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... to Actions"
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Autonomy (at NASA)"

Autonomous spacecraft = on-board intelligence (= AI) 

•  Goal: Unattended operation in an 
unpredictable environment 

•  Approach: model-based reasoning 
•  Pros: smaller mission control crews, 

no communication delays/blackouts 
•  Cons: Verification and Validation ??? 

Much more complex, huge state space 
•  Better verification is critical for adoption 
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Model-Based Autonomy"

•  Based on AI technology 
•  Generic reasoning engine 

+ application-specific model  
•  Model describes (normal and 

faulty) behaviour of the process 
•  Engine selects control actions "on-

the-fly" based on the model 
–  ... rather than pre-coded decision 

rules 
–  better able to respond to 

unanticipated situations 
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Livingstone"
•  Model-based diagnosis system from NASA Ames 

–  i.e. an advanced state estimator 
•  Uses a discrete, qualitative model to reason about faults 

=> naturally amenable to formal analysis 
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A Simple Livingstone Model"
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Goal: determine modes from observations	

Generates and tracks candidates	
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Verify Model-Based Control?"

Of course, but what exactly? 
•  The model? 
•  The engine? 
•  The whole controller? 
•  All of the above! 
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Verification of the Engine"

•  A (technically complex) computer program 
•  Use traditional software verification approaches 
•  Maybe full-blown proof on core algorithms 

•  Generic, re-used across applications 
•  More likely to be stable and trustable 
•  Like compilers, interpreters, virtual machines, etc 
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•  Model checking = (ideally) exhaustive exploration  
of the (finite) state space of a system 
–  ≈ exhaustive testing with loop / join detection 

Model Checking"

“Valve is closed when	

Tank is empty”	


AG (tank=empty	

=> valve=closed)	
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The RAX Bug"

Remote Agent Experiment (1999) 
•  cause : missing critical section 

in concurrent program 
•  effect : race condition and 

deadlock in flight 
–  in supervised experiment, no 

mission damage 

•  solution : model checking 
–  a similar bug was found before flight 

using SPIN on another part of the 
code 

–  See [Havelund et al. 2000] 
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Verification of the Controller"

•  good model + good engine ≠> good controller 
•  Heuristics in engine, simplifications in model 

•  System-level verification 
•  Controller as black (or grey) box 
•  Need a model of the environment (test harness) 
•  Applicable to others than model-based 
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Livingstone PathFinder"

•  An advanced testing/simulation framework for Livingstone applications 
–  Executes the Real Livingstone Program in a simulated environment (testbed) 
–  Instrument the code to be able to backtrack between alternate paths 

•  Modular architecture with generic APIs (in Java) 
–  allows different diagnosers, simulators, search algorithms and strategies, error 

conditions, ... 
•  See TACAS'04 paper   
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LPF Scenario Example"
mix {!
  "command test.sv02.valveCmdIn=close";!
  "command test.sv02.valveCmdIn=open";!
  ...!
} and {!
  choose  !
    "fault test.forwardLO2.mode=unknownFault"; or!
    "fault test.mpre101p.mode=faulty"; or!
    ...  
}!

•  Sequence of commands || choice of faults 
•  "default" scenario, can be generated automatically 
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LPF Search"

•  The whole testbed is seen as a transition system 
•  API to enumerate transitions, backtrack, get/set state 

–  Shared with Java PathFinder (v.2)[Visser et al. 00] 
–  Principle inspired from OPEN/CAESAR[Garavel 98] 

•  Search engine fixes exploration strategy 
–  Depth-First 
–  Breadth-First 
–  Heuristic 
–  Others are possible (random, pattern-based, 

interactive) 

•  + Halting conditions (for any strategy) 
–  Find first / all / shortest error trace(s) 

sensors 
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Verification of the Model"

•  This is the "application code" 
•  where the development effort (and bugs) are 

•  Abstract, concise, amenable to formal analysis 
•  this is another benefit of model-based approaches 
•  ... or model-based design in general 

•  Use symbolic model checking 
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Livingstone-to-SMV Translator "
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Diagnosis Verification 

•  A translator that converts Livingstone models, specs, traces to/from SMV 
(in Java) 

–  SMV: symbolic model checker (both BDD and SAT-based) 
allows exhaustive analysis of very large state spaces (1050+) 

•  Hides away SMV, offers a model checker for Livingstone 
•  Enriched specification syntax (vs. SMV's core temporal logic) 
•  Graphical interface, integration in Livingstone development tools 

Joint work with Reid Simmons (Carnegie Mellon)	
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Mainstream symbolic model checker 
–  Original SMV from Carnegie Mellon, 

currently NuSMV from IRST  
(and Cadence SMV) 

•  Rich modeling language 
•  Many features and options 
•  Uses symbolic computation  

over boolean encoding 
–  using BDDs or SAT (bounded) 
–  finite models 
–  Can handle very large state spaces (1050+)  
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•  Use atmosphere from Mars to make 
fuel for return flight. 

•  Livingstone controller developed at 
NASA KSC. 

•  Components are tanks, reactors, 
valves, sensors... 

