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Running Example: A simple card game [1]

Three cards: A, K, Q
(A wins over K, K over Q, Q over A);

A player, a dealer.

The dealer gives a card and keeps one;

the player can change his card
with the one on table.

[1] W. Jamroga, W. van der Hoek. Agents that Know How to Play. (2004)
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Running Example: A simple card game [1]

Three cards: A, K, Q
(A wins over K, K over Q, Q over A);

A player, a dealer.

The dealer gives a card and keeps one;

the player can change his card
with the one on table.

Variant: the player can play infinitely.

[1] W. Jamroga, W. van der Hoek. Agents that Know How to Play. (2004)
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Reasoning about strategies

Model checking problem:
does the player have a strategy to win?

ATL: yes.

ATLir : no.

ATLir + fair dealer and infinite play: yes.

⇒ ATLKirF : branching time, knowledge, memoryless uniform
strategies and unconditional fairness constraints.
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Reasoning about strategies

Model checking problem:
does the player have a strategy to win?

Under ATL, we consider all strategies.
The player has a strategy to win,
even if he cannot play it:
e.g., in 〈A,K 〉, keep the card; in 〈A,Q〉, exchange it.
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Reasoning about strategies

Model checking problem:
does the player have a strategy to win?

ATL: yes.

Under ATLir , we consider only memoryless uniform strategies.
There is no uniform strategy to win,
because the player cannot distinguish, e.g., 〈A,K 〉 and 〈A,Q〉.
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Reasoning about strategies

Model checking problem:
does the player have a strategy to win?

ATL: yes.

ATLir : no.

If we consider ATLir with a fair dealer and an infinite play,
the player can eventually win:
just use one uniform strategy, the right pair will finally come.

ATLir + fair dealer and infinite play: yes.

⇒ ATLKirF : branching time, knowledge, memoryless uniform
strategies and unconditional fairness constraints.
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ATL, reasoning about strategies of the agents. [2]

Syntax: Strategic modalities: 〈Γ〉X φ, [Γ]G φ, 〈Γ〉[φ1 U φ2], etc.

Semantics: A state s satisfies 〈Γ〉 π iff there exists a set of
strategies for agents in Γ such that all enforced paths satisfy π.

Model checking:

evalATL([Γ]G φ) = νZ .evalATL(φ) ∩ Pre[Γ](Z )

where Pre[Γ](Z ) is the set of states from which Γ cannot avoid to
reach Z in one step.

[2] Alur et al. Alternating-time temporal logic. (2002)
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ATLir , memoryless uniform strategies [3]

Only memoryless uniform strategies:

fa : S → Acta such that s ∼a s
′ =⇒ fa(s) = fa(s ′)

Semantics: A state s satisfies 〈Γ〉 π iff there exists a set of
memoryless uniform strategies for agents in Γ such that all paths
enforced from all s ′ ∼Γ s satisfy π.

[3] Schobbens. Alternating-time logic with imperfect recall. (2004).
9



FairCTL: time and fairness constraints [4]

Add a set of fairness constraints FC ⊆ 2S to the model;
⇒ unconditional state-based fairness.

Only fair paths are considered:
s |= E π iff there exists a fair path from s satisfying π;
s |= A π iff all fair paths from s satisfy π.

Model checking:

evalFCTL(EG φ) = νZ .Φ ∩
⋂

fc∈FC
Pre(µY .(Z ∩ fc) ∪ (Φ ∩ Pre(Y )))

where Pre(Z ) is the set of states having a successor in Z
and Φ = evalFCTL(φ).

[4] Clarke, Grumberg, Peled. Model checking. (2000).
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Adding fairness constraints to the card game
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ATLKirF = FairCTL, knowledge and ATLir with fairness

Syntax: CTL (EX, AG, etc.), knowledge (Kag , Cg , etc.) and
strategies (〈Γ〉F, [Γ]U, etc.)

Semantics: A state s satisfies 〈Γ〉 π iff there exists a memoryless
uniform strategy for Γ such that all fair paths enforced from all
s ′ ∼Γ s satisfy π.

13



To model check ATLKirF ,
we defined ATLKIrF and its model checking

ATLKIrF = FairCTL + knowledge + ATL with fairness

ATLKIrF semantics: A state s satisfies 〈Γ〉 π iff there exists a
memoryless strategy (not necessarily uniform) for Γ such that all
fair paths enforced (from s only) satisfy π.

