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Foreword 

 
The Workshop on Formal Methods in Human Computer Interaction (FoMHCI) is meant to bring scientists and 

interested researchers together who are interested in formal methods in the context of user interfaces, interaction 

techniques, and interactive systems. Its intention is to present and discuss existing formal methods for the following 

(not exhaustive) list of topics: 

 Description and modeling of user interfaces, interaction techniques, and interactive systems 

 Validation and verification concepts and techniques for user interface, interaction techniques and process, as 

well as interactive systems 

 User modeling techniques, concepts, and languages 

 Task modeling techniques, concepts, and languages 

 Modeling and description techniques for post desktop interaction concepts and metaphors 

 Execution and adaptation of formal descriptions 

 Description of adaptive interactive systems and user interfaces 

 Multi-user and multi-view systems and interaction 

Two use cases were provided which could be used for the discussion of the presented formal methods in the 

submissions. The first describes the partially automated steering of a nuclear power plant, where the second 

concentrates on a multi-user scenario in context of air traffic control.  

The authors were asked to consider the following points if preparing their submissions for the workshop: 

 The consideration of the use cases was recommended but not mandatory. All kinds of descriptions of formal 

methods in human computer interaction were welcome. 

 If a use case was considered in a contribution, it did not have to be followed in every detail. The detailed 

descriptions were given to provide a full image of the individual use case. It was further possible to focus on 

specific parts of the use cases if reasonable. 

The papers were juried by the members of the program committee of the workshop and were chosen according to 

relevance, quality, and likelihood that they stimulate and contribute to the workshop. 

The workshop was held in conjunction with the 7th ACM SIGCHI Symposium on Engineering Interactive Computing 

Systems (EICS) 2015 in Duisburg, Germany on June 23, http://eics2015.org/. The whole description can be accessed 

through the workshop’s website under https://sites.google.com/site/wsfomchi. The description of the workshop has 

been further published in the proceedings of EICS 2015 and can be accessed through 

http://dx.doi.org/10.1145/2774225.2777460. 
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ABSTRACT 

This paper presents the Formal Interaction Logic Language 
(FILL) as modeling approach for the description of user 
interfaces in an executable way. In the context of the work-
shop on Formal Methods in Human Computer Interaction, 
this work presents FILL by first introducing its architectural 
structure, its visual representation and transformation of 
reference nets, a special type of Petri nets, and finally dis-
cussing FILL in context of two use case proposed by the 
workshop. Therefore, this work shows how FILL can be 
used to model automation as part of the user interface mod-
el as well as how formal reconfiguration can be used to 
implement user-based automation given a formal user inter-
face model. 

Author Keywords 

formal modeling; formal languages; user interface descrip-
tion; interaction logic; human computer interaction; auto-
mation.  

ACM Classification Keywords 

H.5.2. Information interfaces and presentation (e.g., HCI): 
User Interfaces; 

INTRODUCTION 

Formal methods have a broad use in human computer inter-
action research and applications. The major benefits of 
formal modeling methods are the possibility to apply formal 
verification and analysis methods, the possibility of execu-
tion and the application of formal reconfiguration and adap-
tion mechanisms, and finally their description in machine-
readable form. This work presents a formal modeling ap-
proach that combines these aspects into one formal descrip-
tion language for modeling user interfaces. It combines a 
visual description language and an algorithmic transfor-
mation to reference nets, a special type of Petri nets, which 
makes it executable and analyzable. It is called the Formal 
Interaction-Logic Language (FILL). FILL is based on a 

layered architecture, which structures a user interface into a 
physical representation as set of widgets and the interaction 
logic layer, which describes the processing of events 
emerging from the physical representation or state changes 
emitted by the controlled system. This modeling approach 
is accompanied with a modeling, execution and reconfigu-
ration software tool, the UIEditor. It offers visual editors for 
the creation of FILL-based user interface models, a runtime 
environment for its execution, as well as tools for the inter-
active definition and application of reconfiguration opera-
tions. The last differentiates FILL from works using Petri 
nets-based descriptions, such as the Interactive Cooperative 
Objects described by Navarre et al. [14] or works like these 
from de Rosis et al. [12] or Janssen et al. [13]. 

