, 2012— c©Charles Pecheur 2012 4 / 51

• Who I am

• Professor at UCL / SST / EPL (engineering school)
• Researcher at UCL / SST / ICTEAM / INGI (computer science)

• What I study

• Verifying computer systems
• Proving correctness or (more often) finding bugs
• Model-checking (mostly), solvers (as tools)



Why Do I Care?

compiled March 12, 2012— c©Charles Pecheur 2012 4 / 51

• Who I am

• Professor at UCL / SST / EPL (engineering school)
• Researcher at UCL / SST / ICTEAM / INGI (computer science)

• What I study

• Verifying computer systems
• Proving correctness or (more often) finding bugs
• Model-checking (mostly), solvers (as tools)

• What I teach

• Beginner programming (Java), system modelling and analysis,
• (automated) program proofs , automated reasoning



Inspiring Reading

compiled March 12, 2012— c©Charles Pecheur 2012 5 / 51

Gilles Dowek
Les métamorphoses du calcul

Une étonnante histoire de mathématiques
Le Pommier, 2007



Contents

compiled March 12, 2012— c©Charles Pecheur 2012 6 / 51

AR Examples

Before AR

The AR Problem

AR Milestones

AR Perspectives

Bibliography



AR Examples



The Four Colour Theorem

compiled March 12, 2012— c©Charles Pecheur 2012 8 / 51

• The vertices of every planar graph can be colored with at most four
colors so that no two adjacent vertices receive the same color

• Or equivalently, any map may be colored using no more than four
colors in such a way that no two adjacent regions receive the same
color



The Four Colour Theorem: Proof

compiled March 12, 2012— c©Charles Pecheur 2012 9 / 51

Wikipedia: Four color theorem

• Conjectured in 1852 (Guthrie)

• Bogus proofs in 1879, 1880



The Four Colour Theorem: Proof

compiled March 12, 2012— c©Charles Pecheur 2012 9 / 51

Wikipedia: Four color theorem

• Conjectured in 1852 (Guthrie)

• Bogus proofs in 1879, 1880

• Theoretical progress until the 60’s–70’s

• But still no proof



The Four Colour Theorem: Proof

compiled March 12, 2012— c©Charles Pecheur 2012 9 / 51

Wikipedia: Four color theorem

• Conjectured in 1852 (Guthrie)

• Bogus proofs in 1879, 1880

• Theoretical progress until the 60’s–70’s

• But still no proof

• Proof in 1976 (Appel, Haken)

• Problem reduced to 1936 possible configurations
• Each checked one by one by computer (specific program)
• Still need to trust the program !



The Four Colour Theorem: Proof

compiled March 12, 2012— c©Charles Pecheur 2012 9 / 51

Wikipedia: Four color theorem

• Conjectured in 1852 (Guthrie)

• Bogus proofs in 1879, 1880

• Theoretical progress until the 60’s–70’s

• But still no proof

• Proof in 1976 (Appel, Haken)

• Problem reduced to 1936 possible configurations
• Each checked one by one by computer (specific program)
• Still need to trust the program !

• Proof in Coq in 2004 (Werner, Gonthier )

• General-purpose theorem prover
• Still need to trust Coq . . .



Robbins Algebra are Boolean

compiled March 12, 2012— c©Charles Pecheur 2012 10 / 51

• Robbins algebra : (A,∨,¬) satisfying
a ∨ (b ∨ c) = (a ∨ b) ∨ c (associativity)
a ∨ b = b ∨ a (commutativity)
¬(¬(a ∨ b) ∨ ¬(a ∨ ¬b)) = a (Robbins’s axiom)

• Boolean algebra : (A,∨,∧,¬, 0, 1) satisfying
a ∨ (b ∨ c) = (a ∨ b) ∨ c (associativity)
a ∨ b = b ∨ a (commutativity)
a ∨ (a ∧ b) = a (absorption)
a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) (distributivity)
a ∨ ¬a = 1 (complements)
. . . and their duals wrt. ∧/∨, 0/1



Robbins Algebra are Boolean

compiled March 12, 2012— c©Charles Pecheur 2012 10 / 51

• Robbins algebra : (A,∨,¬) satisfying
a ∨ (b ∨ c) = (a ∨ b) ∨ c (associativity)
a ∨ b = b ∨ a (commutativity)
¬(¬(a ∨ b) ∨ ¬(a ∨ ¬b)) = a (Robbins’s axiom)

• Boolean algebra : (A,∨,∧,¬, 0, 1) satisfying
a ∨ (b ∨ c) = (a ∨ b) ∨ c (associativity)
a ∨ b = b ∨ a (commutativity)
a ∨ (a ∧ b) = a (absorption)
a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) (distributivity)
a ∨ ¬a = 1 (complements)
. . . and their duals wrt. ∧/∨, 0/1

• Conjecture : all Robbins algebra are Boolean



Robbins Algebra are Boolean: Proof

compiled March 12, 2012— c©Charles Pecheur 2012 11 / 51

W. McCune. Solution of the Robbins Problem. JAR 19(3), pp. 263–276, 1997.

• Problem posed around 1933 (Robbins)

• as a conjectured variant of another axiom set (Huntington)



Robbins Algebra are Boolean: Proof

compiled March 12, 2012— c©Charles Pecheur 2012 11 / 51

W. McCune. Solution of the Robbins Problem. JAR 19(3), pp. 263–276, 1997.

• Problem posed around 1933 (Robbins)

• as a conjectured variant of another axiom set (Huntington)

• Work on the problem (Huntington, Robbins, Tarski) but no solution

• became a favorite of Tarski



Robbins Algebra are Boolean: Proof

compiled March 12, 2012— c©Charles Pecheur 2012 11 / 51

W. McCune. Solution of the Robbins Problem. JAR 19(3), pp. 263–276, 1997.

• Problem posed around 1933 (Robbins)

