
Learning System Abstractions for Human
Operators

Sébastien Combéfis1 Dimitra Giannakopoulou2
Charles Pecheur1 Michael Feary2

1University of Louvain (UCLouvain)
ICT, Electronics and Applied Mathematics Institute (ICTEAM)

2NASA Ames Research Center (ARC)

November 12, 2011

[MALETS 2011, Lawrence, KA, USA]

CAVEAT
This is NOT

Learning

2

CAVEAT
This is NOT (your usual kind of)

Learning (either)

2

Human-Machine Interaction

user manual,
training . . .

system
model

system

interface user

mental model

system abstraction

Abstracts

What is a good system abstraction?

3

Human-Machine Interaction

user manual,
training . . .

system
model

system

interface user

mental model

system abstraction

Abstracts

How can such an abstraction be automatically generated?

3

Outline

1 Modelling and Interaction Analysis

2 Learning-Based System Abstraction’s Generation

3 Prototype and Experiments

4 Conclusions

4

Modelling

System modelled as an HMI-LTS
(Finite) LTS
Commands, observations and τ

onoff

dead

fades

dies

press
fadeOut

τpress

endFading

burnOut
onoff

Full-control = good abstraction
During interaction:

same set of commands
user expects all possible observations

5

Interaction Analysis

Interaction between a user and a system through two models:

System model models behaviour of the system

Mental model is an abstraction of the system model capturing
the knowledge of the operator (conceptual model)

The interaction is captured by the parallel execution of the
two models

onoff

dead

fades

dies

press
fadeOut

τpress

endFading

burnOutonoff

A press

on,off

6

Interaction Analysis

Interaction between a user and a system through two models:

System model models behaviour of the system

Mental model is an abstraction of the system model capturing
the knowledge of the operator (conceptual model)

The interaction is captured by the parallel execution of the
two models

onoff

dead

fades

dies

press
fadeOut

τpress

endFading

burnOutonoff

A press

on,off

× = A/off A/on

?/deadA/diesA/? ?/fades

press

off

press

on

τ

press burnOut

fadeOut

6

Full-control property

Full-control property captures good system abstraction

During the interaction between user and system:
The user should know exactly the available commands . . .
. . . and at least all the possible observations

Given a systemMM = 〈SM , s0M ,Lc ,Lo,→M〉 and an
abstraction for itMU = 〈SU , s0U ,Lc ,Lo,→U〉:

MU fcMM iff :

∀σ ∈ Lco∗ such that s0M
σ

==⇒ sM and s0U
σ−−→ sU :

Ac(sM) = Ac(sU) ∧ Ao(sM) ⊆ Ao(sU)

7

Generation Problem

Goal: Given the model of a system, automatically generate a
minimal full-control system abstraction

Motivation:
Extract the minimal behaviour of the system, so that it can be
controlled without surprise

Help to build artifacts: manuals, procedures, trainings, . . .

If such abstraction does not exist, provide feedback to help
redesigning the system

Two developed algorithms : reduction-based (similarity
relation) and learning-based (L∗ and 3DFA)

8

Reduction-Based Approach

Method based on a variant of the Paige-Tarjan reduction
algorithm which will partition the system by separating states
which exhibit different behaviour, based on a similarity relation

S0

S1

S2

S3

a

b

c

a

c

9

Reduction-Based Approach

Method based on a variant of the Paige-Tarjan reduction
algorithm which will partition the system by separating states
which exhibit different behaviour, based on a similarity relation

S0

S1

S2

S3

a

b

c

a

c

9

Reduction-Based Approach

Method based on a variant of the Paige-Tarjan reduction
algorithm which will partition the system by separating states
which exhibit different behaviour, based on a similarity relation

S0

S1

S2

S3

a

b

c

a

c
A

B

C
a

b

c

c

9

Reduction-Based Approach

Method based on a variant of the Paige-Tarjan reduction
algorithm which will partition the system by separating states
which exhibit different behaviour, based on a similarity relation