The paper is structured as follows. The next section pre-
sents FILL's architectural basis and relates this approach to 
other existing architectural concepts. It is followed by an 
introduction of FILL's syntax and semantics as well as a 
description of the transformation to reference nets. This is 
followed by the introduction of the formal reconfiguration 
of these transformed models using a category-based graph 
rewriting approach. Finally, FILL will be presented by 
means of a use case addressing automation for a simplified 
simulation of a nuclear power plant. This use case will 
present FILL's potentials for the modeling of automation as 
part of a FILL-based interaction logic description as well as 
the embedding of automation into interaction logic through 
interactive reconfiguration of an initial user interface mod-
el. The paper will be concluded with a short outlook on 
future work. 

ARCHITECTURE 

The Formal Interaction Logic Language (FILL) is a formal 
language suitable for the description of executable and 
reconfigurable models of interactive systems. According to 
the classification presented by Dix in [1], FILL is a descrip-
tion language for the specification of executable system 
models. It follows a basic three layer architecture, which is 
conceptually related to the model-view-controller (MVC) 
pattern [2]. Fig. 1 shows the comparison of the classic 
MVC pattern and a slightly restructured version (in the 
middle of Fig. 1), which takes widgets as functional ele-
ments of a user interface into account. Here, the controller 
directly associated to the view of a widget holds the func-
tionality which triggers changes of the visual appearance of 
the widget that and its state, which is encapsulated as widg-
et model. The widget controller further encapsulates all 
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functionality that is necessary to generate events as data 
objects according to user interaction, e.g., by pressing a 
button. Thus, a widget can be modeled in the sense of a 
MVC. Nevertheless, a user interface can be assumed being 
composed by more than one widget, which means that the 
MVC on widget level exists n times for n widgets of one 
user interface. This set of widgets mapped to the physical 
representation in context of FILL. The non-widget related 
(global) controller (as shown in Fig. 1) comprises all func-
tionality relevant to update the (global) model representing 
the state of the controlled system and processes events 
emitted from the widgets (controller). This global controller 
refers to the interaction logic in FILL's architecture, where 
the global model can be associated to the system interface 
(cf. Fig. 1 right). FILL as language addresses the modeling 
of the interaction logic, where in the following the combi-
nation of a physical representation description and the in-
teraction logic model is referred to as user interface model. 

This architecture specifies a macroscopic, horizontal and 
layered representation of an interactive system, which does 
not reflect the more fine-grained inner structure of the vari-
ous layers. “Zooming in” on single widgets and their asso-
ciated part of interaction logic of a user interface (as de-
fined above) obtains a similar modeling structure as pre-
sented by Paternó in [3,4], which is indicated in Fig.1 on 
the right. These so called interactors (see Fig. 2) as model-
ing concept for interaction objects offer not only the de-
scription of widgets including a specific visual representa-
tion but further offer the modeling of multi-layer networks 
of interactors by hierarchical combination of input and 
outputs of interactors. Every interactor is meant to be relat-
ed to a specific (elementary) task the user wants to work on 
with the given interaction system, which is also one of the 
main aspects of FILL. 

 As can be seen in Fig. 2, an interactor is composed by three 
main elements: (a) the abstraction, which contains the de-
scription of data which should be visualized, (b) the input, 
which performs the processing of the input from to user to 
be redirected to the application or influence the third com-
ponent (c) the representation, which defines the appearance 
of the interaction object to the user. Using FILL, the inter-
action logic of a user interface is separated into so-called 
components or interaction processes, which comprise struc-

tures that represent elements (a) and (b) of an interactor, 
where (c) is solely part of the widget the physical represen-
tation is composed of.  

Fig. 3 shows the architecture FILL is following. As men-
tioned above, the structure is oriented along previous work 
and aims at picking up successful approaches. Therefore, 
the three layer concept follows the current implementation 
concepts of GUI toolkits, such as Swing or Qt. Further-
more, according to modern software development, FILL 
offers mechanisms to structure interaction logic for ena-
bling reusability and successful modeling: A set of compo-
nents can be further comprised as module, which combine 
components with similar functional semantics, e.g., compo-
nents that model the communication of widgets with the 
system to be controlled, as interactors intend to do, or com-
ponents that implement adaptions of subsets of widgets, 
which would be described as multi-layered interactors in 
terms of the architectural approach described by Paternó 
[3,4]. For the communication with other layers (physical 
representation or the system interface) or for communica-
tion between interaction processes and modules, FILL of-
fers various structures, such as operations and proxies as 
well as channels. Therefore, the following section will pre-
sent FILL as modeling language in more detail.  

