
XEROX PARC, July 31, 2009 © Charles Pecheur, UC Louvain 1

Charles Pecheur, UC Louvain
(formerly RIACS / NASA Ames)

Verification of Embedded Software  
from Mars to Actions"

XEROX PARC, July 31, 2009 © Charles Pecheur, UC Louvain 2

From Mars ..."

XEROX PARC, July 31, 2009 © Charles Pecheur, UC Louvain 3

... to Actions"

XEROX PARC, July 31, 2009 © Charles Pecheur, UC Louvain 4

Outline"

Model-Based Autonomy and Diagnosis
Verification of Model-Based Controllers
Verification of Diagnosability

Symbolic Verification with Knowledge

Symbolic Verification with Actions

Conclusions
 + Current Work

XEROX PARC, July 31, 2009 © Charles Pecheur, UC Louvain 5

Autonomy (at NASA)"

Autonomous spacecraft = on-board intelligence (= AI)

•  Goal: Unattended operation in an
unpredictable environment

•  Approach: model-based reasoning
•  Pros: smaller mission control crews,

no communication delays/blackouts
•  Cons: Verification and Validation ???

Much more complex, huge state space
•  Better verification is critical for adoption

XEROX PARC, July 31, 2009 © Charles Pecheur, UC Louvain 6

Model-Based Autonomy"

•  Based on AI technology
•  Generic reasoning engine

+ application-specific model
•  Model describes (normal and

faulty) behaviour of the process
•  Engine selects control actions "on-

the-fly" based on the model
–  ... rather than pre-coded decision

rules
–  better able to respond to

unanticipated situations

Reasoning	

Engine	

Domain���
Model	

commands	
 observations	

Process	

Controller	

model of	

XEROX PARC, July 31, 2009 © Charles Pecheur, UC Louvain 7

Livingstone

C
om

m
and

Observations

State
update

Model
Controller

Courtesy Autonomous Systems Group, NASA Ames	

Closed"

Valve"
Open" Stuck

open

Stuck
closed

Open" Close"

p=0.01"

inflow = outflow = 0	

p=0.05"

Livingstone"
•  Model-based diagnosis system from NASA Ames

–  i.e. an advanced state estimator
•  Uses a discrete, qualitative model to reason about faults

=> naturally amenable to formal analysis

XEROX PARC, July 31, 2009 © Charles Pecheur, UC Louvain 8

A Simple Livingstone Model"

V	

breaker	

bulb	
meter	

r2=inf	

light=off	

r2=low	

light=off	

display=zero	

display=v2	

r2=normal	

light=...	

r1=inf	
 r1=low	

i = ...(v1,r1,r2)	

v2 = ...(v1,r1,r2)	

v1=normal	

v=zero	

cmdIn=off/on/noCommand	

display=zero/normal	
 light=off/on	

mode=ok0/dead4	

mode=ok0/blown1/short4	

mode=off0/on0	

v2=zero/normal/low	

i=zero/normal/high	

r1=inf/normal/low	

r2=inf/normal/low	

8	
short4	
dead4	
on0	

1	
blown1	
ok0	
off0	

0	
ok0	
ok0	
off0	

rank	
meter	
bulb	
breaker	

Goal: determine modes from observations	

Generates and tracks candidates	

XEROX PARC, July 31, 2009 © Charles Pecheur, UC Louvain 9

Outline"

Model-Based Autonomy and Diagnosis

Verification of Model-Based Controllers
Verification of Diagnosability

Symbolic Verification with Knowledge

Symbolic Verification with Actions

Conclusions

XEROX PARC, July 31, 2009 © Charles Pecheur, UC Louvain 10

Verify Model-Based Control?"

Of course, but what exactly?
•  The model?
•  The engine?
•  The whole controller?
•  All of the above!

Reasoning	

Engine	

Domain���
Model	

commands	
 observations	

Spacecraft	

Controller	

model of	

XEROX PARC, July 31, 2009 © Charles Pecheur, UC Louvain 11

Verification of the Engine"

•  A (technically complex) computer program
•  Use traditional software verification approaches
•  Maybe full-blown proof on core algorithms

•  Generic, re-used across applications
•  More likely to be stable and trustable
•  Like compilers, interpreters, virtual machines, etc

Reasoning	

Engine	

Domain���
Model	

commands	
 observations	

Spacecraft	

Controller	

model of	

XEROX PARC, July 31, 2009 © Charles Pecheur, UC Louvain 12

•  Model checking = (ideally) exhaustive exploration
of the (finite) state space of a system
–  ≈ exhaustive testing with loop / join detection

