Backward Model Checking of Uniform Strategies

A Backward-traversal-based Approach for Symbolic Model Checking of Uniform Strategies for Constrained Reachability

Simon Busard Charles Pecheur

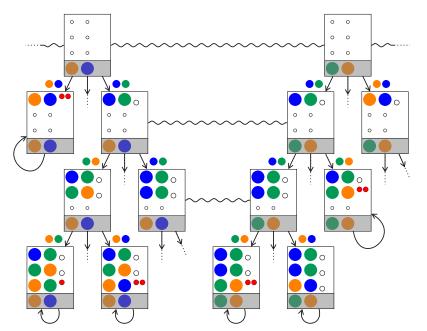
UCLouvain, Belgium UCLouvain, Belgium

8th International Symposium on Games, Automata, Logics, and Formal Verification. 20–22 September 2017, Rome, Italy

Running example: Mastermind

Simplified Mastermind: 3 colors, 3 turns, 2 pegs (different colors)

Simplified Mastermind FSM (1122 states)



Mastermind

Is there a **strategy** for the guesser to find the solution?

A uniform strategy!

ATL_{ir}, ATL with imperfect information and recall

ATL_{ir} = logic for **uniform** strategies and CTL-like objectives in concurrent multi-agent systems

"the guesser has a strategy to eventually win the game" 《guesser》F win

> "the guesser has a strategy to never lose" 《guesser》**G** ¬lose

Model checking *ATL* formulas is **easy** (PTIME), but model checking *ATL*_{ir} formulas is Δ_P^2 -complete!

Existing approaches for ATL_{ir} model checking

The **partial** approach: S. Busard, C. Pecheur, H. Qu, F. Raimondi (2014) *Improving the Model Checking of Strategies under Partial Observability and Fairness Constraints*

The **early** approach: J. Pilecki, M.A. Bednarczyk, W. Jamroga (2014) *Synthesis and Verification of Uniform Strategies for Multi-agent Systems*

The **symbolic** approach:

X. Huang, R. van der Meyden (2014) Symbolic Model Checking Epistemic Strategy Logic 1. generate all **partial strategies** from states that matter (through a **forward** traversal)

2. check each strategy against the objective

+ early termination

The early approach

- We do not need to get a completely determined adequate partial strategy before checking it
- We can stop if all extensions of the current strategy are winning
- We can stop if **no** general extension is winning

 \Rightarrow alternate between extending a partial strategy and checking whether all or no extensions are winning

+ early termination

The symbolic approach

- 1. Encode the uniform strategies in the states of a derived model
- 2. Perform fixpoint computations on the derived model
- \Rightarrow Compute all winning strategies at the same time (symbolically)

 \Rightarrow explosion of the number of derived states

Pre-filtering surely losing moves

- 1. It is easy to compute the moves belonging to a winning general strategy (PTIME)
- 2. If some move does not belong to a winning general strategy, it does not belong to a winning **uniform** one

 \Rightarrow We can remove the losing moves before enumerating or encoding the uniform strategies

Partial and early approaches: forward traversal to generate strategies + backward traversal to check strategies

 \Rightarrow Design an approach working with a backward traversal only

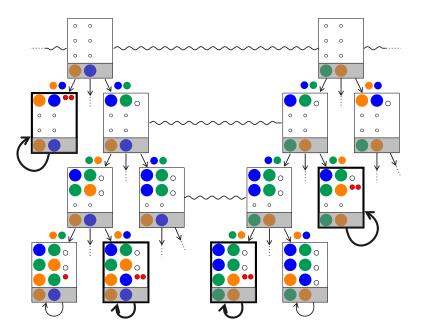
 \Rightarrow The backward approach

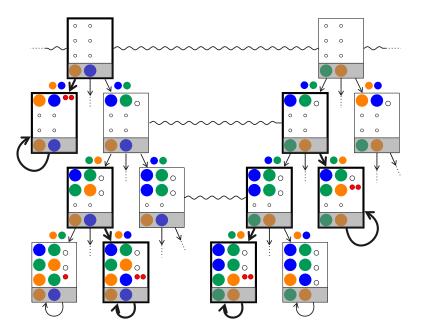
Outline

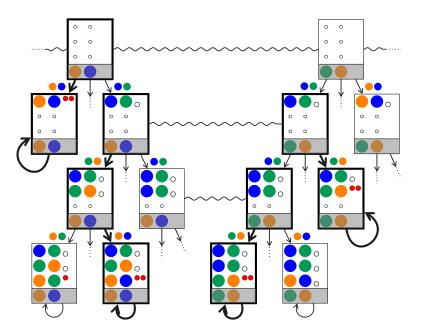
The backward approach

Experimental comparison

Conclusion







For $\langle\!\langle \Gamma \rangle\!\rangle [P_1 \ \mathbf{U} \ P_2]$,

- 1. start with the moves in states satisfying P_2
- 2. split them into non-conflicting subsets M_{Γ}
- 3. then iterate:
 - compute states for which the current strategy M_{Γ} is surely winning or surely losing
 - \blacktriangleright get the **compatible** moves in states satisfying P_1 and reaching states of M_{Γ}
 - ▶ split the newly discovered moves into **non-conflicting subsets** and **extend** M_{Γ} with them