• as a conjectured variant of another axiom set (Huntington)

• Work on the problem (Huntington, Robbins, Tarski) but no solution

• became a favorite of Tarski

• First attempts using automated reasoning in 1979 (Winker )

• using the Argonne Theorem Prover (→ Otter → Prover9)
• proved useful lemmas (by hand), still not solved



Robbins Algebra are Boolean: Proof

compiled March 12, 2012— c©Charles Pecheur 2012 11 / 51

W. McCune. Solution of the Robbins Problem. JAR 19(3), pp. 263–276, 1997.

• Problem posed around 1933 (Robbins)

• as a conjectured variant of another axiom set (Huntington)

• Work on the problem (Huntington, Robbins, Tarski) but no solution

• became a favorite of Tarski

• First attempts using automated reasoning in 1979 (Winker )

• using the Argonne Theorem Prover (→ Otter → Prover9)
• proved useful lemmas (by hand), still not solved

• Solution using automated reasoning in 1997 (McCune)

• using EQP = automated prover for equational logic
• found proof of the missing lemma
• after 14 attempts totaling five weeks of CPU time



Paris M étro Ligne 14

compiled March 12, 2012— c©Charles Pecheur 2012 12 / 51

• Platform screen doors control software

• Starting/stopping trains, opening/closing train and platform doors
• Parts on-board, on wayside, at control center



Paris M étro Ligne 14: Proof

compiled March 12, 2012— c©Charles Pecheur 2012 13 / 51

T. Lecomte, T. Servat, G. Pouzancre. Formal Methods in Satefy Critical Railway Systems. SBMF 2007.

• Safety-critical code written in B

• Includes formal safety properties
• Supports formal refinement (from design to implementation)



Paris M étro Ligne 14: Proof

compiled March 12, 2012— c©Charles Pecheur 2012 13 / 51

T. Lecomte, T. Servat, G. Pouzancre. Formal Methods in Satefy Critical Railway Systems. SBMF 2007.

• Safety-critical code written in B

• Includes formal safety properties
• Supports formal refinement (from design to implementation)

• Large project

• 115,000 lines of B
• 1,000 proof obligations, 92% fully automatic



Paris M étro Ligne 14: Proof

compiled March 12, 2012— c©Charles Pecheur 2012 13 / 51

T. Lecomte, T. Servat, G. Pouzancre. Formal Methods in Satefy Critical Railway Systems. SBMF 2007.

• Safety-critical code written in B

• Includes formal safety properties
• Supports formal refinement (from design to implementation)

• Large project

• 115,000 lines of B
• 1,000 proof obligations, 92% fully automatic

• Seems to work!

• No bug found after 9 years of operation



Before AR



The Early Days

compiled March 12, 2012— c©Charles Pecheur 2012 15 / 51

• Mesopotamia, since 2500 BC

• Add, multiply, divide, area of rectangles, triangles, disks, . . .
• With given numbers: computing



The Early Days

compiled March 12, 2012— c©Charles Pecheur 2012 15 / 51

• Mesopotamia, since 2500 BC

• Add, multiply, divide, area of rectangles, triangles, disks, . . .
• With given numbers: computing

• Pythagoras, 500 BC:

• For all rectangle triangles (a, b, c): a2 + b2 = c2

• Infinitely many (a, b, c): reasoning

(images from Wikipedia)



And Then Logics

compiled March 12, 2012— c©Charles Pecheur 2012 16 / 51

• Aristote, 350 BC:
All men are mortal.
Socrates is a man.

Therefore, Socrates is mortal.

• Syllogisms : First general reasoning rules



And Then Logics

compiled March 12, 2012— c©Charles Pecheur 2012 16 / 51

• Aristote, 350 BC:
All men are mortal.
Socrates is a man.

Therefore, Socrates is mortal.

• Syllogisms : First general reasoning rules

• Stoı̈cians 300 BC:
If Socrates is a man, then Socrates is mortal.

Socrates is a man.
Therefore, Socrates is mortal.

• Modus ponens : roots of propositional logic



And Then Logics

compiled March 12, 2012— c©Charles Pecheur 2012 16 / 51

• Aristote, 350 BC:
All men are mortal.
Socrates is a man.

Therefore, Socrates is mortal.

• Syllogisms : First general reasoning rules

• Stoı̈cians 300 BC:
If Socrates is a man, then Socrates is mortal.

Socrates is a man.
Therefore, Socrates is mortal.

• Modus ponens : roots of propositional logic

• Seen as philosophy , not mathematics!

• Euclid’s Elements did not (explicitly) use them!
• Too crude: needs functions, predicates



Reasoning as Computing?

compiled March 12, 2012— c©Charles Pecheur 2012 17 / 51

• Reducing reasoning to computing is an old idea

• “Reason [. . . ] is nothing but reckoning [= calculating]”
(T. Hobbes, 1651)



Reasoning as Computing?

compiled March 12, 2012— c©Charles Pecheur 2012 17 / 51

• Reducing reasoning to computing is an old idea

• “Reason [. . . ] is nothing but reckoning [= calculating]”
(T. Hobbes, 1651)

• Characteristica Universalis (Leibniz, 1646–1716)

• An (unrealized) universal language to express mathematical,
scientific, and philosophic concepts

• Calculus ratiocinator (calculus of reasoning): an (unrealized)
universal logical calculation



Characteristica Universalis

compiled March 12, 2012— c©Charles Pecheur 2012 18 / 51

(image from Wikipedia)



Formalizing Logics

compiled March 12, 2012— c©Charles Pecheur 2012 19 / 51

• Calculus of logic (Boole, 1815–1864)

• Propositional (Boolean!) logic, set-theoretic reasoning
• Formal rules without interpretation



Formalizing Logics

compiled March 12, 2012— c©Charles Pecheur 2012 19 / 51

• Calculus of logic (Boole, 1815–1864)