 
Figure 1. Relation of FILL architecture to an extended version 

of the MVC software pattern. 

 

 
Figure 2. Interactor according to [4], Figure 1. 

 

 
Figure 3. FILL Architecture  
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FORMALIZATION 

FILL is a formally defined graph-based visual modeling 
language, whose formal semantics is specified by an algo-
rithmic transformation to a specific type of colored Petri 
nets, so called Reference Nets [6]. FILL graphs describe 
processes which model the processing of data items, com-
parable to process modeling languages, such as the Busi-
ness Process Modeling Notation (BPMN) [10]. Therefore, 
data items are passed from node to node activating the func-
tion associated with a node every time a data item reaches 
it.  

The visual notation of FILL is shown in Fig. 4. The com-
plete formal definition of FILL can be found under 
http://www.uiedtior.org/fill.pdf and will not be further dis-
cussed here. A detailed description of FILL and its trans-
formation can be found in [9, 11]. 

FILL is composed of four types of nodes and two types of 
edges. The first set of nodes contains so-called operation 

nodes. These nodes represent operations, which process 
data items or redirect to other components, such as the 
system interface. System operation nodes define connec-
tions to or from the system to be controlled and thereby 
define connections to and from the system interface. Inter-
action-logic operations define data processing operations, 
such as arithmetic operations, type conversions or data 
transformations like the generation of arrays. Channel op-

erations define connections to or from other interaction 
processes and modules in the interaction logic. An input 
channel operation defines an entry to a channel where an 
output channel operation defines an output. All operation 
nodes are comprised of an input and/or output port(s), 
which define the interface of operations. The second set of 
nodes are the so called proxy nodes. Proxy nodes represent 
the connection to and from a widget. They emit events 

emerging from the widget into the FILL interaction process 
or trigger state changes of the widget emerging from the 
interaction process. The third set of nodes is dedicated to 
branching and merging of FILL processes, the so called 
BPMN nodes. These nodes are borrowed from the BPMN 
notation for the modeling of business processes [10]. There 
are three types of nodes: the OR, the AND, and the XOR 
node. These nodes mainly differ in the branching or fusing 
semantics, which is further specified by a guard condition, 
which is inscribed to the node. The nodes have either one 
incoming connection and n outgoing (branching) or n in-
coming and one outgoing connection (fusion). The final set 
consists only one node representing a terminator for FILL 
processes. This node simply consumes all incoming data 
items. 

All nodes are connected via edges. Two types of edges are 
distinguished in FILL: data flow edges and channel refer-
ence edges. Data flow edges specify data flow between 
nodes. Specifically, data flow edges connect ports, proxies, 
BPMN nodes and terminators. Channel reference edges are 
used to associate input to output channel operations over 
FILL component boundaries. An exemplary FILL model 
will be discussed in the next section accompanied with the 
presentation of FILL graphs into reference nets. 

Transformation to Reference Nets 

As mentioned in the introduction, FILL is a description 
language for executable system models. For the execution 
as well as for the definition of formal semantics, a modeled 
FILL graph is transformed into a reference net representa-
tion. The transformation algorithm will be presented by 
means of a simple example. The whole algorithm has been 
described in [9]. 

A FILL-based interaction logic description is transferred 
into a reference net. Reference nets are a special type of 
colored Petri net [6]. The main difference to classic colored 
Petri nets is the feature of references which enables the 
simulation of a reference net to generate net instance of a 
net "class". These net instances can reference to each other 
or to other objects (e.g. JAVA objects) through synchro-
nously linked transitions. Both concepts are used for the 
transformation of FILL-based interaction logic. An example 
for such a transformation is shown in Fig. 5.  

