
Rich Counter-Examples for
Temporal-Epistemic Logic Model Checking

Simon Busard Charles Pecheur
Université catholique de Louvain

Louvain-la-Neuve, Belgium

March 25, 2012

1

Running example: The dining cryptographers problem [1]

Im
a
g
e
so
u
rc
e:

h
tt
p
:/
/
cg

i.
cs
e.
u
n
sw

.e
d
u
.a
u
/
˜
m
ck
/

[1] D. Chaum
The dining cryptographers problem:
Unconditional sender and recipient untraceability. (1988)

2

Model Checking

System

Model
Checker

Specification
no deadlock
AG ¬dead

Yes

No,
Counter-
example

3

The problem
Most model checkers produce linear counter-examples.

”If a did not pay, she will finally know that one of the others paid.”
¬a.payer =⇒ AF (Ka b.payer ∨Ka c .payer)

s1

s1

¬a.payer

s2

s3

s4s4

¬b.payer

s5s5

¬c .payer

s6s6

¬b.payer

s4

s7s7

¬c .payer

s5

s8s8

¬b.payer

s6

s4

s9s9

¬c .payer

s7

s5

EG (¬Ka b.payer ∧ ¬Ka c .payer)

¬Ka b.payer ¬Ka c.payer

¬Ka b.payer

Reach.

¬Ka c .payer

Reach.

¬Ka b.payer

Reach.

¬Ka c .payer

Reach.

4

A solution
Provide full information...

”If a did not pay, she will finally know that one of the others paid.”
¬a.payer =⇒ AF (Ka b.payer ∨Ka c .payer)

s1

s1

¬a.payer

s2

s3

s4

s4

¬b.payer

s5

s5

¬c .payer

s6

s6

¬b.payer

s4

s7

s7

¬c .payer

s5

s8

s8

¬b.payer

s6

s4

s9

s9

¬c .payer

s7

s5

EG (¬Ka b.payer ∧ ¬Ka c .payer)

¬Ka b.payer ¬Ka c.payer

¬Ka b.payer

Reach.

¬Ka c .payer

Reach.

¬Ka b.payer

Reach.

¬Ka c .payer

Reach.

4

A solution
... and annotate it.

”If a did not pay, she will finally know that one of the others paid.”
¬a.payer =⇒ AF (Ka b.payer ∨Ka c .payer)

s1

s1

¬a.payer

s2

s3

s4

s4

¬b.payer

s5

s5

¬c .payer

s6

s6

¬b.payer

s4

s7

s7

¬c .payer

s5

s8

s8

¬b.payer

s6

s4

s9

s9

¬c .payer

s7

s5

EG (¬Ka b.payer ∧ ¬Ka c .payer)

¬Ka b.payer ¬Ka c.payer

¬Ka b.payer

Reach.

¬Ka c .payer

Reach.

¬Ka b.payer

Reach.

¬Ka c .payer

Reach.

4

Outline

Rich Branching Logics

Tree-Like Annotated Counter-Examples

Tools

Conclusions and Perspectives

5

CTL, a branching temporal logic

Reasons about system computation tree.
Syntax Atomic propositions, logical connectives (∧, ∨, ¬), path
quantifiers (E, A), temporal operators (X, U, G).
Semantics Interpreted over states of Kripke structures.

AX φ

all successors satisfy φ

EG φ

there exists a path
where all states satisfy
φ

A[φ U ψ]

for all paths, φ is true
up to a state satisfy-
ing ψ

6

CTLK, CTL and knowledge

Reasons about knowledge and time.

Syntax CTL syntax + knowledge operators (Kag).

Semantics Interpreted over states of Multi-Agent Systems.
A state s satisfies Kag φ iff all states indistinguishable from s by
ag satisfy φ.

”If the count is even, everybody knows that NSA paid.”
even =⇒ (Ka (NSA paid) ∧Kb (NSA paid) ∧Kc (NSA paid))

”a never knows that b paid.”
AG ¬Ka b.payer

7

ARCTL, Action-Restricted CTL

Reasons about some paths of system computation tree.
Syntax CTL syntax but path quantifiers hold an action formula
(Eα, Aα).
Semantics Interpreted over states of Mixed Transition Systems.

E ac X φ

there exists a succes-
sor through action ac
satisfying φ

A ac G φ

all states of paths
through ac actions
satisfy φ

E ac [φ U ψ]

there exists a path
through ac actions
where φ is true up to
a state satisfying ψ

8

From CTLK to ARCTL

CTLK and Multi-Agent Systems can be reduced to ARCTL and
Mixed Transition Systems [2].

MAS to MTS: temporal relation is labelled with action RUN,
epistemic relations are labelled with Agti .

CTLK to ARCTL: temporal operators are quantified over RUN
actions, epistemic operators are quantified with Agti actions (+
reachability, i.e. a reverse temporal path).

We use an extension of NuSMV to model check CTLK.

[2] A. Lomuscio, C. Pecheur and F. Raimondi.
Automatic Verification of Knowledge and Time with NuSMV. (2007)

9

Outline

Rich Branching Logics

Tree-Like Annotated Counter-Examples

Tools

Conclusions and Perspectives

10

Tree-Like Annotated Counter-Examples

Branching, annotated, counter-examples.