• Propositional (Boolean!) logic, set-theoretic reasoning
• Formal rules without interpretation

• Begriffsschrift (Frege, 1879)

• “A formula language, modelled on that of arithmetic, of pure
thought”

• First-order logic, Quantifiers , sets
• Russell’s paradox ({x | x /∈ x})



Formalizing Logics

compiled March 12, 2012— c©Charles Pecheur 2012 19 / 51

• Calculus of logic (Boole, 1815–1864)

• Propositional (Boolean!) logic, set-theoretic reasoning
• Formal rules without interpretation

• Begriffsschrift (Frege, 1879)

• “A formula language, modelled on that of arithmetic, of pure
thought”

• First-order logic, Quantifiers , sets
• Russell’s paradox ({x | x /∈ x})

• Principia Mathematica (Whitehead and Russell, 1910)

• Type theory
• Formal foundations of mathematics



Frege’s Begriffsschrift

compiled March 12, 2012— c©Charles Pecheur 2012 20 / 51

(image from Wikipedia)



Reasoning as Computing. . . or Not?

compiled March 12, 2012— c©Charles Pecheur 2012 21 / 51

• Hilbert’s program (Hilbert, 1922)

• (Science program, not computer!)
• Goal: formalize all of mathematics
• Goal: prove completeness, consistency, . . .
• Reduce everything (integers, reals, functions, integration,

geometry, . . . ) to logic with (few) axioms



Reasoning as Computing. . . or Not?

compiled March 12, 2012— c©Charles Pecheur 2012 21 / 51

• Hilbert’s program (Hilbert, 1922)

• (Science program, not computer!)
• Goal: formalize all of mathematics
• Goal: prove completeness, consistency, . . .
• Reduce everything (integers, reals, functions, integration,

geometry, . . . ) to logic with (few) axioms

• The incompleteness theorems (Gödel, 1931)

• Any “rich enough” formal system is incomplete
• i.e. some valid statements cannot be proven
• Essential limit to Hilbert’s goal



Deciding is Computing

compiled March 12, 2012— c©Charles Pecheur 2012 22 / 51

• Formalization of computation = decidability

• . . . before creation of computers!
• Turing machines (Turing, 1936)
• λ-calculus (Church, 1936)
• Halting problem is not decidable
• First-order logic is not decidable



Deciding is Computing

compiled March 12, 2012— c©Charles Pecheur 2012 22 / 51

• Formalization of computation = decidability

• . . . before creation of computers!
• Turing machines (Turing, 1936)
• λ-calculus (Church, 1936)
• Halting problem is not decidable
• First-order logic is not decidable

• Then came the computers (1940’s, WWII)

• . . . and the first attempts to compute proofs
• Artificial intelligence (McCarthy, 1956)
• Lisp (1956), Prolog (1972)



The AR Problem



Logics

compiled March 12, 2012— c©Charles Pecheur 2012 24 / 51

What’s logic ?

• Facts : logic formulae φ (syntax)

∀a, b, c, n ∈ N : n ≥ 3 ⇒ an + bn 6= cn

• Reasoning : logic proofs φ1, . . . , φn ⊢ φ

• Generally from an initial set of axioms Ax (aka theory)
• A theorem is a φ such that Ax ⊢ φ



Logics

compiled March 12, 2012— c©Charles Pecheur 2012 24 / 51

What’s logic ?

• Facts : logic formulae φ (syntax)

∀a, b, c, n ∈ N : n ≥ 3 ⇒ an + bn 6= cn

• Reasoning : logic proofs φ1, . . . , φn ⊢ φ

• Generally from an initial set of axioms Ax (aka theory)
• A theorem is a φ such that Ax ⊢ φ

• A proof system defines allowable proofs

• Using rules, tableaux, truth tables, . . .
• Synthetic (from Ax to φ) or analytic (from φ to Ax)
• Many allowed choices : which rule, axiom, lemma, . . .
• Needs strategies , may stray away



Logics

compiled March 12, 2012— c©Charles Pecheur 2012 24 / 51

What’s logic ?

• Facts : logic formulae φ (syntax)

∀a, b, c, n ∈ N : n ≥ 3 ⇒ an + bn 6= cn

• Reasoning : logic proofs φ1, . . . , φn ⊢ φ

• Generally from an initial set of axioms Ax (aka theory)
• A theorem is a φ such that Ax ⊢ φ

• A proof system defines allowable proofs

• Using rules, tableaux, truth tables, . . .
• Synthetic (from Ax to φ) or analytic (from φ to Ax)
• Many allowed choices : which rule, axiom, lemma, . . .
• Needs strategies , may stray away

• Proof = Rules + Strategy = Computing + Reasoning



Models

compiled March 12, 2012— c©Charles Pecheur 2012 25 / 51

What’s a useful logic?

• Means something: interpretations M (aka models)

• Propositions, predicates, functions, sets, numbers, programs, ...
• Semantics : M |= φ if φ is true in/about/for M
• Consequence : φ1, . . . , φn |= φ
• Validity : Ax |= φ
• Satisfiability : Ax 6|= ¬φ

• Reasons properly

• Soundness : all proofs are valid

Ax ⊢ φ ⇒ Ax |= φ

• Completeness : all valid facts can be proven

Ax |= φ ⇒ Ax ⊢ φ



Computing

compiled March 12, 2012— c©Charles Pecheur 2012 26 / 51

What’s computing ?

• An effective way to produce outputs from inputs
• Many models: Turing machines, Lambda calculus, recursive

functions, . . .

• All equivalent (Turing-complete)
• Nothing better (Church thesis)
• Also Lisp, C, Java, Mathlab, ...



Computing

compiled March 12, 2012— c©Charles Pecheur 2012 26 / 51

What’s computing ?

• An effective way to produce outputs from inputs
• Many models: Turing machines, Lambda calculus, recursive

functions, . . .