For $\langle\!\langle \Gamma \rangle\!\rangle [P_1 \ \mathbf{U} \ P_2]$,

- 1. start with the moves in states satisfying P_2
- 2. split them into non-conflicting subsets M_{Γ}
- 3. then iterate:
 - compute states for which the current strategy M_Γ is surely winning or surely losing
 - Figet the **compatible** moves in states satisfying P_1 and reaching states of M_{Γ}
 - ▶ split the newly discovered moves into **non-conflicting subsets** and **extend** M_{Γ} with them

Limitations

But can be **mixed** with other approaches to handle other operators

 Split new moves into non-conflicting non-maximal subsets ⇒ doubly exponential!

But experiments show competitive results

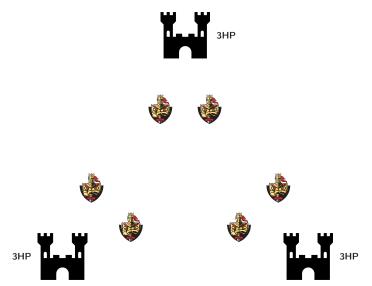
Outline

The backward approach

Experimental comparison

Conclusion

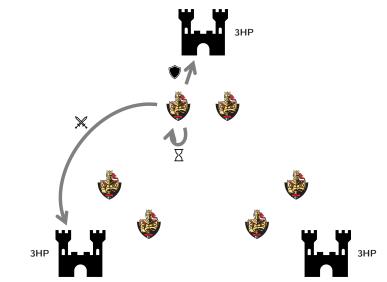
The three-castle model [1]



[1] J. Pilecki, M.A. Bednarczyk, W. Jamroga (2014). Synthesis and Verification of Uniform Strategies for Multi-agent Systems

The three-castle model [1]

(±80K strategies per soldier)



[1] J. Pilecki, M.A. Bednarczyk, W. Jamroga (2014). Synthesis and Verification of Uniform Strategies for Multi-agent Systems

Tested formulas

Satisfied by all tested instances

Violated by all tested instances

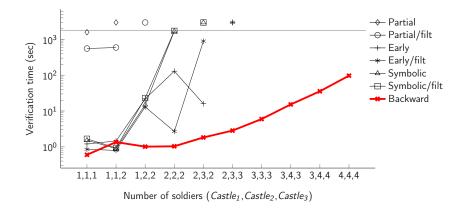
Test setting

• Approaches implemented in the same BDD-based framework (with PyNuSMV, a Python framework based on NuSMV)

• Run on instances of increasing size

• Each test run with a 1800 seconds time limit

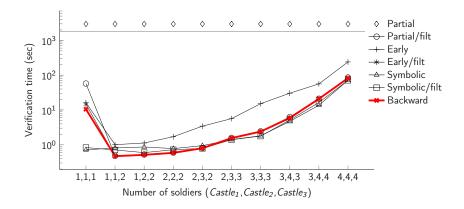
Results



Analysis

- partial approaches have difficulties finding a winning strategy pre-filtering helps
- symbolic approaches are better pre-filtering does nothing
- early approaches are better with irregularities
- backward approach works well focus on reaching the target states

Results



- partial approach has too many strategies to check
- pre-filtering solves the problem directly
- early approach concludes a bit slower
- backward approach analyses one strategy before concluding

The backward approach is similar or better than the other approaches **on the tested model**

because it is goal-driven and can rule losing strategies out

Outline

The backward approach

Experimental comparison

Conclusion

Conclusion

The backward approach for finding uniform winning strategies:

- build uniform strategies from the target states
- check that extensions are already winning or surely losing

 \wedge Limited to constrained reachability objectives ($\langle\!\langle \Gamma \rangle\!\rangle U$ operator)

Compared with existing approaches on one model:

- works better than the other approaches in the first case,
- works similarly to the other approaches in the second

Future work

• Experiment on other case studies

• Experiment with mixed approaches

Thank you!

Questions?