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Running example: The dining cryptographers problem [1]
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[1] D. Chaum
The dining cryptographers problem:
Unconditional sender and recipient untraceability. (1988)
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Model Checking
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The problem
Most model checkers produce linear counter-examples.

”If a did not pay, she will finally know that one of the others paid.”
¬a.payer =⇒ AF (Ka b.payer ∨Ka c .payer)
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A solution
Provide full information...

”If a did not pay, she will finally know that one of the others paid.”
¬a.payer =⇒ AF (Ka b.payer ∨Ka c .payer)
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A solution
... and annotate it.

”If a did not pay, she will finally know that one of the others paid.”
¬a.payer =⇒ AF (Ka b.payer ∨Ka c .payer)
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CTL, a branching temporal logic

Reasons about system computation tree.
Syntax Atomic propositions, logical connectives (∧, ∨, ¬), path
quantifiers (E, A), temporal operators (X, U, G).
Semantics Interpreted over states of Kripke structures.

AX φ

all successors satisfy φ

EG φ

there exists a path
where all states satisfy
φ

A[ φ U ψ ]

for all paths, φ is true
up to a state satisfy-
ing ψ
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CTLK, CTL and knowledge

Reasons about knowledge and time.

Syntax CTL syntax + knowledge operators (Kag ).

Semantics Interpreted over states of Multi-Agent Systems.
A state s satisfies Kag φ iff all states indistinguishable from s by
ag satisfy φ.

”If the count is even, everybody knows that NSA paid.”
even =⇒ (Ka (NSA paid) ∧Kb (NSA paid) ∧Kc (NSA paid))

”a never knows that b paid.”
AG ¬Ka b.payer
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ARCTL, Action-Restricted CTL

Reasons about some paths of system computation tree.
Syntax CTL syntax but path quantifiers hold an action formula
(Eα, Aα).
Semantics Interpreted over states of Mixed Transition Systems.

E ac X φ

there exists a succes-
sor through action ac
satisfying φ

A ac G φ

all states of paths
through ac actions
satisfy φ

E ac [ φ U ψ ]

there exists a path
through ac actions
where φ is true up to
a state satisfying ψ
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From CTLK to ARCTL

CTLK and Multi-Agent Systems can be reduced to ARCTL and
Mixed Transition Systems [2].

MAS to MTS: temporal relation is labelled with action RUN,
epistemic relations are labelled with Agti .

CTLK to ARCTL: temporal operators are quantified over RUN
actions, epistemic operators are quantified with Agti actions (+
reachability, i.e. a reverse temporal path).

We use an extension of NuSMV to model check CTLK.

[2] A. Lomuscio, C. Pecheur and F. Raimondi.
Automatic Verification of Knowledge and Time with NuSMV. (2007)
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Tree-Like Annotated Counter-Examples

Branching, annotated, counter-examples.

States are annotated with sub-formulas they satisfy,
branches are annotated with sub-formulas they explain.

Note: a counter-example for φ is a witness for ¬φ.
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TLACE representation

n := node(
s,
{b ∈ AP},
{Eα π : p},
{Aα π}

)

a TLACE node is composed of
a state,
a set of atomic propositions,
a set of branches,
a set of Aα sub-formulas.

A TLACE path p is simple: 〈n, (a, n)∗〉
or looping: 〈n, (a, n)∗, a, loop(n)〉
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TLACE representation: example

TLACE = node(s1, {}, {E_a1 G (E_a2 X b & A_a1 G c) : p}, {})

p = <n1, a1 , n2, a1 , loop(n2)>

n1 = node(s1, {}, {E_a2 X b : p1}, {A_a1 G c})
n2 = node(s2, {}, {E_a2 X b : p2}, {A_a1 G c})

p1 = <n11, a2 , n12>

n11 = node(s1, {}, {}, {})
n12 = node(s3, {b}, {}, {})

p2 = <n21, a2 , n22>

n21 = node(s2, {}, {}, {})
n22 = node(s4, {b}, {}, {})

s1Aa1G c

s2Aa1G c

s3

b

s4

b

Ea1G (Ea2X b ∧ Aa1G c)

Ea2X b

Ea2X b
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Back to the dining cryptographers problem

”If a did not pay, she will finally know that one of the others paid.”
¬a.payer =⇒ AF (Ka b.payer ∨Ka c .payer)
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TLACE adequacy

A TLACE is adequate for M, s |= φ iff it represents a witness
explaining why M, s |= φ, i.e.

• TLACE paths are paths of M;

• atomic propositions and action formulas are satisfied in M;

• it has the structure of a witness for φ;

• annotations are coherent with φ.
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TLACE fullness

Fullness: there exists an adequate TLACE witness for M, s |= φ
if and only if M, s |= φ.

Adequacy is not sufficient for fullness because TLACEs do not
explain Aα operators.

Adequacy is sufficient for fullness in the existential fragment of
ARCTL.
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TLACE generating algorithm

Works recursively over the structure of the formula.

For temporal operators,

1. get a path explaining the formula;

2. get a TLACE for each of its states;

3. combine these nodes into a new node.
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TLACE generation: EαU case (Eα[ψ1 U ψ2])

〈s0, a1, ..., sm〉 ← EaUexplain(M, s, ψ1, ψ2, α)

p ← 〈〉
for i ∈ 0..m − 1 do

p ← p + 〈 explain(M, si , ψ1) , ai+1〉
end

p ← p + 〈 explain(M, sm, ψ2) 〉}

return node(s, {}, {Eα[ψ1 U ψ2] : p}, {})
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Tools

• TLACEs can be large: O(|S ||φ|) in worst case.

• Need ways to deal with that richness: tool support.

• NuSMV: extended to generate TLACEs.

• TLACEVisualizer: visualize and manipulate TLACEs.
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NuSMV-ARCTL-TLACE

• NuSMV: state-of-the-art model checker.

• Modified to model check ARCTL [3].
(CTLK transformed into ARCTL before model checking)

• Modified to generate TLACEs
I TLACEs exported in XML.
I Some options to handle TLACE size:

explained temporal operators and maximum depth.

[3] C. Pecheur and F. Raimondi. Symbolic model checking of logics with actions. (2007)
21



TLACEVisualizer: graphical tool for visualizing and
manipulating TLACEs
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Richer counter-examples for rich logics

Contributions:

• formalization of tree-like annotated counter-examples;

• characterization of tree-like annotated counter-examples;

• design of an algorithm to generate them;

• implementation of this algorithm in NuSMV;

• design and implementation of TLACEVisualizer to visualize
and manipulate TLACEs.
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Perspectives: interactive witness generation

Deal with TLACEs size by generating counter-examples
interactively.

1. User asks for partial explanation; system explains one
sub-formula at a time.

2. Solution for Aα operators explanation: the user plays a game
against the system to understand why the property is satisfied.
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