• All equivalent (Turing-complete)
• Nothing better (Church thesis)
• Also Lisp, C, Java, Mathlab, ...

What’s deciding a problem?

• Computing a yes-or-no answer to (any instance of) the problem
• Some things are undecidable

• Does a program terminate?
• Is a (context-free) grammar unambiguous?
• Does a Diophantine equation have solutions?
• Is a logic formula valid ? (Entscheidungsproblem)



Computing Proofs

compiled March 12, 2012— c©Charles Pecheur 2012 27 / 51

• Proofs systems can be used to enumerate proofs

• E.g.: all proofs of length 0 (axioms), then length 1, etc.
• Fair: will find a proof if there is one. . .
• . . . but will go forever if there isn’t
• Very dumb and inefficient, but we can be smarter

• We have at least a semi-decision procedure
(for theorems at least, for validity if complete )



Computing Proofs

compiled March 12, 2012— c©Charles Pecheur 2012 27 / 51

• Proofs systems can be used to enumerate proofs

• E.g.: all proofs of length 0 (axioms), then length 1, etc.
• Fair: will find a proof if there is one. . .
• . . . but will go forever if there isn’t
• Very dumb and inefficient, but we can be smarter

• We have at least a semi-decision procedure
(for theorems at least, for validity if complete )

• Common approaches

• Reduce formulae to normal forms (easier for computing)
• Part of the theory “built-in” the method (e.g. equality),

the rest provided as ordinary formulae Ax
• Proof by refutation : (un)satisfiability of Ax ∧ ¬φ



Some Decidability Results

compiled March 12, 2012— c©Charles Pecheur 2012 28 / 51

• Propositional logic is decidable

• Finitely many cases (exponentially many: NP-complete)
• SAT solvers



Some Decidability Results

compiled March 12, 2012— c©Charles Pecheur 2012 28 / 51

• Propositional logic is decidable

• Finitely many cases (exponentially many: NP-complete)
• SAT solvers

• First-order logic is only semi-decidable

• Related to halting problem (Church, 1936; Turing, 1937)



Some Decidability Results

compiled March 12, 2012— c©Charles Pecheur 2012 28 / 51

• Propositional logic is decidable

• Finitely many cases (exponentially many: NP-complete)
• SAT solvers

• First-order logic is only semi-decidable

• Related to halting problem (Church, 1936; Turing, 1937)

• Arithmetics (on integers) is not decidable

• No complete, consistent, effective proof system (Gödel, 1931)
• Can’t even enumerate valid facts
• Inductive reasoning can’t be effectively mechanized
• Arithmetics on reals is decidable !



Some Decidability Results

compiled March 12, 2012— c©Charles Pecheur 2012 28 / 51

• Propositional logic is decidable

• Finitely many cases (exponentially many: NP-complete)
• SAT solvers

• First-order logic is only semi-decidable

• Related to halting problem (Church, 1936; Turing, 1937)

• Arithmetics (on integers) is not decidable

• No complete, consistent, effective proof system (Gödel, 1931)
• Can’t even enumerate valid facts
• Inductive reasoning can’t be effectively mechanized
• Arithmetics on reals is decidable !

• Many quantifier-free fragments are decidable

• Enough for many applications



Decidability and Complexity of Some Theories

compiled March 12, 2012— c©Charles Pecheur 2012 29 / 51

Theory full CQFF
propositional NP-comp. Θ(n)
first-order no Θ(n)
equality (uninterpreted fct.) no O(n log n)
N,+,× (Peano) no no

N,+ (Pressburger) O(22
2
kn

) NP-comp.
R,+,× O(22

kn

) O(22
kn

)

R,+ (or Q,+) O(22
kn

) PTIME
recursive data structures no O(n log n)
acyclic recursive data struct. not elementary Θ(n)
arrays no NP-comp.

(CQFF = conjunctive quantifier-free formulae)



Using Computed Proofs

compiled March 12, 2012— c©Charles Pecheur 2012 30 / 51

• Finding mathematical proofs

• Is this conjecture a theorem?
• Compute the mundane parts, guide strategic choices



Using Computed Proofs

compiled March 12, 2012— c©Charles Pecheur 2012 30 / 51

• Finding mathematical proofs

• Is this conjecture a theorem?
• Compute the mundane parts, guide strategic choices

• Checking existing proofs

• Detect human mistakes, document, re-organize, simplify
• Experimental mathematics



Using Computed Proofs

compiled March 12, 2012— c©Charles Pecheur 2012 30 / 51

• Finding mathematical proofs

• Is this conjecture a theorem?
• Compute the mundane parts, guide strategic choices

• Checking existing proofs

• Detect human mistakes, document, re-organize, simplify
• Experimental mathematics

• Verifying artifacts

• Ax models the artifact, φ the specification



Using Computed Proofs

compiled March 12, 2012— c©Charles Pecheur 2012 30 / 51

• Finding mathematical proofs

• Is this conjecture a theorem?
• Compute the mundane parts, guide strategic choices

• Checking existing proofs

• Detect human mistakes, document, re-organize, simplify
• Experimental mathematics

• Verifying artifacts

• Ax models the artifact, φ the specification

• Synthesizing artifacts

• Constructive proof of ∃x.φ(x)



AR Milestones



Before Computers

compiled March 12, 2012— c©Charles Pecheur 2012 32 / 51

• Deciding linear arithmetics (Presburger 1929)

• Decision algorithm for first-order formulae over (N,+)
• By quantifier elimination
• Very inefficient! (O(22

2
cn

))



Before Computers

compiled March 12, 2012— c©Charles Pecheur 2012 32 / 51

• Deciding linear arithmetics (Presburger 1929)

• Decision algorithm for first-order formulae over (N,+)
• By quantifier elimination
• Very inefficient! (O(22

2
cn

))

• Along the same lines:

• Decision algorithm for (N,×) (Skolem 1930)
• Decision algorithm for (R,+,×) (Tarski 1931)
• NB: Euclidean geometry reducible to (R,+,×)
• NB: (N,+,×) (Peano) is not decidable (Gödel 1931)



Before Computers

compiled March 12, 2012— c©Charles Pecheur 2012 32 / 51

• Deciding linear arithmetics (Presburger 1929)

• Decision algorithm for first-order formulae over (N,+)
• By quantifier elimination
• Very inefficient! (O(22

2
cn

))

• Along the same lines:

• Decision algorithm for (N,×) (Skolem 1930)
• Decision algorithm for (R,+,×) (Tarski 1931)
• NB: Euclidean geometry reducible to (R,+,×)
• NB: (N,+,×) (Peano) is not decidable (Gödel 1931)

• Reasoning reduced to computing !



