Symbolic model checking of multi-modal logics: uniform strategies and rich explanations

(Model checking symbolique de logiques multi-modales : stratégies uniformes et explications riches)

Simon Busard

Public defense

UCL, July 3, 2017

Running example: Mastermind

Simplified Mastermind: 3 colors, 3 turns, 2 pegs (different colors)

Running example: Mastermind

Simplified Mastermind: 3 colors, 3 turns, 2 pegs (different colors)

Model checking = a **verification** technique

Other verif. techniques: testing, simulation, proof-based approaches

System modeled as a finite-state machine

System modeled as a finite-state machine (1122 states)

System modeled as a finite-state machine

Properties expressed within a logic

 $\Rightarrow\,$ The logic defines what properties can be expressed

⇒ The properties have a mathematical meaning: a formal semantics

Example in temporal logic:

"it is possible to win the game" EF win

Model checking = **exhaustive** search guided by the property

Symbolic model checking

 $\begin{array}{c} & \textbf{state-space explosion problem:} \\ & T \text{ turns, } C \text{ colors, } P \text{ pegs} \Rightarrow \text{up to } C^{P(T+1)} \text{ states} \\ & \text{standard Mastermind} \Rightarrow 8^{4 \times (12+1)} \approx 9 \times 10^{46} \text{ states} \end{array}$

Solution: use **Binary Decision Diagrams** (BDDs) to represent and manipulate

- the system
- the transitions
- sets of states

Applications: safety-critical systems

Multi-modal logics

Reason about **several aspects** of the model: time, knowledge, strategies, etc.

"the pilot **will eventually know** that he may land" **AF** K_{pilot} authorized

"the doctor is **always aware** that the patient is not dead" **AG** K_{doctor} ¬dead

"the power plant controller knows he can avoid explosions" $K_{\textit{controller}} ~ { (controller) } G ~ { \neg explosion}$

1. Model checking techniques for uniform strategies

2. A framework for multi-modal logic rich explanations generation and manipulation

Outline

Model checking uniform strategies Uniform strategies Model checking approaches Comparison with existing approaches Conclusion on model checking uniform strategies

Rich explanations for multi-modal logics

Conclusion

Mastermind: is there a **strategy** to win the game?

How can we find such a strategy?

A (general) strategy = what to do (what **action** to play) in each state

A (general) strategy = what to do (what **action** to play) in each state

A strategy is **winning** for some objective if all executions of the model following this strategy satisfy the objective

A (general) strategy = what to do (what action to play) in each state

A strategy is **winning** for some objective if all executions of the model following this strategy satisfy the objective

Just play the solution

 \Rightarrow unrealistic because the player cannot see the solution

A (general) strategy = what to do (what **action** to play) in each state

A strategy is **winning** for some objective if all executions of the model following this strategy satisfy the objective

Just play the solution

 \Rightarrow unrealistic because the player cannot see the solution

A uniform strategy = what to do in each **observed** situation = same actions in **indistinguishable** states

cannot play the solution in the initial state because the player does not see it

ATL_{ir}: a logic to reason about uniform strategies Look for uniform strategies to achieve some **objective**

"the player has a strategy to **never** put a blue peg" 《player》**G** no blue peg

The same uniform strategy must be winning for all states indistinguishable from the states of interest!

Checking that there exists a winning uniform strategy for a given objective

- is difficult (Δ_2^P -complete = P^{NP} -complete)
- had no solution since recently

Contributions

Techniques for checking the existence of winning uniform strategies:

- 1. a **naive** approach
- 2. an improved approach based on partial strategies
- 3. another approach building winning strategies from target states

They enumerate and check every uniform strategy of the agents

+ a way to remove **surely losing choices** before enumerating the strategies

Outline

Model checking uniform strategies

Uniform strategies **Model checking approaches** Comparison with existing approaches Conclusion on model checking uniform strategies

Rich explanations for multi-modal logics

Conclusion

Representing strategies

A strategy = what action to play in each state ⇒ represent a strategy as a set of **state-action pairs** (moves)

$$\left\{ \left\langle \left(\begin{smallmatrix} \bullet & \circ \\ \circ & \circ \\ \circ & \circ \\ \bullet & \bullet \\ \bullet$$

A uniform strategy is represented as a set of non-conflicting moves

 \Rightarrow can be easily represented using binary decision diagrams

Checking one strategy for a given objective Based on fixpoint computations, easy to compute (PTIME)

 $\begin{aligned} \textit{Pre}_{\langle\!\langle \Gamma \rangle\!\rangle}(\textit{Q}',\textit{f}_{\Gamma}) = & \text{states in which } \Gamma \text{ can enforce to reach a state in } \textit{Q}' \\ & \text{by using actions provided by } \textit{f}_{\Gamma} \end{aligned}$

 $filter_{\langle\!\langle \Gamma \rangle\!\rangle \mathbf{X}}(Q', f_{\Gamma}) = Pre_{\langle\!\langle \Gamma \rangle\!\rangle}(Q', f_{\Gamma})$

= states in which Γ can enforce paths with second state in Q' by using actions in f_{Γ}

$$\textit{filter}_{\langle\!\langle \Gamma \rangle\!\rangle \mathsf{F}}(Q', f_{\Gamma}) = \mu Z. \ Q' \cup \textit{Pre}_{\langle\!\langle \Gamma \rangle\!\rangle}(Z, f_{\Gamma})$$

= states in which Γ can enforce paths reaching Q' by using actions in f_{Γ}

 $\textit{filter}_{\langle\!\langle \Gamma \rangle\!\rangle \mathbf{G}}(Q', f_{\Gamma}) = \nu Z. \ Q' \cap \textit{Pre}_{\langle\!\langle \Gamma \rangle\!\rangle}(Z, f_{\Gamma})$