•  Exposed improper flow modeling. 
•  Latest model is 1050 states. 

In-Situ Propellant Production"

CO2 + 2H2 —> CH4 + O2	


Mars ���
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oxidizer	
fuel	


on-board	
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Verification of Diagnosis Models"

•  Coding Errors 
–  e.g. Consistency, well-defined transitions, ... 
–  Generic 
–  Compare to Lint for C 

•  Model Correctness 
–  Expected properties of modeled system 
–  e.g. flow conservation, operational scenarios, ... 
–  Application-specific 

•  Diagnosability 
–  Are faults detectable/diagnosable? 

•  Given available sensors 
•  In all/specific operational situations (dynamic) 



XEROX PARC, July 31, 2009 © Charles Pecheur, UC Louvain 24 

Outline"

Model-Based Autonomy and Diagnosis 

Verification of Model-Based Controllers 
Verification of Diagnosability 
Symbolic Verification with Knowledge 

Symbolic Verification with Actions 

Conclusions 



XEROX PARC, July 31, 2009 © Charles Pecheur, UC Louvain 25 

Diagnosability"

•  Diagnosis: estimate the hidden state x (incl. failures) 
given observable commands u and sensors y. 

•  Diagnosability: Can (a smart enough) Diagnoser 
always tell when Process comes to a bad state? 

•  Property of the Process (not the Diagnoser) 
–  even for non-model-based diagnosers 
–  but analysis needs a (process) model 
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•  Intuition: bad is diagnosable   if and only if 
there is no pair of trajectories, one reaching a bad state, the 
other reaching a good state, with identical observations. 
–  or some generalization of that: (context, two different faults, ...) 

•  Principle:  
–  consider two concurrent copies x1, x2 of the process, 

with coupled inputs u and outputs y 
–  check for reachability of (good(x1) && bad(x2)) 

•  Back to a classical (symbolic) model checking problem ! 
•  Supported by Livingstone-to-SMV translator 

x1 

x2 

u	
 y	


Verification of Diagnosability"
u1/y1 … un/yn " good"

bad"u1/y1 … un/yn "
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X-34 / PITEX"

•  Propulsion IVHM Technology Experiment (ARC, GRC) 
•  Livingstone applied to propulsion feed system of space vehicle 
•  Livingstone model is 4·1033 states 
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•  "Diagnosis can decide whether the venting valve VR01 is closed or 
stuck open (assuming no other failures)" 

 INVAR !test.multibroken() & twin(!test.broken()) 
VERIFY INVARIANT !(test.vr01.mode=stuckOpen &  

   twin(test.vr01.valvePosition=closed)) 
•  Results show a pair of traces with same observations, one leading to VR01 

stuck open, the other to VR01 closed. Application specialists fixed their 
model. 

PITEX Diagnosability Error "
with Roberto Cavada (IRST, NuSMV developer)	
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Epistemic Logic"

•  Reasoning about knowledge 
Ka ϕ = agent a knows ϕ 

•  Interpreted over an  Interpreted System (IS) 
– Transition system T +  
– Observation functions obsa(σ) over runs σ of T 

– Ka φ holds after σ  iff    
φ holds after all σ' such that  obsa(σ) = obsa(σ') 

•  CTLK = temporal + epistemic logic 
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Observation Function"
•  In general : agents reason about “everything 

they have seen so far” (total recall) 
–  obsa(σ) over runs σ 
–  memory built into the logic 
–  model checking hard to undecidable 

•  Observational view : agents reason about 
the current state only 
–  obsa(s) over states s 
–  memory explicit in the model 
–  symbolic model checking can be generalized from 

CTL to CTLK 
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Diagnosability and CTLK""

 
 Considering the diagnoser as an agent D observing 
the system, 

Fault F is diagnosable 
iff 

AG (KD F \/ KD ~F) 

•  Diagnosability can be framed as  
a temporal epistemic model-checking problem 

•  Caveat : general diagnosability requires total recall 
–  or explicit (bounded) memory of observations 

joint work with Franco Raimondi (UC London)	
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From CMAS to SMV"
•  CMAS : symbolic model checker for CTLK  

–  developed by Franco Raimondi 
–  BDD-based 
–  Good performance but very crude modelling 

language 
•  Could we do CTLK in NuSMV? 

–  Leverage SMV's rich modelling language 
–  Re-use models generated from Livingstone 

•  Need a reduction from CTLK  
to (enhanced?) CTL 
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From Knowledge to Actions"
•  The observation function obsa(s) induces 

an accessibility (equivalence) relation ~a 
over reachable states s 

s ~a s'  iff  obsa(s) = obsa(s') 
•  An interpreted system is a Kripke structure 

with several transition relations →, ~a1, ..., ~an"

•  Or equivalently, a labelled transition system 
(LTS) over an action alphabet {t, a1, ..., an}"

•  Corresponding reduction of CTLK? 
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Action-Based Logics"

•  Large body of published work in action-
based temporal logics (applicable to LTS) 
–  ACTL [deNicola-Vaandrager], ACTL∗,Hennessy-