Computer Proofs: First Steps

compiled March 12, 2012— c©Charles Pecheur 2012 33 / 51

• Logic Theory Machine (Newell, Shaw, Simon 1957)

• Proofs from Principia Mathematica
• Natural deduction in propositional logic, heuristic
• (though propositional logic is decidable!)



Computer Proofs: First Steps

compiled March 12, 2012— c©Charles Pecheur 2012 33 / 51

• Logic Theory Machine (Newell, Shaw, Simon 1957)

• Proofs from Principia Mathematica
• Natural deduction in propositional logic, heuristic
• (though propositional logic is decidable!)

• Geometry Machine (Gelertner 1963)

• Proofs for elementary geometry
• Similar approach
• (decidable but impractical)



Computer Proofs: First Steps

compiled March 12, 2012— c©Charles Pecheur 2012 33 / 51

• Logic Theory Machine (Newell, Shaw, Simon 1957)

• Proofs from Principia Mathematica
• Natural deduction in propositional logic, heuristic
• (though propositional logic is decidable!)

• Geometry Machine (Gelertner 1963)

• Proofs for elementary geometry
• Similar approach
• (decidable but impractical)

• Symbolic Integrator (Slagle 1963)

• Symbolic resolution of integrals
• First “expert system”



Computer Proofs: First Steps

compiled March 12, 2012— c©Charles Pecheur 2012 33 / 51

• Logic Theory Machine (Newell, Shaw, Simon 1957)

• Proofs from Principia Mathematica
• Natural deduction in propositional logic, heuristic
• (though propositional logic is decidable!)

• Geometry Machine (Gelertner 1963)

• Proofs for elementary geometry
• Similar approach
• (decidable but impractical)

• Symbolic Integrator (Slagle 1963)

• Symbolic resolution of integrals
• First “expert system”

• Human-like proofs!



SAT Solving

compiled March 12, 2012— c©Charles Pecheur 2012 34 / 51

• Solving propositional logic satisfiability (SAT)

• Computationally hard (NP-complete)
• The heart of proof search



SAT Solving

compiled March 12, 2012— c©Charles Pecheur 2012 34 / 51

• Solving propositional logic satisfiability (SAT)

• Computationally hard (NP-complete)
• The heart of proof search

• Davis-Putnam-Logemann-Loveland (DPLL ) algorithm (1962)



SAT Solving

compiled March 12, 2012— c©Charles Pecheur 2012 34 / 51

• Solving propositional logic satisfiability (SAT)

• Computationally hard (NP-complete)
• The heart of proof search

• Davis-Putnam-Logemann-Loveland (DPLL ) algorithm (1962)
• Basic principle:

• Put problem in clausal form (CNF) ℓ1 ∨ . . . ∨ ℓn
• While possible, apply Boolean Constraint Propagation :

ℓ ¬ℓ ∨ ℓ1 ∨ . . . ∨ ℓn

ℓ1 ∨ . . . ∨ ℓn

• Otherwise, choose a literal ℓ and try ℓ then ¬ℓ (case-split )



SAT Solving

compiled March 12, 2012— c©Charles Pecheur 2012 34 / 51

• Solving propositional logic satisfiability (SAT)

• Computationally hard (NP-complete)
• The heart of proof search

• Davis-Putnam-Logemann-Loveland (DPLL ) algorithm (1962)
• Basic principle:

• Put problem in clausal form (CNF) ℓ1 ∨ . . . ∨ ℓn
• While possible, apply Boolean Constraint Propagation :

ℓ ¬ℓ ∨ ℓ1 ∨ . . . ∨ ℓn

ℓ1 ∨ . . . ∨ ℓn

• Otherwise, choose a literal ℓ and try ℓ then ¬ℓ (case-split )

• Computer-like proofs, not intuitive but efficient!



SAT Solvers Today

compiled March 12, 2012— c©Charles Pecheur 2012 35 / 51

• DPLL-based SAT solvers widely used today

• Lots of improvements, very efficient implementations
• Berkmin, Chaff, zChaff, Minisat, . . .
• Inside many applications
• Often good performance in practice

images from http://www.isi.edu/ szekely/antsebook/ebook/



The Resolution Method

compiled March 12, 2012— c©Charles Pecheur 2012 36 / 51

The Resolution method (Robinson 1965)

• Key idea: unification

mgu(x+ 0, a2 + y) = {x 7→ a2, y 7→ 0)



The Resolution Method

compiled March 12, 2012— c©Charles Pecheur 2012 36 / 51

The Resolution method (Robinson 1965)

• Key idea: unification

mgu(x+ 0, a2 + y) = {x 7→ a2, y 7→ 0)

• Binary resolution rule:

ℓ1 ∨ . . . ∨ ℓn ∨ ℓ ¬ℓ′ ∨ ℓ′
1
∨ . . . ∨ ℓ′

m

ℓ1σ ∨ . . . ∨ ℓnσ ∨ ℓ′
1
σ ∨ . . . ∨ ℓ′

m
σ

σ = mgu(ℓ, ℓ′)



The Resolution Method

compiled March 12, 2012— c©Charles Pecheur 2012 36 / 51

The Resolution method (Robinson 1965)

• Key idea: unification

mgu(x+ 0, a2 + y) = {x 7→ a2, y 7→ 0)

• Binary resolution rule:

ℓ1 ∨ . . . ∨ ℓn ∨ ℓ ¬ℓ′ ∨ ℓ′
1
∨ . . . ∨ ℓ′

m

ℓ1σ ∨ . . . ∨ ℓnσ ∨ ℓ′
1
σ ∨ . . . ∨ ℓ′

m
σ

σ = mgu(ℓ, ℓ′)

• This single rule (+ factoring) provides a
complete proof method for first-order logic !