= states in which Γ can enforce paths staying in Q' forever by using actions in f_{Γ} To compute the states for which there exists a winning uniform strategy for some objective

- 1. split the whole model into uniform strategies f_{Γ}
- 2. compute the states for which the **strategy is winning** with the corresponding *filter* algorithm
- 3. keep the states for which the strategy is winning for all indistinguishable states

The naive approach is inefficient

The simplified Mastermind has 7×10^{112} uniform strategies

We need ways to reduce this number

 \Rightarrow partial strategies

Partial strategies

Partial strategies

Partial strategies

Partial strategies

Partial strategies

From 7×10^{112} to 2×10^{6} strategies

To compute the states of Q' for which there exists a winning uniform strategy for some objective

- 1. generate each partial strategy f_{Γ}
- 2. compute the states of Q' for which the strategy is winning with the corresponding *filter* algorithm
- 3. keep the states of Q' for which the strategy is winning for all indistinguishable states

Pre-filtering surely losing moves

- 1. It is **easy** to compute the moves belonging to a winning **general** strategy (PTIME)
- 2. If some move does not belong to a winning general strategy, it does not belong to a winning **uniform** one

 \Rightarrow We can remove the losing moves before enumerating the uniform strategies

Pre-filtering surely losing moves

Pre-filtering can drastically reduce the number of strategies: Naive approach: from 7×10^{112} to 10^{22} uniform strategies Partial approach: from 2×10^6 to 2304 uniform partial strategies

Ø_{*}

Build (parts of) winning strategies from the ground up

 \Rightarrow works for **reachability objectives** (e.g. reach a winning state)

 \Rightarrow does not work for **safety objectives** (e.g. avoid some losing state forever)

Outline

Model checking uniform strategies

Uniform strategies Model checking approaches **Comparison with existing approaches** Conclusion on model checking uniform strategies

Rich explanations for multi-modal logics

Conclusion

Comparison with other approaches

Experimentally compared the three approaches with two existing ones:

- 1. Pilecki et al.
- 2. Huang and van der Meyden

Enriched with pre-filtering

Comparison with other approaches

Experimentally compared the three approaches with two existing ones:

- 1. Pilecki et al.
- 2. Huang and van der Meyden

Enriched with pre-filtering

Tested on 3 models, 6 properties

- $\Rightarrow\,$ the naive approach is inefficient
- \Rightarrow pre-filtering sometimes helps
- ⇒ no general winner, different approaches are better in different situations

Outline

Model checking uniform strategies

Uniform strategies Model checking approaches Comparison with existing approaches **Conclusion on model checking uniform strategies**

Rich explanations for multi-modal logics

Conclusion

Model checking uniform strategies: more than winning a game

Coalitions: reason about strategies of multiple agents

Concurrent models: agents play at the same time

Model checking uniform strategies: more than winning a game

Unconditional fairness constraints:

the player assumes the dealer is fair

i.e. if played infinitely often, all cards a given infinitely often

- ⇒ logic to reason about uniform strategies under fairness constraints
- ⇒ more complicated fixpoint computations

Thesis contributions

- A logic to reason about uniform strategies under fairness constraints
- Three techniques to check uniform strategies (naive, partial and backward approaches)
- Pre-filtering surely losing moves (+ application to the approaches)
- An implementation of these approaches with PyNuSMV
- An experimental comparison with existing approaches

Applications

\Rightarrow Security policies

 \Rightarrow Networks:

strategies of machines to share data through unreliable links

Outline

Model checking uniform strategies Uniform strategies Model checking approaches Comparison with existing approaches Conclusion on model checking uniform strategies

Rich explanations for multi-modal logics

Conclusion

Model checking can produce explanations

Multi-modal logics have rich explanations

"The player always eventually knows whether the first peg is blue"

$$\mathsf{AF} (\mathsf{K}_{player} \ S = \bigcirc \oslash \lor \mathsf{K}_{player} \ S = \bigotimes \oslash)$$

 $\begin{array}{l} \mbox{Counter-example} = \\ \mbox{a part of the model showing why the property is violated} \end{array}$

"There is a play along which the player never knows whether the first peg is blue"

$$\mathsf{EG} (\neg \mathsf{K}_{player} \ S = \bigcirc ? \land \neg \mathsf{K}_{player} \ S = \bigstar ?)$$

The problem

- Such explanations are difficult to generate and manipulate
- State-of-the-art model checkers return partial explanations

Contribution

Many multi-modal logics can be translated into the mu-calculus:

(branching) time, knowledge, general strategies, etc.

 \Rightarrow A mu-calculus-based model checking framework with rich explanations

(mu-calculus = a logic with modal and fixpoint operators)

A mu-calculus based framework with rich explanations

A mu-calculus based framework with rich explanations

A mu-calculus based framework with rich explanations

Thesis contributions

- A mu-calculus based model checker...
- ...generating rich explanations...
- ...with features to translate them back into the original logic
- An implementation of the framework with PyNuSMV
- A graphical tool to visualize and manipulate the explanations

Applications to multi-modal logics: time, knowledge, strategies...

Outline

Model checking uniform strategies Uniform strategies Model checking approaches Comparison with existing approaches Conclusion on model checking uniform strategies

Rich explanations for multi-modal logics

Conclusion

Conclusion

Two main contributions:

- 1. techniques to model check uniform strategies under fairness constraints
- 2. a mu-calculus based framework with rich explanations and translation features

 \Rightarrow The framework could be used to manipulate the uniform strategies built by the model checking techniques

Symbolic model checking of multi-modal logics: uniform strategies and rich explanations

(Model checking symbolique de logiques multi-modales : stratégies uniformes et explications riches)

Simon Busard

Public defense

UCL, July 3, 2017