S0

S1

S2

S3

a

b

c

a

c
A

B

C
a

b

c

c

Only works when the similarity relation is an equivalence
Does not provide error trace when system is not proper

9

3-Valued Deterministic Finite Automaton

A 3DFA is a tuple 〈Σ, S, s0, δ,Acc,Rej ,Dont〉

C+ denotes the DFA 〈Σ,S, s0, δ,Acc ∪ Dont〉

C− denotes the DFA 〈Σ,S, s0, δ,Acc〉

A consistent DFA A is such as L(C−) ⊆ L(A) ⊆ L(C+)

10

Categorizing behaviour

Behaviour from the system can be categorized into three sets:
Accepted behaviour must be known

Rejected behaviour must be avoided

Don’t care behaviour

onoff

dead

fades

dies

press
fadeOut

τpress

endFading

burnOut
onoff

〈 press, press 〉 ∈ Acc

〈 press, fadeOut, press 〉 ∈ Rej

〈 press, endFading 〉 ∈ Dont

11

Learning-Based Approach

Using a learning algorithm to learn a 3DFA capturing all the
possible full-control system abstractions (variant of L∗)

L∗

teacher

membership
MQ(σ)?

T, F or DC

oracle 1
Conj(C)?

no
cex

yes
oracle 2

no

cex

yes CU minimization

MU

12

Membership query

Completed system: Adding s α−−→ Π for each α ∈ Lc \ Ac(s)

Given a sequence σ, it is simulated on the completed system
and:

σ may lead to the error state: MQ(σ) = F
σ can be simulated entirely and never leads to an error state:
MQ(σ) = T
σ cannot be simulated entirely: MQ(σ) = DC

onoff

dead

fades Π

dies

press
fadeOut

τpress

endFading

burnOut
onoff

Lc

Lc

Lc

fadeOut

13

Conjecture

Two oracles :

1 No invalid traces: completeMweak on commands

C+ ||(Mweak + s Lc\Ac (s)−−−−−−→ Π)
σ

==⇒? Π

2 All valid traces: complete C− on commands and observations

(C− + s L\A(s)−−−−−→ Π) ||Mweak
σ

==⇒? Π

14

Full-control determinism

System abstraction generation will fail for systems which are
not full-control deterministic

After the execution of the same trace, the enabled commands
are not the same

onoff

dead

fades

dies

press
fadeOut

τpress

endFading

burnOut
onoff After executing 〈press〉, reaching:

"on" where press and fadeOut
are enabled
"dies" where no commands are
enabled

15

Tool

Framework implemented within JavaPathfinder model checker

Details presented at the JPF Workshop

16

Experiments

System Abstraction Reduc. Learning
States / Trans. States / Trans. 3DFA states Total

VTS 8 / 20 5 / 14 10ms 10 92ms
AirConditionner 154 / 885 27 / 150 177ms 51 6 271ms
TimedVCR 3 352 / 15 082 2 / 9 1 031ms 6 614ms
SimpleVCR 20 / 110 2 / 9 65ms 6 250ms
FullVCR 24 / 261 4 / 24 45ms 11 432ms
AlarmClock 42 / 215 5 / 14 – 14 512ms
AlarmClock2 1 734 / 67 535 5 / 15 – 14 30 831ms

Reduction-based vs. learning-based: no clear winner
Learning can handle more system models

17

Conclusion and further work

Conclusion
A new method based on learning for generation full-control
system abstraction

Implemented in a framework based on JavaPathfinder model
checker

The framework can be used to detect mode confusion

Further work
Experiment with more realistic examples
Experiment with variant of full-control property

allow the user to ignore some commands
integrate a “task model”

Revisit the reduction-based approach

18

	Modelling and Interaction Analysis
	Learning-Based System Abstraction's Generation
	Prototype and Experiments
	Conclusions