Model Checking"

“Valve is closed when	

Tank is empty”	

AG (tank=empty	

=> valve=closed)	

Modeling	

Abstraction	

Verification	

Controller	

Planner	
 Diagnosis	
Exec	

XEROX PARC, July 31, 2009 © Charles Pecheur, UC Louvain 13

The RAX Bug"

Remote Agent Experiment (1999)
•  cause : missing critical section

in concurrent program
•  effect : race condition and

deadlock in flight
–  in supervised experiment, no

mission damage

•  solution : model checking
–  a similar bug was found before flight

using SPIN on another part of the
code

–  See [Havelund et al. 2000]

XEROX PARC, July 31, 2009 © Charles Pecheur, UC Louvain 14

Verification of the Controller"

•  good model + good engine ≠> good controller
•  Heuristics in engine, simplifications in model

•  System-level verification
•  Controller as black (or grey) box
•  Need a model of the environment (test harness)
•  Applicable to others than model-based

Reasoning	

Engine	

Domain���
Model	

commands	
 observations	

Spacecraft	

Controller	

model of	

XEROX PARC, July 31, 2009 © Charles Pecheur, UC Louvain 15

Livingstone PathFinder"

•  An advanced testing/simulation framework for Livingstone applications
–  Executes the Real Livingstone Program in a simulated environment (testbed)
–  Instrument the code to be able to backtrack between alternate paths

•  Modular architecture with generic APIs (in Java)
–  allows different diagnosers, simulators, search algorithms and strategies, error

conditions, ...
•  See TACAS'04 paper

sensors

Simulator	

commands

& faults

Engine Model

Livingstone

Driver Scenario
(w/ branches)

get state
set state

single step
backtrack

T
E

S

T
B

E

D

with Tony Lindsey (QSS / NASA Ames)	

DFS

BFS

random

...

Guided
Search

XEROX PARC, July 31, 2009 © Charles Pecheur, UC Louvain 16

event

obs

Simulator	

event

Engine Model

Diagnosis

Driver Scenario
(w/ branches)

T
E
S
T
B
E
D

One Diagnosis Step"

XEROX PARC, July 31, 2009 © Charles Pecheur, UC Louvain 17

LPF Scenario Example"
mix {!
 "command test.sv02.valveCmdIn=close";!
 "command test.sv02.valveCmdIn=open";!
 ...!
} and {!
 choose !
 "fault test.forwardLO2.mode=unknownFault"; or!
 "fault test.mpre101p.mode=faulty"; or!
 ...  
}!

•  Sequence of commands || choice of faults
•  "default" scenario, can be generated automatically

XEROX PARC, July 31, 2009 © Charles Pecheur, UC Louvain 18

LPF Search"

•  The whole testbed is seen as a transition system
•  API to enumerate transitions, backtrack, get/set state

–  Shared with Java PathFinder (v.2)[Visser et al. 00]
–  Principle inspired from OPEN/CAESAR[Garavel 98]

•  Search engine fixes exploration strategy
–  Depth-First
–  Breadth-First
–  Heuristic
–  Others are possible (random, pattern-based,

interactive)

•  + Halting conditions (for any strategy)
–  Find first / all / shortest error trace(s)

sensors

XEROX PARC, July 31, 2009 © Charles Pecheur, UC Louvain 19

Verification of the Model"

•  This is the "application code"
•  where the development effort (and bugs) are

•  Abstract, concise, amenable to formal analysis
•  this is another benefit of model-based approaches
•  ... or model-based design in general

•  Use symbolic model checking

Reasoning	

Engine	

Domain���
Model	

commands	
 observations	

Spacecraft	

Controller	

model of	

XEROX PARC, July 31, 2009 © Charles Pecheur, UC Louvain 20

Livingstone-to-SMV Translator "

Livingstone
Model

SMV
Model

Livingstone
Specification

(enriched)

SMV
Specification

(CTL logic)

Livingstone
Trace

SMV
Trace

Livingstone

SMV

T
R
A
N
S
L
A
T
O
R

Diagnosis Verification

•  A translator that converts Livingstone models, specs, traces to/from SMV
(in Java)

–  SMV: symbolic model checker (both BDD and SAT-based)
allows exhaustive analysis of very large state spaces (1050+)

•  Hides away SMV, offers a model checker for Livingstone
•  Enriched specification syntax (vs. SMV's core temporal logic)
•  Graphical interface, integration in Livingstone development tools

Joint work with Reid Simmons (Carnegie Mellon)	

