
Guided Simulation of
Autonomous Controllers

Charles Pecheur (UC Louvain)

with Tony Lindsey (QSS Group)
performed at NASA Ames Research Center

Ames Research
Center

Dagstuhl May 06 2

Diagnosis

sensors

Process
commands

Diagnosis

Controller
state estim.

controller

process

estimator

Dagstuhl May 06 3

Diagnosis + Testbed

sensors

Simulator
commands

& faults

Diagnosis

Driver
T
E
S
T
B
E
D

Dagstuhl May 06 4

Diagnosis + Testbed + Search

sensors

Simulator
commands

& faults

Diagnosis

Driver

DFS
Search

get state
set state

single step
backtrack

T
E
S
T
B
E
D

Dagstuhl May 06 5

DFS
BFS

random
...

Diagnosis + Testbed + Searches

sensors

Simulator
commands

& faults

Diagnosis

Driver

get state
set state

single step
backtrack

T
E
S
T
B
E
D

Guided
Search

Dagstuhl May 06 6

Autonomy (in Space)

Autonomous spacecraft = on-board intelligence (AI)

• Goal: Unattended operation in an
unpredictable environment

• Approach: model-based reasoning
• Pros: smaller mission control crews,

no communication delays/blackouts
• Cons: Verification and Validation ???

Much more complex, huge state space
• Better verification is critical for adoption

Reasoning
Engine

Domain
Model

commands observations

Spacecraft

Controller

model of

Dagstuhl May 06 7

Livingstone

C
om

m
and

Observations

State
update

Model
Controller

Courtesy Autonomous Systems Group, NASA Ames

Model-Based Diagnosis
• Focus on Livingstone system from NASA Ames.
• Uses a discrete, qualitative model to reason about faults

Dagstuhl May 06 8

A Simple Diagnosis Model

V

breaker

bulbmeter

r2=inf
light=off

r2=low
light=off

display=zero

display=v2

r2=normal
light=...

r1=inf r1=low
i = ...(v1,r1,r2)
v2 = ...(v1,r1,r2)

v=zero

cmdIn=off/on/noCommand

display=zero/normal light=off/on

mode=ok0/dead4

mode=ok0/blown1/short4

v1=normal

mode=off0/on0

v2=zero/normal/low
i=zero/normal/high

r1=inf/normal/low

r2=inf/normal/low

8short4dead4on0

1blown1ok0off0

0ok0ok0off0

rankmeterbulbbreaker

Goal: determine modes from observations
Generates and tracks candidates

Dagstuhl May 06 9

Faults vs. Errors

Ex: fault not detectedEx: valve is stuck

To be detected by VerificationTo de detected by Diagnosis

Human design flawSpontaneous physical event

in Diagnosis/Designin Process/Simulator

ErrorsFaults

Dagstuhl May 06 10

Verification of
Model-Based Autonomy
Two complementary approaches:
• Model-based verification

– Analyze the model
– That's the application "source code"
– Symbolic model checking (NuSMV, SAT-based BMC)

• Simulation-based verification
– Analyze the whole program (engine+model+testbed)
– More comprehensive but less coverage
– Controlled execution of the actual program

Dagstuhl May 06 11

Livingstone PathFinder (LPF)

• Similar to VeriSoft[Godefroid 97]

• Uses checkpointing implemented in Livingstone
• In Java, accesses Livingstone (C++) through JNI

sensors

Simulator
commands

& faults

Engine Model

Livingstone

Driver Scenario
(w/ branches)

Search
Engine

get state
set state

single step
backtrack

T
E
S
T
B
E
D

Dagstuhl May 06 12

event

obs

Simulator
event

Engine Model

Diagnosis

Driver Scenario
(w/ branches)

T
E
S
T
B
E
D

One Diagnosis Step

Dagstuhl May 06 13

sensors

LPF Error Conditions

• Diagnosis candidates are "correct" w.r.t. Simulator modes
– Mode Comparison (MC): first candidate is correct
– Candidate Matching (CM): some candidate is correct
– Candidate Subsumption (CS): some candidate's faults are included

• CS may miss errors but works best in practice

short4dead4on0

blown1ok0off0

ok0ok0off0

meterbulbbreaker

blown1dead4off0

meterbulbbreaker

MC
CM
CS√

Dagstuhl May 06 14

LPF Simulation Scenarios

• Defines the tree of executions to be explored
• Described as a non-deterministic program

using a simple scripting language

• Implemented as a hierarchy of automata objects
matching the scenario script structure

stmt ::= " event " ; single event
 | { stmt* } sequence

| mix stmt (and stmt)* interleaving
| choose stmt (or stmt)* choice sensors

Dagstuhl May 06 15

LPF Scenario Example
mix {
 "command test.sv02.valveCmdIn=close";
 "command test.sv02.valveCmdIn=open";
 ...
} and {
 choose
 "fault test.forwardLO2.mode=unknownFault"; or
 "fault test.mpre101p.mode=faulty"; or
 ...
}