Milner, etc. 
–  Do not quite fit our purpose 
–  No (well-known?) symbolic model-checker 
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Action-Restricted CTL (ARCTL)"

•  Variant of ACTL  
•  Action conditions α on path quantifiers 

e.g.  AαF φ  =  on all α-paths, sooner or later φ 
–  vs. on temporal quantifiers in ACTL 

e.g.  AFα φ  =  on all paths, there is an α-prefix to φ 

•  α-restricted formula on full model = 
unrestricted formula on α-restricted model 

•  (IS sat CTLK) can be reduced to (LTS sat 
ARCTL) 
–  needs reachability = reverse temporal transitions 
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Symbolic Model-Checking 
for Action-Based Logics"
•  Classical symbolic model-checking for CTL 

generalizes naturally to ARCTL or ACTL 
–  some subtleties due to finite α-paths and fairness 

•  NuSMV already has “actions” in models 
–  called input variables (IVARs) 
–  but not allowed in CTL 
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Action-Based Logics in NuSMV"

We added ARCTL support to NuSMV 

•  V1: reduction to KS + CTL,  
projecting actions into post-states 

e.g.  AαX φ reduces to AX (α => φ) /\ EX α   

•  V2: native ARCTL support, using IVARs 

•  see [Pecheur-Raimondi 2006] 
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CTLK in NuSMV"
•  CTLK and agents (observed variables) 

handled by a macro package (m4) 
•  Good performance wrt. dedicated model 

checkers (CMAS, Verics), see next slide 
•  see [Raimondi-Pecheur-Lomuscio 2005] 
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CTLK on Dining Cryptographers"
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Summary: From Mars to Actions"

Deep-space missions (incl. Mars) 

=>  Model-based autonomy (incl. diagnosis) 

  =>  Model-based verification 

   =>  Diagnosability 

    =>  Epistemic Logics 

     =>  Logics with Actions  
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Lessons Learned"

•  Verification of model-based controllers 
–  Needs advanced verification (because of large state space) 
–  Facilitates advanced verification (thanks to model) 

•  Verification of control software 
–  Control loop, observability/commandability 

•  In particular, failure diagnosability and recoverability 
–  Leads to epistemic, action logics 

•  Model checking 
–  Applicable to these problems 
–  symbolic model checking saves the day 

•  Verification of software 
–  All other principles still apply: process, testing, ... 
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Perspectives"

•  Key ideas:  
–  model-based analysis (model checking) 
–  partial observability 

•  Extensions 
–  from discrete to continuous, real-time, hybrid models 
–  from fault diagnosis to planning 

•  e.g. test-case generation for planners  
see [Raimondi-Pecheur-Brat 2007] 

•  Connections 
–  with classical risk analysis (fault trees, FMEA) 
–  with man-machine interface issues (observability!) 
–  with game theory (the Controller vs. the Environment) 
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Current Work"

•  Analysis of Human-Computer Interaction 
–  Sébastien Combéfis (UCLouvain) 

•  Symbolic Model Checking for Process Algebras 
–  José Vander Meulen (UCLouvain) 

•  Requirements-Based Test-Case Coverage"
–  Franco Raimondi (UCLondon) 
–  Guillaume Brat (NASA Ames)"
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Work by Sébastien Combéfis, see [EICS 2009] 
 
 
 
 
 
 
 
 
 
 
 
Similar problem to diagnosability! 

Analysis of  
Human-Computer Interaction"
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Synthesis of User Models"

•  Given a machine model, synthesize a user model "
•  The user model is an abstraction  

of the machine model"
–  Merges states that "behave the same" w.r.t. the user"
–  Reduction modulo bisimulation equivalence"
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Symbolic Model Checking for 
Process Algebras"
Work by José Vander Meulen, see [FMICS 2008] 
•  Applying symbolic model checking 

to action-based formalisms? 
–  e.g. process algebras (CCS, CSP, LOTOS, ...) 
–  asynchronous processes, interleaving 
–  Symbolic model-checking performs poorly 

•  Classical answer: 
partial-order reduction 

•  How to do that with symbolic? 



XEROX PARC, July 31, 2009 © Charles Pecheur, UC Louvain 50 

Partial-Order Reduction 
and Symbolic Model Checking"

•  POR with BDDs 
–  Symbolic (BFS) approximation 

of the classic (DFS) approach 
–  Needs forward CTL model-checking 

•  POR with SAT 
–  Consider only one process at most steps 
–  Longer traces but much faster 
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Testing Model-Based Planners"

Verify model-based planners 
•  Model-checking?  

–  As hard as planning itself! 

•  Testing? 
–  Yes, but in a more systematic way: coverage! 
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Coverage for Temporal Formulae"

•  Given a (formal) specification F (done || failed) 
•  For elementary condition done 
•  Find test cases that make the specification true 

"because of done" 
 

[F (done || failed)]done   =   (F done) && (G ~failed) 

•  [P]a characterizes test cases for a in P 
–  Another temporal logic formula 
–  Derivable syntactically from P 
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Thank you!"

Publications vailable at 
http://www.info.ucl.ac.be/~pecheur/publi/ 