The interaction process on the left of Fig. 5 shows a process 
that could, e.g., be triggered by an event emerging from a 
button that has been pressed. The generated event object is 
passed into the process through the output proxy node (up-
per left of the image). This redirects the data item to a sys-
tem operation entitled "setSV2Status". This operation re-
turns the current value for the variable SV2 as data item 
into the process, which is in this case a Boolean value. The 
XOR BPMN node evaluates this data item according to the 
indicated guard condition. In case it is false, the left branch 
inscribed with 'a' will be triggered. Otherwise, the branch 
inscribed with 'b' will be triggered. In both cases, an inter-
action-logic operation is triggered, which generates a Bool-

 
Figure 4. Visual notation of FILL. 
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ean of contrary value. This value is then redirected to a 
system operation, which sets this value to the system varia-
ble SV2. Finally, the process is terminated. In conclusion, 
the process toggles the value of the system variable SV2 
between true and false. The reference net resulting from the 
transformation is shown on the right of Fig. 5. For the fol-
lowing description, a basic understanding of colored Petri 
nets is assumed.  

For the firing of a transition, a token has to be present that 
can be mapped to the inscribed variables of incoming edges 
as well as the inscription of the transition. This is also true 
for guard conditions as used for the transformation of the 
XOR node (see Fig. 5. middle right). In the example trans-
formation also the use of synchronous channels in refer-
ences nets can be seen. Consider for example the transfor-
mation of the system operation 'getSV2Status'. Incoming 
data items are passed to an incoming place where it is con-
sumed by the transition inscribed with 
':sysOpCall('getSV2Status',e)'. This synchronous call refers 
to a channel of name 'sysOpCall' with two parameters. This 
can be another transition or a function call in a referred 

application. The latter is possible due to a the simulator 
provided for reference nets called Renew [5], which will be 
described in more detail. In this case, sysOpCall refers to a 
function that is executed on the system interface. After 
returning from this function, the system interface calls the 
transition inscribed with ':sysOpCallBack('getSV2Status', 
b)', where b holds the current value of the system variable 
SV2, which is transferred to the outgoing place. As men-
tioned before, further details for the execution of FILL-
based interaction logic will be presented in the next section 
presenting two use cases and the modeling, execution and 
reconfiguration framework called UIEditor. 

Formal Reconfiguration of Interaction Logic 

Accompanied with the development of FILL, we further 
developed a formal reconfiguration concept based on a 
graph rewriting method. Therefore, transformed FILL mod-
els (i.e. reference nets) are rewritten using a concept called 
Double Pushout Approach (DPO). This concept which is 
well known in category theory has been first applied to 
Petri nets by Ehrig et al. [7] and has been extended by us to 
colored Petri nets, which mainly includes the rewriting of 
inscribed Petri nets [8]. 

The major challenge in this context is the algorithmic gen-
eration of DPO rules based on a given transformed interac-
tion logic. A basic set of algorithms for the interactive gen-
eration of rewriting rules has been implemented in the 
UIEditor tool, which will be presented in context of the use 
cases, below. A first approach towards a generic concept 
for rule generation has been proposed in [9] but will not be 
further elaborated in this work. The following section will 
focus on a use case addressing automation in the control of 
a simplified simulation of a nuclear power plant and will 
show the interactive creation of reconfiguration rules and 
their application to interaction logic.  

USE CASE 

This section presents the visual editor and execution 
framework for FILL-based user interfaces: the UIEditor. 
This introduction will present a (partial) automation of a 
simplified simulation of a nuclear power plant. 

UIEditor 

The UIEditor is a software for the creation, the execution 
and the reconfiguration of user interfaces based on a FILL-
based description of interaction logic. It is comprised of 
various visual editors for the creation of the physical repre-
sentation of a user interface as well as the FILL-based in-
teraction logic using its visual representation to create inter-
action processes and FILL modules. It includes the imple-
mentation for the transformation of FILL models to refer-
ence nets as well as a software interface to Renew, which 
enables the simulation of the transformed reference net for 
execution. Furthermore, it implements the DPO approach-
based reconfiguration of interaction logic as well as an 
associate visual interface for the interactive reconfiguration 
of the user interface, as will be described in more detail in 
Use Case 2, below. Use Case 1 will focus on the creation  

 
Figure 5. Transformation example user interface before inter-

active reconfiguration 

 

x

x

:intOpCall('generateBool','false');