The Resolution Method

compiled March 12, 2012— c©Charles Pecheur 2012 36 / 51

The Resolution method (Robinson 1965)

• Key idea: unification

mgu(x+ 0, a2 + y) = {x 7→ a2, y 7→ 0)

• Binary resolution rule:

ℓ1 ∨ . . . ∨ ℓn ∨ ℓ ¬ℓ′ ∨ ℓ′
1
∨ . . . ∨ ℓ′

m

ℓ1σ ∨ . . . ∨ ℓnσ ∨ ℓ′
1
σ ∨ . . . ∨ ℓ′

m
σ

σ = mgu(ℓ, ℓ′)

• This single rule (+ factoring) provides a
complete proof method for first-order logic !

• Limitations of Resolution

• Clauses, generic rule ⇒ inefficient, lacks guidance
• Need more: equality, numbers, sets, induction, . . .



Equational Reasoning

compiled March 12, 2012— c©Charles Pecheur 2012 37 / 51

Paramodulation (Robinson, Wos, 1969) another Robinson!

• For proofs with equational theories

e.g. 0 + x = x
(x+ y) + z = x+ (y + z)
−x+ x = 0

• Combines resolution and replacing equals by equals



Equational Reasoning

compiled March 12, 2012— c©Charles Pecheur 2012 37 / 51

Paramodulation (Robinson, Wos, 1969) another Robinson!

• For proofs with equational theories

e.g. 0 + x = x
(x+ y) + z = x+ (y + z)
−x+ x = 0

• Combines resolution and replacing equals by equals

• Paramodulation rule :

ℓ1 ∨ . . . ∨ ℓn ∨ s = t ℓ′[u] ∨ ℓ′
1
∨ . . . ∨ ℓ′

m

ℓ1σ ∨ . . . ∨ ℓnσ ∨ ℓ′σ[tσ] ∨ ℓ′
1
σ ∨ . . . ∨ ℓ′

m
σ

σ = mgu(s, u)



Equational Reasoning

compiled March 12, 2012— c©Charles Pecheur 2012 37 / 51

Paramodulation (Robinson, Wos, 1969) another Robinson!

• For proofs with equational theories

e.g. 0 + x = x
(x+ y) + z = x+ (y + z)
−x+ x = 0

• Combines resolution and replacing equals by equals

• Paramodulation rule :

ℓ1 ∨ . . . ∨ ℓn ∨ s = t ℓ′[u] ∨ ℓ′
1
∨ . . . ∨ ℓ′

m

ℓ1σ ∨ . . . ∨ ℓnσ ∨ ℓ′σ[tσ] ∨ ℓ′
1
σ ∨ . . . ∨ ℓ′

m
σ

σ = mgu(s, u)

• Used for proof of Robbins conjecture



Rewrite Systems

compiled March 12, 2012— c©Charles Pecheur 2012 38 / 51

• Term Rewriting

• Rules s → t used to reduce (= rewrite) s into t
• Repeat until irreducible normal form s↓

e.g. 0 + x → x
(x+ y) + z → x+ (y + z)
−x+ x → 0

⇒ (a+ 0) + b becomes a+ (0 + b) becomes a+ b



Rewrite Systems

compiled March 12, 2012— c©Charles Pecheur 2012 38 / 51

• Term Rewriting

• Rules s → t used to reduce (= rewrite) s into t
• Repeat until irreducible normal form s↓

e.g. 0 + x → x
(x+ y) + z → x+ (y + z)
−x+ x → 0

⇒ (a+ 0) + b becomes a+ (0 + b) becomes a+ b

• Used for reasoning in equational theories

• Turn equations into rewrite rules
• If the rules are convergent ,

then s = t iff s↓ and t↓ are identical
• Knuth-Bendix procedure (1970) for checking convergence

• Also at the core of functional programming



Logic Programming

compiled March 12, 2012— c©Charles Pecheur 2012 39 / 51

Prolog (Colmerauer 1972)

ancestor(X,X).
ancestor(X,Z) :- parent(X,Y), ancestor(Y,Z).
parent(albertII,philippe).
parent(philippe,elisabeth).

?- ancestor(albertII,X), ancestor(X,elisabeth).
X = albertII



Logic Programming

compiled March 12, 2012— c©Charles Pecheur 2012 39 / 51

Prolog (Colmerauer 1972)

ancestor(X,X).
ancestor(X,Z) :- parent(X,Y), ancestor(Y,Z).
parent(albertII,philippe).
parent(philippe,elisabeth).

?- ancestor(albertII,X), ancestor(X,elisabeth).
X = albertII

• Logic clauses as program statements ,
logic reasoning as program execution !



Logic Programming

compiled March 12, 2012— c©Charles Pecheur 2012 39 / 51

Prolog (Colmerauer 1972)

ancestor(X,X).
ancestor(X,Z) :- parent(X,Y), ancestor(Y,Z).
parent(albertII,philippe).
parent(philippe,elisabeth).

?- ancestor(albertII,X), ancestor(X,elisabeth).
X = albertII

• Logic clauses as program statements ,
logic reasoning as program execution !

• Based on SLD-resolution (Kowalski 1973)

• Resolution specialized on definite clauses

• Prolog adds many programming language features!