XEROX PARC, July 31, 2009 © Charles Pecheur, UC Louvain 21

Mainstream symbolic model checker
–  Original SMV from Carnegie Mellon,

currently NuSMV from IRST
(and Cadence SMV)

•  Rich modeling language
•  Many features and options
•  Uses symbolic computation

over boolean encoding
–  using BDDs or SAT (bounded)
–  finite models
–  Can handle very large state spaces (1050+)

SMV / NuSMV"
x	

y	

0	
 1	
 2	
 ...	
0	

1	

...	

x=2 ∨ y=1	

1	
 0	

x=2	

y=1	

XEROX PARC, July 31, 2009 © Charles Pecheur, UC Louvain 22

•  Use atmosphere from Mars to make
fuel for return flight.

•  Livingstone controller developed at
NASA KSC.

•  Components are tanks, reactors,
valves, sensors...

•  Exposed improper flow modeling.
•  Latest model is 1050 states.

In-Situ Propellant Production"

CO2 + 2H2 —> CH4 + O2	

Mars ���
atmosphere	

oxidizer	
fuel	

on-board	

XEROX PARC, July 31, 2009 © Charles Pecheur, UC Louvain 23

Verification of Diagnosis Models"

•  Coding Errors
–  e.g. Consistency, well-defined transitions, ...
–  Generic
–  Compare to Lint for C

•  Model Correctness
–  Expected properties of modeled system
–  e.g. flow conservation, operational scenarios, ...
–  Application-specific

•  Diagnosability
–  Are faults detectable/diagnosable?

•  Given available sensors
•  In all/specific operational situations (dynamic)

XEROX PARC, July 31, 2009 © Charles Pecheur, UC Louvain 24

Outline"

Model-Based Autonomy and Diagnosis

Verification of Model-Based Controllers
Verification of Diagnosability
Symbolic Verification with Knowledge

Symbolic Verification with Actions

Conclusions

XEROX PARC, July 31, 2009 © Charles Pecheur, UC Louvain 25

Diagnosability"

•  Diagnosis: estimate the hidden state x (incl. failures)
given observable commands u and sensors y.

•  Diagnosability: Can (a smart enough) Diagnoser
always tell when Process comes to a bad state?

•  Property of the Process (not the Diagnoser)
–  even for non-model-based diagnosers
–  but analysis needs a (process) model

Controller

Process
x

Diagnoser

u	

 ̂x

y	

u1/y1 … un/yn " good"
bad"u1/y1 … un/yn "

XEROX PARC, July 31, 2009 © Charles Pecheur, UC Louvain 26

•  Intuition: bad is diagnosable if and only if
there is no pair of trajectories, one reaching a bad state, the
other reaching a good state, with identical observations.
–  or some generalization of that: (context, two different faults, ...)

•  Principle:
–  consider two concurrent copies x1, x2 of the process,

with coupled inputs u and outputs y
–  check for reachability of (good(x1) && bad(x2))

•  Back to a classical (symbolic) model checking problem !
•  Supported by Livingstone-to-SMV translator

x1

x2

u	
 y	

Verification of Diagnosability"
u1/y1 … un/yn " good"

bad"u1/y1 … un/yn "

XEROX PARC, July 31, 2009 © Charles Pecheur, UC Louvain 27

X-34 / PITEX"

•  Propulsion IVHM Technology Experiment (ARC, GRC)
•  Livingstone applied to propulsion feed system of space vehicle
•  Livingstone model is 4·1033 states

XEROX PARC, July 31, 2009 © Charles Pecheur, UC Louvain 28

•  "Diagnosis can decide whether the venting valve VR01 is closed or
stuck open (assuming no other failures)"

 INVAR !test.multibroken() & twin(!test.broken())
VERIFY INVARIANT !(test.vr01.mode=stuckOpen &

 twin(test.vr01.valvePosition=closed))
•  Results show a pair of traces with same observations, one leading to VR01

stuck open, the other to VR01 closed. Application specialists fixed their
model.