:intOpCallBack('generateBool',b);

b

getSV2Status

Object

Boolean

Event

generateBoolean
Value(true)

Object

Boolean

setSV2Status

Boolean

Boolean

guard x==false -> a;
guard x==true -> b;

a b

x

generateBoolean
Value(false)

Object

Boolean

setSV2Status

Boolean

Boolean

:event(e);

e

e

e

b

:sysOpCall('getSV2Status',e);

:sysOpCallBack('getSV2Status',b);

b

e

b

xx

guard x==false; guard x==true;

xx

x x

x

x

:intOpCall('generateBool','true');:intOpCall('generateBool','true');

:intOpCallBack('generateBool',b);

b

b

:sysOpCall('setSV2Status',b);

:sysOpCallBack('setSV2Status',b);

b

b

b
b

b

b

b

b

4



and execution of a user interface which implements a cer-
tain type of automation as part of the interaction logic. Both 
use cases will be presented during the workshop in a live 
demo using the UIEditor. 

Use Case 1: Automation as part of the interaction logic 

The central argument for the embedding of automation into 
the interaction logic of a user interface is that this type of 
solution makes automation flexible and in case of using a 
formal method, also verifiable. Using FILL, automation is 
further reusable by encapsulating the relevant part into 
modules. Furthermore, automation becomes adaptable us-
ing the reconfiguration mechanism. The latter will be fur-

ther used in the next section to let the user specify certain 
types of automation. 

Here, we will concentrate solely on the description of single 
aspects of the user interface model and assume that the 
complete model of the user interface exists as FILL descrip-
tion. In Fig. 6, the modeled physical representation is 
shown, which offers all necessary widgets to control the 
simplified simulation of a nuclear power plant as it has been 
provided. For opening and closing of valves, buttons are 
provided, sliders offer the manipulation of the pump's speed 
as well as the position of the control rods. Furthermore, 
various labels show the current value of the relevant system 
components. 

Fig. 7 shows two modeled examples of possible automation 
functionality introduced into the interaction logic. Fig. 7 (a) 
shows a process that controls the speed of water pump 1 
(WP1) and is associated with the lamp inscribed with 
"AUTO". This automation increases the speed of the pump 
in case the water level drops below 1900mm and decreases 
it when the water level goes over 2200mm. This process as 
well as the one presented next is triggered by the "ticker" 
operation, which periodically triggers an event and gener-
ates a simple object to be sent into the interaction process. 
Fig. 7 (b) shows the implementation of the security shut 
down (SCRAM) of the reactor which kicks in if the water 
level of the reactor drops under 1700 mm. In this case, the 
control rods are inserted completely into the reactor core.  

The visual representation of the FILL processes are taken 
from the UIEditor as screenshots. Here, the predefined 
values associated with some of the interaction-logic opera-
tions as well as the guard conditions for the BPMN nodes 
were additionally annotated because they are not visible in 
the graph representation but can be entered and changed 
through a context menu popping up by double-clicking on 
the node in the graph. 

Use Case 2: User-driven Automation 

As mentioned above, using the UIEditor the reference net-
based representation of a FILL model can be reconfigured 
using a formal graph rewriting approach. Therefore, the 
UIEditor offers a visual interface for the creation of recon-
figuration rules selecting widgets in the physical representa-
tion and by applying certain reconfigurations to the associ-
ated interaction process. This reconfiguration adds new 
parts to the interaction logic as well as new widgets to the 
physical representations. For this use case of a user-driven 
automation, we want to present two reconfiguration opera-
tions: First, for the fusion of a given set of interaction pro-
cesses, which generates a widget that triggers all interaction 
processes of the previously selected ones. Second, the dis-

cretization of widgets. It can be applied to a widget that 
generate values out of a range, such as a slider, and it gen-
erates a widget which generates a single value, such as a 
button. Fig. 6 right shows a slightly changed user interface 
compared to that shown in Fig. 6 on the left. This is due to 
the change of buttons from ones which toggle the status of a 

    
Figure 6: Physical representations of modeled user inter-

faces in the two presented use cases. Left: with implement-

ed automation in the interaction logic, right: the original 

user interface before interactive reconfiguration 

 

 
Figure 7: Physical representations of modeled user inter-

faces in the two presented use cases. 
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valve to a set of widget that can open or close a specific 
valve. This makes it easier for the following description to 
generate relevant automations.  

