RicH COUNTER-EXAMPLES FOR ACTL MoDEL CHECKING

IcCteam
\7

Simon Busard and Charles Pecheur

|ICT, Electronics and Applied Mathematics Institute UCL

Université

Université catholique de Louvain (UCLouvain, Belgium) catholique

1. Objective

Problem: Standard model checkers return single execution paths as counter-
examples while CTL has branching counter-examples in general.

Approach: Generate branching counter-examples annotated with parts of
(the negation of) the violated property.

Example: A buggy scheduler executing prioritized processes; at each step, the
scheduler can execute a process or skip it.

B This model does not satisfy the property that the scheduler will never be able
to run the process with prority 4 unless it is the only possibility, expressed as

A[AX =P, W AX (F; V Py)]in CTL (P, means that process x is running,

Py means that no process is running).
B The full counter-example is branching, but model checkers return

partial information.

P P P Py
S1 YS9 $3 S4 sy | F
\ 4 .
PQ) P@ OO
Py Ps

This work is based on Clarke et al. and Rasse.

2. Tree-like Annotated Counter-Examples

TLACEs are full counter-examples for ACTL—and full witnesses for ECTL—i.e.
they completely explain a violation. A TLACE is defined by

n = node(s, {(b | =b)"}, {(E m:p)"}, {(A 7)"})

p = (n") | {n”,loop(n))
We are interested in consistent TLACEs that are adequate for a model M and
a property ¢, i.e. TLACEs that come from M and correctly explain ¢.

E[EX (—IP@ N —IP4)
Q U (EX (—|P@ A —Py) NEX Py)]
S1

é EX (—Fy A —Py)
E[EX (—IP@ A —Py) U

@ (EX (=P A =Py) ANEX Py

@ (~Py A —Py)

G@ EX <—|P@ A —|P4)

(—IP@ A\ —|P4)

EX (ﬁp@ A —|P4)

@ (~Py A —Py)

EX ﬂP@ A —Py) EX Py

3. Generating Counter-Examples

explain algorithm: works recursively on the structure of the formula; relies
on sub-algorithms to extract paths from the model witnessing temporal formulas.

switch ¢ do

case ... Q C\

case E[i; U 1]
(81, ..., Sm) < EUexplain(M, s, 1y, o)

p <+ ()

for s; € (s1,...,5,_1) do
~p < p+ (explain(M, s;, P1))

p < p+ (explain(M, s, 1s))

return node(s, {},{E 7 : p}, {}) @

case ...

.

Grascomp's Day, November 3rd, 2011, Université Libre de Bruxelles, Brussels, Belgium.

Union européenne

de Louvain

4. Tools

B NuSMV: modified to generate and export TLACEs.
B TLACE Visualizer: displaying and manipulating TLACEs

B TLACEs displayed as graphs, the M inspecting nodes: state informa-

graph can be rearranged tion, annotations and branches

B displaying nodes information along
a path in the graph

M folding/unfolding branches
M displaying variables on the graph

= NN TLACE Visualizer 1.1
File Options

[ATCEX run = 4) W AX (run = 4 | run = 0)]]

File Options ATIEXrun =4 WAX (run =4 | run = 0)]

: ¥ State O
timer = 1
run = 0
» Annotations
> Branches

timer = 2
¥ Annotations

EX (Mrun = 4 | run = 0))
¥ Branches

EX (M{run = 4 | run = 0))
Annotations » v State 7

timer = 3
Annotations
___Branches

Branches EX(Mrun=4|run=0) » Hide
. EXrun=4 > See

iy
i
i
i
¥ State 4 t
i
i
i
i
i
i
i
i
e

¥ State 11 -

5. Conclusion and further work

Contributions:
B Formalization of branching annotated counter-examples for ACTL;
B Generating algorithm;
B Implementation in a symbolic model checker;
B Tool for visualizing and manipulating the counter-examples.
Further work:
B Extend the formalization to richer logics like epistemic temporal logics;
B Interactive generation of branches: explain only the part relevant for the user;

B Explain A operators through interactive game: the user can try to show the
satisfaction while the system shows him that it is impossible.

References

mE. M. Clarke, S. Jha, Y. Lu, H. Veith. Tree-like Counterexamples in Model
Checking. LICS°02, 2002.

M A. Rasse. Error Diagnostics in Finite Communicating Systems. CAV, 1991.

A. CTL Model Checking

Model checking: checks whether a (finite state) model satisfies a (temporal
logic) property; if not, returns a counter-example.

CTL: branching temporal logic expressing properties about the execution
tree of the model.

AX ¢ Al ¢ W o)]

@%@

all successors satisfy ¢ there exists a path where for all paths, ¢ is true up
all states satisfy ¢ to a state satisfying 1

ACTL: only A quantifiers and negations applied to atomic propositions.

Simon.Busard©@uclouvain.be

/ / / ‘A//_;"
Le Fonds européen de Déeveloppement régional et |la Wallonie investissent dans votre avenir. /r%'@)

Wallonie