PITEX Diagnosability Error "
with Roberto Cavada (IRST, NuSMV developer)	

XEROX PARC, July 31, 2009 © Charles Pecheur, UC Louvain 29

Outline"

Model-Based Autonomy and Diagnosis

Verification of Model-Based Controllers
Verification of Diagnosability

Symbolic Verification with Knowledge
Symbolic Verification with Actions

Conclusions

XEROX PARC, July 31, 2009 © Charles Pecheur, UC Louvain 30

Epistemic Logic"

•  Reasoning about knowledge
Ka ϕ = agent a knows ϕ

•  Interpreted over an Interpreted System (IS)
– Transition system T +
– Observation functions obsa(σ) over runs σ of T

– Ka φ holds after σ iff
φ holds after all σ' such that obsa(σ) = obsa(σ')

•  CTLK = temporal + epistemic logic

XEROX PARC, July 31, 2009 © Charles Pecheur, UC Louvain 31

Observation Function"
•  In general : agents reason about “everything

they have seen so far” (total recall)
–  obsa(σ) over runs σ
–  memory built into the logic
–  model checking hard to undecidable

•  Observational view : agents reason about
the current state only
–  obsa(s) over states s
–  memory explicit in the model
–  symbolic model checking can be generalized from

CTL to CTLK

XEROX PARC, July 31, 2009 © Charles Pecheur, UC Louvain 32

Diagnosability and CTLK""

 Considering the diagnoser as an agent D observing
the system,

Fault F is diagnosable
iff

AG (KD F \/ KD ~F)

•  Diagnosability can be framed as
a temporal epistemic model-checking problem

•  Caveat : general diagnosability requires total recall
–  or explicit (bounded) memory of observations

joint work with Franco Raimondi (UC London)	

XEROX PARC, July 31, 2009 © Charles Pecheur, UC Louvain 33

From CMAS to SMV"
•  CMAS : symbolic model checker for CTLK

–  developed by Franco Raimondi
–  BDD-based
–  Good performance but very crude modelling

language
•  Could we do CTLK in NuSMV?

–  Leverage SMV's rich modelling language
–  Re-use models generated from Livingstone

•  Need a reduction from CTLK
to (enhanced?) CTL

XEROX PARC, July 31, 2009 © Charles Pecheur, UC Louvain 34

Outline"

Model-Based Autonomy and Diagnosis

Verification of Model-Based Controllers
Verification of Diagnosability

Symbolic Verification with Knowledge

Symbolic Verification with Actions
Conclusions

XEROX PARC, July 31, 2009 © Charles Pecheur, UC Louvain 35

From Knowledge to Actions"
•  The observation function obsa(s) induces

an accessibility (equivalence) relation ~a
over reachable states s

s ~a s' iff obsa(s) = obsa(s')
•  An interpreted system is a Kripke structure

with several transition relations →, ~a1, ..., ~an"

•  Or equivalently, a labelled transition system
(LTS) over an action alphabet {t, a1, ..., an}"

•  Corresponding reduction of CTLK?

XEROX PARC, July 31, 2009 © Charles Pecheur, UC Louvain 36

Action-Based Logics"

•  Large body of published work in action-
based temporal logics (applicable to LTS)
–  ACTL [deNicola-Vaandrager], ACTL∗,Hennessy-

Milner, etc.
–  Do not quite fit our purpose
–  No (well-known?) symbolic model-checker

XEROX PARC, July 31, 2009 © Charles Pecheur, UC Louvain 37

Action-Restricted CTL (ARCTL)"

•  Variant of ACTL
•  Action conditions α on path quantifiers

e.g. AαF φ = on all α-paths, sooner or later φ
–  vs. on temporal quantifiers in ACTL

e.g. AFα φ = on all paths, there is an α-prefix to φ

•  α-restricted formula on full model =
unrestricted formula on α-restricted model

•  (IS sat CTLK) can be reduced to (LTS sat
ARCTL)
–  needs reachability = reverse temporal transitions

XEROX PARC, July 31, 2009 © Charles Pecheur, UC Louvain 38

Symbolic Model-Checking 
for Action-Based Logics"
•  Classical symbolic model-checking for CTL

generalizes naturally to ARCTL or ACTL
–  some subtleties due to finite α-paths and fairness

•  NuSMV already has “actions” in models
–  called input variables (IVARs)
–  but not allowed in CTL

XEROX PARC, July 31, 2009 © Charles Pecheur, UC Louvain 39

Action-Based Logics in NuSMV"

We added ARCTL support to NuSMV

•  V1: reduction to KS + CTL,
projecting actions into post-states

e.g. AαX φ reduces to AX (α => φ) /\ EX α

•  V2: native ARCTL support, using IVARs

•  see [Pecheur-Raimondi 2006]

XEROX PARC, July 31, 2009 © Charles Pecheur, UC Louvain 40

CTLK in NuSMV"
•  CTLK and agents (observed variables)

handled by a macro package (m4)
•  Good performance wrt. dedicated model

checkers (CMAS, Verics), see next slide
•  see [Raimondi-Pecheur-Lomuscio 2005]