Richer Logics

compiled March 12, 2012— c©Charles Pecheur 2012 40 / 51

• Higher-Order Logics

• Functions, sets, relations

• Type systems

• Numbers, lists, trees, . . .
• and functions/sets/relations thereof

• Inductive reasoning

• Forces interactive approaches = proof assistants

• Most problems are undecidable, huge search spaces
• Proof tactics and tacticals, proof planning
• Proof editors and browsers



Some Proof Assistants

compiled March 12, 2012— c©Charles Pecheur 2012 41 / 51

• LCF (Milner, 1972)

• Based on functional programming language ML
• Several descendants: HOL (Gordon, 88), Isabelle (Paulson,

1989)



Some Proof Assistants

compiled March 12, 2012— c©Charles Pecheur 2012 41 / 51

• LCF (Milner, 1972)

• Based on functional programming language ML
• Several descendants: HOL (Gordon, 88), Isabelle (Paulson,

1989)

• Coq (Coquand, Huet, 1984)

• Based on constructive logic
• Used to check the 4-colour theorem (Gonthier, Werner, 2004)



Some Proof Assistants

compiled March 12, 2012— c©Charles Pecheur 2012 41 / 51

• LCF (Milner, 1972)

• Based on functional programming language ML
• Several descendants: HOL (Gordon, 88), Isabelle (Paulson,

1989)

• Coq (Coquand, Huet, 1984)

• Based on constructive logic
• Used to check the 4-colour theorem (Gonthier, Werner, 2004)

• PVS (Owre, Rushby, Shankar, 1992)

• Based on sequent calculus



Example: PVS Proof

compiled March 12, 2012— c©Charles Pecheur 2012 42 / 51



Decision Procedures

compiled March 12, 2012— c©Charles Pecheur 2012 43 / 51

• Automated decision procedures (DPs) for specific theories

• Quantifier-free fragments
• (QF) Linear integers/reals ⇒ simplex algorithm
• (QF) Polynomials ⇒ Gröbner bases
• (QF) Equality on uninterpreted functions ⇒ congruence closure
• (QF) arrays, data structures ⇒ reduce to previous case



Decision Procedures

compiled March 12, 2012— c©Charles Pecheur 2012 43 / 51

• Automated decision procedures (DPs) for specific theories

• Quantifier-free fragments
• (QF) Linear integers/reals ⇒ simplex algorithm
• (QF) Polynomials ⇒ Gröbner bases
• (QF) Equality on uninterpreted functions ⇒ congruence closure
• (QF) arrays, data structures ⇒ reduce to previous case

• Nelson-Oppem method (1979)

• Solve (QF) problems over multiple theories by combining DPs
• Split the problem and coordinate solutions
• Intuition: proof = logic (SAT) + theories (DP)



Decision Procedures

compiled March 12, 2012— c©Charles Pecheur 2012 43 / 51

• Automated decision procedures (DPs) for specific theories

• Quantifier-free fragments
• (QF) Linear integers/reals ⇒ simplex algorithm
• (QF) Polynomials ⇒ Gröbner bases
• (QF) Equality on uninterpreted functions ⇒ congruence closure
• (QF) arrays, data structures ⇒ reduce to previous case

• Nelson-Oppem method (1979)

• Solve (QF) problems over multiple theories by combining DPs
• Split the problem and coordinate solutions
• Intuition: proof = logic (SAT) + theories (DP)

• Inside many tools: embedded automated reasoning



Proving Programs

compiled March 12, 2012— c©Charles Pecheur 2012 44 / 51

• Principle: reduce programs to logic

• Base case: {x× x > 0} y := x× x {y > 0}
• Program properties reduce to (first-order) verification

conditions
• Prove with standard proof tools (solvers)
• Needs guidance: loop invariants, pre/post conditions, . . .



Proving Programs

compiled March 12, 2012— c©Charles Pecheur 2012 44 / 51

• Principle: reduce programs to logic

• Base case: {x× x > 0} y := x× x {y > 0}
• Program properties reduce to (first-order) verification

conditions
• Prove with standard proof tools (solvers)
• Needs guidance: loop invariants, pre/post conditions, . . .

• Floyd’s inductive assertions (1967)

• Decompose a program in sequential basic paths
• Specify assertions at connection points
• Prove that each path preserves the assertions



Proving Programs

compiled March 12, 2012— c©Charles Pecheur 2012 44 / 51

• Principle: reduce programs to logic

• Base case: {x× x > 0} y := x× x {y > 0}
• Program properties reduce to (first-order) verification

conditions
• Prove with standard proof tools (solvers)
• Needs guidance: loop invariants, pre/post conditions, . . .

• Floyd’s inductive assertions (1967)

• Decompose a program in sequential basic paths
• Specify assertions at connection points
• Prove that each path preserves the assertions

• Hard problem: loops, recursion, pointers, objects, concurrency, ...
• Lots of conditions to check (thousands) but “easy” proofs
• Example: B method applied to Paris metro line



Example: Inductive Assertions

compiled March 12, 2012— c©Charles Pecheur 2012 45 / 51

i := 1

result := true result := false

i ≤ size(a) ?

i := i + 1

a[i] = e ?

