
Rich Counter-Examples for ACTL Model Checking
Simon Busard and Charles Pecheur

ICT, Electronics and Applied Mathematics Institute
Université catholique de Louvain (UCLouvain, Belgium)

1. Objective
Problem: Standard model checkers return single execution paths as counter-
examples while CTL has branching counter-examples in general.
Approach: Generate branching counter-examples annotated with parts of
(the negation of) the violated property.
Example: A buggy scheduler executing prioritized processes; at each step, the
scheduler can execute a process or skip it.
� This model does not satisfy the property that the scheduler will never be able

to run the process with prority 4 unless it is the only possibility, expressed as
A[AX ¬P4 W AX (P∅ ∨ P4)] in CTL (Px means that process x is running,
P∅ means that no process is running).

� The full counter-example is branching, but model checkers return
partial information.

s1

P∅

s2

P∅

s3

P∅

s4

P∅

s5 P∅

s6

P1

s7

P2

s8

P3

s10

P4

s9

P4

s11

P3

This work is based on Clarke et al. and Rasse.

2. Tree-like Annotated Counter-Examples
TLACEs are full counter-examples for ACTL—and full witnesses for ECTL—i.e.
they completely explain a violation. A TLACE is defined by

n ::= node(s, {(b | ¬b)∗}, {(E π : p)∗}, {(A π)∗})
p ::= 〈n+〉 | 〈n+, loop(n)〉

We are interested in consistent TLACEs that are adequate for a modelM and
a property φ, i.e. TLACEs that come fromM and correctly explain φ.

s1

s1

s2

s3

s1

s6 (¬P∅ ∧ ¬P4)

s2

s7 (¬P∅ ∧ ¬P4)

s3

s8(¬P∅ ∧ ¬P4)

s3

s9 P4

E[EX (¬P∅ ∧ ¬P4)
U (EX (¬P∅ ∧ ¬P4) ∧ EX P4)]

EX (¬P∅ ∧ ¬P4)

EX (¬P∅ ∧ ¬P4)

EX (¬P∅ ∧ ¬P4) EX P4

s1

s2

s3

s6 (¬P∅ ∧ ¬P4)

s7 (¬P∅ ∧ ¬P4)

s8 (¬P∅ ∧ ¬P4)s9P4

E[EX (¬P∅ ∧ ¬P4) U
(EX (¬P∅ ∧ ¬P4) ∧ EX P4)]

EX (¬P∅ ∧ ¬P4)

EX (¬P∅ ∧ ¬P4)

EX (¬P∅ ∧ ¬P4)EX P4

3. Generating Counter-Examples
explain algorithm: works recursively on the structure of the formula; relies
on sub-algorithms to extract paths from the model witnessing temporal formulas.

switch φ do
case . . .
case E[ψ1 U ψ2]
〈s1, ..., sm〉 ←EUexplain(M, s, ψ1, ψ2)
p← 〈〉
for si ∈ 〈s1, ..., sm−1〉 do
p← p + 〈explain(M, si, ψ1)〉

p← p + 〈explain(M, sm, ψ2)〉
return node(s, {}, {E π : p}, {})

case . . .

4. Tools
� NuSMV: modified to generate and export TLACEs.
� TLACE Visualizer: displaying and manipulating TLACEs
� TLACEs displayed as graphs, the

graph can be rearranged
� inspecting nodes: state informa-

tion, annotations and branches
� folding/unfolding branches � displaying nodes information along

a path in the graph� displaying variables on the graph

5. Conclusion and further work
Contributions:
� Formalization of branching annotated counter-examples for ACTL;
� Generating algorithm;
� Implementation in a symbolic model checker;
� Tool for visualizing and manipulating the counter-examples.

Further work:
� Extend the formalization to richer logics like epistemic temporal logics;
� Interactive generation of branches: explain only the part relevant for the user;
� Explain A operators through interactive game: the user can try to show the

satisfaction while the system shows him that it is impossible.

References
� E. M. Clarke, S. Jha, Y. Lu, H. Veith. Tree-like Counterexamples in Model
Checking. LICS’02, 2002.

� A. Rasse. Error Diagnostics in Finite Communicating Systems. CAV, 1991.

A. CTL Model Checking
Model checking: checks whether a (finite state) model satisfies a (temporal
logic) property; if not, returns a counter-example.
CTL: branching temporal logic expressing properties about the execution
tree of the model.

AX φ

all successors satisfy φ

EG φ

there exists a path where
all states satisfy φ

A[φ W ψ]

for all paths, φ is true up
to a state satisfying ψ

ACTL: only A quantifiers and negations applied to atomic propositions.

Grascomp’s Day, November 3rd, 2011, Université Libre de Bruxelles, Brussels, Belgium. Simon.Busard@uclouvain.be

Le Fonds européen de Développement régional et la Wallonie investissent dans votre avenir.Union européenne