XEROX PARC, July 31, 2009 © Charles Pecheur, UC Louvain 41

CTLK on Dining Cryptographers"

XEROX PARC, July 31, 2009 © Charles Pecheur, UC Louvain 42

Outline"

Model-Based Autonomy and Diagnosis

Verification of Model-Based Controllers
Verification of Diagnosability

Symbolic Verification with Knowledge

Symbolic Verification with Actions

Conclusions

XEROX PARC, July 31, 2009 © Charles Pecheur, UC Louvain 43

Summary: From Mars to Actions"

Deep-space missions (incl. Mars)

=> Model-based autonomy (incl. diagnosis)

 => Model-based verification

 => Diagnosability

 => Epistemic Logics

 => Logics with Actions

XEROX PARC, July 31, 2009 © Charles Pecheur, UC Louvain 44

Lessons Learned"

•  Verification of model-based controllers
–  Needs advanced verification (because of large state space)
–  Facilitates advanced verification (thanks to model)

•  Verification of control software
–  Control loop, observability/commandability

•  In particular, failure diagnosability and recoverability
–  Leads to epistemic, action logics

•  Model checking
–  Applicable to these problems
–  symbolic model checking saves the day

•  Verification of software
–  All other principles still apply: process, testing, ...

XEROX PARC, July 31, 2009 © Charles Pecheur, UC Louvain 45

Perspectives"

•  Key ideas:
–  model-based analysis (model checking)
–  partial observability

•  Extensions
–  from discrete to continuous, real-time, hybrid models
–  from fault diagnosis to planning

•  e.g. test-case generation for planners
see [Raimondi-Pecheur-Brat 2007]

•  Connections
–  with classical risk analysis (fault trees, FMEA)
–  with man-machine interface issues (observability!)
–  with game theory (the Controller vs. the Environment)

XEROX PARC, July 31, 2009 © Charles Pecheur, UC Louvain 46

Current Work"

•  Analysis of Human-Computer Interaction
–  Sébastien Combéfis (UCLouvain)

•  Symbolic Model Checking for Process Algebras
–  José Vander Meulen (UCLouvain)

•  Requirements-Based Test-Case Coverage"
–  Franco Raimondi (UCLondon)
–  Guillaume Brat (NASA Ames)"

XEROX PARC, July 31, 2009 © Charles Pecheur, UC Louvain 47

Work by Sébastien Combéfis, see [EICS 2009]

Similar problem to diagnosability!

Analysis of  
Human-Computer Interaction"

XEROX PARC, July 31, 2009 © Charles Pecheur, UC Louvain 48

Synthesis of User Models"

•  Given a machine model, synthesize a user model "
•  The user model is an abstraction  

of the machine model"
–  Merges states that "behave the same" w.r.t. the user"
–  Reduction modulo bisimulation equivalence"

XEROX PARC, July 31, 2009 © Charles Pecheur, UC Louvain 49

Symbolic Model Checking for
Process Algebras"
Work by José Vander Meulen, see [FMICS 2008]
•  Applying symbolic model checking

to action-based formalisms?
–  e.g. process algebras (CCS, CSP, LOTOS, ...)
–  asynchronous processes, interleaving
–  Symbolic model-checking performs poorly

•  Classical answer:
partial-order reduction

•  How to do that with symbolic?

XEROX PARC, July 31, 2009 © Charles Pecheur, UC Louvain 50

Partial-Order Reduction 
and Symbolic Model Checking"

•  POR with BDDs
–  Symbolic (BFS) approximation

of the classic (DFS) approach
–  Needs forward CTL model-checking

•  POR with SAT
–  Consider only one process at most steps
–  Longer traces but much faster

XEROX PARC, July 31, 2009 © Charles Pecheur, UC Louvain 51

Testing Model-Based Planners"

Verify model-based planners
•  Model-checking?

–  As hard as planning itself!

•  Testing?
–  Yes, but in a more systematic way: coverage!

XEROX PARC, July 31, 2009 © Charles Pecheur, UC Louvain 52

Coverage for Temporal Formulae"

•  Given a (formal) specification F (done || failed)
•  For elementary condition done
•  Find test cases that make the specification true

"because of done"

[F (done || failed)]done = (F done) && (G ~failed)

•  [P]a characterizes test cases for a in P
–  Another temporal logic formula
–  Derivable syntactically from P

XEROX PARC, July 31, 2009 © Charles Pecheur, UC Louvain 53

Thank you!"

Publications vailable at
http://www.info.ucl.ac.be/~pecheur/publi/