Begin

End

F

T

F

T

LinearSearch(a, e)

--

i ≥ 1

∀ 1 ≤ j ≤ i-1 : a[j] ≠ e

result ≡ ∃ 1 ≤ j ≤ size(a) : a[j] = e



Model-Checking

compiled March 12, 2012— c©Charles Pecheur 2012 46 / 51

• Model-Checking : check M |= φ for a given model M

• Rather than validity : M |= φ for all M
or consequence : M |= φ for all M such that M |= Ax

• By exhaustive exploration of M : semantic approach
• Fully automatic! (though computation-intensive)



Model-Checking

compiled March 12, 2012— c©Charles Pecheur 2012 46 / 51

• Model-Checking : check M |= φ for a given model M

• Rather than validity : M |= φ for all M
or consequence : M |= φ for all M such that M |= Ax

• By exhaustive exploration of M : semantic approach
• Fully automatic! (though computation-intensive)

• Concretely, M = (the state space of) a computer program/system

• Very large (millions of states), state space explosion
• Even infinite, with symbolic approaches (⇒ solvers!)
• Explore all possible executions
• For all parameters, inputs, scheduling, timing

• φ = temporal logic

e.g. �¬(busya ∧ busyb)
�(send ⇒ ♦receive)



AR Perspectives



Some Current Trends

compiled March 12, 2012— c©Charles Pecheur 2012 48 / 51

• Richer logics

• Linear, separation logic (resources, memory)
• Non-monotonic, default logic (commonsense)
• Modal logic (time, knowledge, possibility)



Some Current Trends

compiled March 12, 2012— c©Charles Pecheur 2012 48 / 51

• Richer logics

• Linear, separation logic (resources, memory)
• Non-monotonic, default logic (commonsense)
• Modal logic (time, knowledge, possibility)

• Meta-reasoning

• Analyze proof goals, select proof methods
• Reflection, proof planning



Some Current Trends

compiled March 12, 2012— c©Charles Pecheur 2012 48 / 51

• Richer logics

• Linear, separation logic (resources, memory)
• Non-monotonic, default logic (commonsense)
• Modal logic (time, knowledge, possibility)

• Meta-reasoning

• Analyze proof goals, select proof methods
• Reflection, proof planning

• Embedded (automated) proving

• In computer algebra systems
• In computer/software analysis tools
• In planning and scheduling



Some Current Trends

compiled March 12, 2012— c©Charles Pecheur 2012 48 / 51

• Richer logics

• Linear, separation logic (resources, memory)
• Non-monotonic, default logic (commonsense)
• Modal logic (time, knowledge, possibility)

• Meta-reasoning

• Analyze proof goals, select proof methods
• Reflection, proof planning

• Embedded (automated) proving

• In computer algebra systems
• In computer/software analysis tools
• In planning and scheduling

• Algorithmic improvements

• CASC competition (8 divisions, 20+ categories in 2012)



Parting Thoughts

compiled March 12, 2012— c©Charles Pecheur 2012 49 / 51

• Automated reasoning is a flourishing discipline



Parting Thoughts

compiled March 12, 2012— c©Charles Pecheur 2012 49 / 51

• Automated reasoning is a flourishing discipline

• Assists , rather than replaces, human proofs

• Experimental mathematics



Parting Thoughts

compiled March 12, 2012— c©Charles Pecheur 2012 49 / 51

• Automated reasoning is a flourishing discipline

• Assists , rather than replaces, human proofs

• Experimental mathematics

• Comprehensive, interactive proof assistants for rich logics
• Efficient, automatic decision procedures for simpler theories



Parting Thoughts

compiled March 12, 2012— c©Charles Pecheur 2012 49 / 51

• Automated reasoning is a flourishing discipline

• Assists , rather than replaces, human proofs

• Experimental mathematics

• Comprehensive, interactive proof assistants for rich logics
• Efficient, automatic decision procedures for simpler theories

• Computers can do a lot of reasoning

• By reducing it to computing
• Is this still reasoning?
• The AI Effect: As soon as AI works, it is no longer called AI



Parting Thoughts

compiled March 12, 2012— c©Charles Pecheur 2012 49 / 51

• Automated reasoning is a flourishing discipline

• Assists , rather than replaces, human proofs

• Experimental mathematics

• Comprehensive, interactive proof assistants for rich logics
• Efficient, automatic decision procedures for simpler theories

• Computers can do a lot of reasoning

• By reducing it to computing
• Is this still reasoning?
• The AI Effect: As soon as AI works, it is no longer called AI

• Will computer provers someday equal, then surpass humans?
That is the (weak) AI question!



Bibliography



Bibliography

compiled March 12, 2012— c©Charles Pecheur 2012 51 / 51

[1] A. Bundy. A Survey of Automated Deduction. Research Report
Nr. 1, Division of Informatics, University of Edinburgh, April 1999.

[2] M. Davis. The Early History of Automated Deduction. In: A.
Robinson, A. Voronkov (Eds.), Handbook of Automated
Reasoning, Elsevier, 2001.

[3] G. Dowek. Les métamorphoses du calcul : une étonnante
histoire de mathématiques. Le Pommier, 2007.

[4] J. Harrison. A Short Survey of Automated Reasoning. in:
Algebraic Biology 2007, Lecture Notes in Computer Science
4545, Springer, 2007.


	Replacing Scholars by Programs?
	Computer Proofs?
	Why Do I Care?
	Inspiring Reading
	Contents
	AR Examples
	The Four Colour Theorem
	The Four Colour Theorem: Proof
	Robbins Algebra are Boolean
	Robbins Algebra are Boolean: Proof
	Paris Métro Ligne 14
	Paris Métro Ligne 14: Proof

	Before AR
	The Early Days
	And Then Logics
	Reasoning as Computing?
	Characteristica Universalis
	Formalizing Logics
	Frege's Begriffsschrift
	Reasoning as Computing…or Not?
	Deciding is Computing

	The AR Problem
	Logics
	Models
	Computing
	Computing Proofs
	Some Decidability Results
	Decidability and Complexity of Some Theories
	Using Computed Proofs

	AR Milestones
	Before Computers
	Computer Proofs: First Steps
	SAT Solving
	SAT Solvers Today
	The Resolution Method
	Equational Reasoning
	Rewrite Systems
	Logic Programming
	Richer Logics
	Some Proof Assistants
	Example: PVS Proof
	Decision Procedures
	Proving Programs
	Example: Inductive Assertions
	Model-Checking

	AR Perspectives
	Some Current Trends
	Parting Thoughts

	Bibliography
	Bibliography