ATLKIrF model checking:

evalIrF ([Γ]G φ) = νZ .Φ ∩
⋂

fc∈FC
Pre[Γ](µY .(Z ∩ fc) ∪ (Φ ∩ Pre[Γ](Y )))

where Φ = evalIrF (φ).
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ATLKirF model checking

A state s satisfies 〈Γ〉 π iff there exists a memoryless uniform
strategy for Γ which allows Γ to enforce π in all states
indistinguishable from s, considering only fair paths.

To get all the states satisfying 〈Γ〉 π:

1. List all the memoryless uniform strategies;

2. Use ATLKIrF model checking to get states satisfying the
property in this strategy;

3. Then restrict to set of undistinguishable states.
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ATLKirF model checking: Split algorithm

Split the state/action pairs into memoryless uniform strategies.

1. Get all conflicting equivalence classes;

2. If there are none, the set is itself a memoryless uniform
strategy.

3. Otherwise, choose a conflicting equivalence class;

4. Split it;

5. and recursively call Split on the rest.

16



ATLKirF model checking example: 〈player〉F win ∧ 〈Q, ∗〉

−,−
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−,−

pl pl

pl

Apply ATLKIrF model checking ⇒ all states satisfy the property;
⇒ the strategy is winning for all.
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Improving the algorithm with filtering

s 6|=IrF 〈Γ〉 π =⇒ s 6|=irF 〈Γ〉 π

⇒ Can only consider the states satisfying 〈Γ〉 ψ under ATLKIrF ;

⇒ Can only consider actions that allow Γ to win under ATLKIrF ;

⇒ Can alternate between filtering states and actions and splitting
equivalence classes into non-conflicting subsets.
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Complexity

ATLKIrF is in P: the proposed algorithm is polynomial.

ATLKirF subsumes ATLir (in the case of two agents)
⇒ ATLKirF is ∆P

2 -hard;

Split algorithm is in NP
⇒ ATLKirF is ∆P

2 -complete.
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Vacuous Strategies

If Γ have a strategy producing no fair path,
Γ can win any objective;
in particular, unsatisfiable formulas like 〈Γ〉F false.

Solutions

• consider only groups of agents that cannot prevent fairness;

• change the semantics to only consider strategies producing
at least one fair path;

• ...

21



Vacuous Strategies

If Γ have a strategy producing no fair path,
Γ can win any objective;
in particular, unsatisfiable formulas like 〈Γ〉F false.

Solutions

• consider only groups of agents that cannot prevent fairness;

• change the semantics to only consider strategies producing
at least one fair path;

• ...

21



Knowledge relations

A state s satisfies 〈Γ〉 π under ATLKirF iff there exists a
memoryless uniform strategy for Γ which allows Γ to enforce π in
all states indistinguishable from s, considering only fair paths.

Distributed knowledge used for both relations
⇒ Γ is considered as a unique agent
⇒ the simplest form.

We could consider other knowledge relations:

• one knowledge relation per agent of Γ
(used by ATLir for uniformity);

• group knowledge;

• common knowledge.
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Tool

Prototype implemented with PyNuSMV,
a Python framework based on NuSMV [5].

Several tested implementations.

[5] S. Busard, C. Pecheur. PyNuSMV: NuSMV as a Python Library. (2013)
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Implementation and tests

Basic algorithm:

1. splitting the entire system into uniform strategies;

2. checking each strategy.

⇒ explodes quickly, huge number of strategies
(huge number of combinations of choices for actions).
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Implementation and tests

Improved algorithm:

Alternate between filtering out losing states and actions and
splitting one conflicting equivalence class.

⇒ slower explosion,
especially when only a few states satisfy the property.
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Implementation and tests

Mixing both:

1. filtering out losing states and actions;

2. splitting the rest into uniform strategies;

3. checking each strategy.

⇒ best solution:
most of the filtering work is performed by the first filtering.
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More improvements (current work)

1. Partial strategies: check only strategies ”that matter”.

2. Implementation optimizations:
I early termination: stop when a strategy is found for all states;
I caching: remember states satisfying sub-formulas through

different strategies;
I ...
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Conclusion

ATLKirF : branching time, knowledge and strategies under partial
observability and (unconditional state-based) fairness constraints.

(Symbolic) model checking algorithm based on ATLKIrF model
checking and splitting the graph into memoryless uniform
strategies.

⇒ Still needs some improvements.

⇒ Work on counter-examples (controller synthesis,...)
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Thank you.

Questions?
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