• Sequence of commands || choice of faults
• "default" scenario, can be generated automatically

Dagstuhl May 06 16

LPF Simulators

• Framework allows to use any (suitably instrumented)
simulation software
– Trade-off: higher-fidelity simulators may restrict instrumentation

• Current implementation uses second Livingstone engine
as simulator
– Same or different model
– Different mode of operation:

Diagnosis : cmds, obs –> modes
Simulator : cmds, modes –> obs

– Simulator comes "for free"
– Rationale: verify diagnosis assuming the model is correct

• Also considered: CONFIG (hybrid, NASA JSC)

sensors

Dagstuhl May 06 17

LPF Search

• The whole testbed is seen as a transition system
• API to enumerate transitions, backtrack, get/set state

– Shared with Java PathFinder (v.2)[Visser et al. 00]

– Principle inspired from OPEN/CAESAR[Garavel 98]

• Search engine fixes exploration strategy
– Depth-First
– Breadth-First
– Heuristic
– Others are possible (random, pattern-based,

interactive)

• + Halting conditions (for any strategy)
– Find first / all / shortest error trace(s)

sensors

Dagstuhl May 06 18

LPF Heuristic Search

• Based on valuation function (heuristic) on states
• Greedy best-first search (priority queue)
• Current heuristic: candidate-count

– number of diagnosis candidates
– Less is better
– Progress towards absence of valid candidate

Dagstuhl May 06 19

Other Heuristics?

• Structural coverage
– model states, faults, fault pairs, ...
– or scenario events, ...
– function on traces (or extended states) rather than states

• Ranks (probabilities)
– of actual (simulator) states or estimated (candidates)
– higher or lower probability best

• ... except for nominal transitions

• To probe further...

Dagstuhl May 06 20

Application: PITEX

• Propulsion feed system of space vehicle
• Livingstone model: 2300 lines, 823 vars, ≈1033 states

(SMV)

• Two scenarios:
– Random Scenario (10216 states):

sequence of commands || choice of faults
– PITEX Scenario (89 states):

combines 29 test cases used by application team

Dagstuhl May 06 21

LPF on PITEX: Results

521021655CSallDFSrandom
51102161379621CMallDFSrandom
678900CSallDFSbaseline
4489427CMallDFSbaseline

states/minstatesnon-trivialerrorsconditionsearchstrategyscenario

DFS=depth-first, BFS=breadth-first, CC=candidate-count
all=all errors, one=first error, min=shortest trace
CM=candidate matching, CS=candidate subsumption

trivial error=no fault reported

381545CSoneCCrandom
381543CSoneBFSrandom
49864816CSoneDFSrandom

states/minstatesmax. depthconditionsearchstrategyscenario

Dagstuhl May 06 22

Perspectives

• Extend search options
– More heuristics (including application-specific)
– New search strategies (randomized, coverage-based)

• Improve usability
– GUI, post-process and display results

• Generalize to reactive control
– From fault detection to fault recovery
– Uncompleted: adapt LPF to Titan (MIT)

• Other approach: apply SMV (and BMC) to Livingstone
models, verify diagnosability[Cimatti et al. 03]

– using Livingstone-to-SMV translator[Pecheur et al. 00]

Dagstuhl May 06 23

Extra Slides

Dagstuhl May 06 24

Verification of
Diagnosis systems
Verify what?
1. Model Correctness: the model is OK

i.e. the model is a valid abstraction of the process
2. Engine Correctness: the software is OK

i.e. all that can be diagnosed is correctly
diagnosed

3. Diagnosability: the design is OK
i.e. all that needs to be diagnosed can be
diagnosed

In principle, 1+2+3 => diagnosis will be correct
Here we look at 3 only!

Dagstuhl May 06 25

PITEX Scenarios
mix {
 "command test.sv02.valveCmdIn=close";
 "command test.sv02.valveCmdIn=open";
 ...
} and {
 choose
 "fault test.forwardLO2.mode=unknownFault"; or
 "fault test.mpre101p.mode=faulty"; or
 ...
}

{
 choose { "fault test.mpre202p.mode=biased"; }
 or { "fault test.mpre212p.mode=biased"; }
 or {
 "command test.sv31.valveCmdIn=open";
 choose {
 "fault test.sv31.sv.mode=stuckOpen";
 "command test.sv31.valveCmdIn=close";
 } or {
 "command test.sv31.valveCmdIn=close";
 ...
} } }