States are annotated with sub-formulas they satisfy,
branches are annotated with sub-formulas they explain.

Note: a counter-example for φ is a witness for ¬φ.

11

TLACE representation

n := node(
s,
{b ∈ AP},
{Eα π : p},
{Aα π}

)

a TLACE node is composed of
a state,
a set of atomic propositions,
a set of branches,
a set of Aα sub-formulas.

A TLACE path p is simple: 〈n, (a, n)∗〉
or looping: 〈n, (a, n)∗, a, loop(n)〉

12

TLACE representation: example

TLACE = node(s1, {}, {E_a1 G (E_a2 X b & A_a1 G c) : p}, {})

p = <n1, a1 , n2, a1 , loop(n2)>

n1 = node(s1, {}, {E_a2 X b : p1}, {A_a1 G c})
n2 = node(s2, {}, {E_a2 X b : p2}, {A_a1 G c})

p1 = <n11, a2 , n12>

n11 = node(s1, {}, {}, {})
n12 = node(s3, {b}, {}, {})

p2 = <n21, a2 , n22>

n21 = node(s2, {}, {}, {})
n22 = node(s4, {b}, {}, {})

s1Aa1G c

s2Aa1G c

s3

b

s4

b

Ea1G (Ea2X b ∧ Aa1G c)

Ea2X b

Ea2X b

13

Back to the dining cryptographers problem

”If a did not pay, she will finally know that one of the others paid.”
¬a.payer =⇒ AF (Ka b.payer ∨Ka c .payer)

s1

¬a.payer

s2

s3

s4

¬b.payer

s5

¬c .payer

s6

¬b.payer

s4

s7

¬c .payer

s5

s8

¬b.payer

s6

s4

s9

¬c .payer

s7

s5

EG (¬Ka b.payer ∧ ¬Ka c .payer)

¬Ka b.payer ¬Ka c.payer

¬Ka b.payer

Reach.

¬Ka c .payer

Reach.

¬Ka b.payer

Reach.

¬Ka c .payer

Reach.

14

TLACE adequacy

A TLACE is adequate for M, s |= φ iff it represents a witness
explaining why M, s |= φ, i.e.

• TLACE paths are paths of M;

• atomic propositions and action formulas are satisfied in M;

• it has the structure of a witness for φ;

• annotations are coherent with φ.

15

TLACE fullness

Fullness: there exists an adequate TLACE witness for M, s |= φ
if and only if M, s |= φ.

Adequacy is not sufficient for fullness because TLACEs do not
explain Aα operators.

Adequacy is sufficient for fullness in the existential fragment of
ARCTL.

16

TLACE generating algorithm

Works recursively over the structure of the formula.

For temporal operators,

1. get a path explaining the formula;

2. get a TLACE for each of its states;

3. combine these nodes into a new node.

17

TLACE generation: EαU case (Eα[ψ1 U ψ2])

〈s0, a1, ..., sm〉 ← EaUexplain(M, s, ψ1, ψ2, α)

p ← 〈〉
for i ∈ 0..m − 1 do

p ← p + 〈 explain(M, si , ψ1) , ai+1〉
end

p ← p + 〈 explain(M, sm, ψ2) 〉}

return node(s, {}, {Eα[ψ1 U ψ2] : p}, {})

18

Outline

Rich Branching Logics

Tree-Like Annotated Counter-Examples

Tools

Conclusions and Perspectives

19

Tools

• TLACEs can be large: O(|S ||φ|) in worst case.

• Need ways to deal with that richness: tool support.

• NuSMV: extended to generate TLACEs.

• TLACEVisualizer: visualize and manipulate TLACEs.

20

NuSMV-ARCTL-TLACE

• NuSMV: state-of-the-art model checker.

• Modified to model check ARCTL [3].
(CTLK transformed into ARCTL before model checking)

• Modified to generate TLACEs
I TLACEs exported in XML.
I Some options to handle TLACE size:

explained temporal operators and maximum depth.

[3] C. Pecheur and F. Raimondi. Symbolic model checking of logics with actions. (2007)
21

TLACEVisualizer: graphical tool for visualizing and
manipulating TLACEs

22

Outline

Rich Branching Logics

Tree-Like Annotated Counter-Examples

Tools

Conclusions and Perspectives

23

Richer counter-examples for rich logics

Contributions:

• formalization of tree-like annotated counter-examples;

• characterization of tree-like annotated counter-examples;

• design of an algorithm to generate them;

• implementation of this algorithm in NuSMV;

• design and implementation of TLACEVisualizer to visualize
and manipulate TLACEs.

24

Perspectives: interactive witness generation

Deal with TLACEs size by generating counter-examples
interactively.

1. User asks for partial explanation; system explains one
sub-formula at a time.

2. Solution for Aα operators explanation: the user plays a game
against the system to understand why the property is satisfied.

25

	Rich Branching Logics
	Tree-Like Annotated Counter-Examples
	Tools
	Conclusions and Perspectives