The goal is to create a button to SCRAM the reactor. To do 
so, WP1 should run with 800 rpm, the control rods should 
be completely inserted into the core and the valves WV1 
and SV2 should be open, while the other valves are closed. 
Furthermore, the condenser pump should run with 1600 
rpm. In a first step, according to the two pumps and the 
control rods, discrete values are selected and related to three 
new buttons, as shown in Fig. 8 on the right. These are then 
fused together with the buttons for opening WV1 and SV2 
as well as the closing buttons for WV2 and SV1 to a final 
button labeled "SCRAM" as can be seen in Fig, 8 in the 
middle.  

Further reconfiguration operations are currently implement-
ed, such as duplicate widgets, replace widgets for output, or 
fusion of widgets with respect to execute the related opera-
tions sequentially (sequential fusion) instead of in parallel 
as done by the previously introduced fusing operation.  

CONCLUSION AND FUTURE WORK 

This work presented FILL as model approach for the formal 
description and specification of interaction logic. FILL's 
definition, its reconfiguration as well as its associated mod-
eling tool, the UIEditor, have been introduced. Finally, 
FILL has been exemplarily presented by means of a partial 
automation of a simplified simulation of a nuclear power 
plant. 

Future work mainly addresses the extension of FILL to 
multi-device description, which further includes mobile 
devices as well as devices, which do not offer a graphical 
user interface, instead relying on gesture or audible interac-
tion. Furthermore, we intend to extend FILL with opera-
tions that encapsulate reference nets modeled by the user. 
This can further reduce the use of references to code as is 
currently the case for the implementation of interaction-
logic operations. Finally, the rule generation for the applica-
tion of reconfiguration to a given formal user interface 
model has to be investigated in more detail. 
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ABSTRACT
This paper is concerned with the problem of learning how to
interact safely with complex automated systems. With large
systems, human-machine interaction errors like automation
surprises are more likely to happen. Previous works have
introduced the notion of full-control mental models for op-
erators. These are formal system abstractions embedding
the required information to control a system completely and
without surprises. Full-control mental models can be used
as training material but are ineffective as their control over a
system is only guaranteed when fully learned.

This work investigates the problem of decomposing full-
control mental models into smaller independent tasks. These
tasks each allow to control a subset of the system and can be
learned incrementally to control more and more features of
the system. This paper proposes an operator that describes
how two mental models are merged when learned sequen-
tially. With that operator, we show how to generate a set of
small tasks with the required properties.
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INTRODUCTION
The field of human-computer interaction analysis formalises
how human operators interact with automated systems and
studies how to assert and improve the quality of these inter-
actions. An important problem is to ensure that humans can
interact with a system without surprises and provide a de-
scription of such interactions.

Surprises are defined as mismatches between expectations of
the operator and the actual behaviour of a system. An opera-
tor maintains a model of the system called a mental model[7].
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He builds it by experimenting on and learning about the sys-
tem. Operators are assumed to behave according to their men-
tal model. Therefore, mental models should always allow to
control the system in use. In that context, learning new fea-
tures of the system should be done in such a way that the new
mental model of the users also allow to control the system.
In particular, operators must not interact with the system un-
til the end of a learning phase and cannot fill their functions
during that time.

Operators that have learnt all the possible behaviours of a
system have built a full-control mental model. Such mod-
els have been defined in [4] and techniques to build minimal
ones have been described in [3] and [2]. These models allow
to control safely all the features of a system. However, learn-
ing full-control mental-models is impractical as it implies to
learn all the features of a system in one big step. This means
that newly hired operators are useless before they master the
full complexity of the system. Large systems might even be
too complex for one operator to manage. In that case, the
system must be split in tasks dedicated to different operators.

To be practical, learning processes should provide a set of
tasks in the form of small compatible mental models that can
be combined incrementally into bigger models. Each task
and each intermediate mental model should ensure safe inter-
actions with the system without necessarily describing all of
its features.

Our work investigates how to decompose a full-control men-
tal model into smaller tasks that individually control the sys-
tem. Learned sequentially, these tasks should augment the
mental model of the operator until he possesses a full-control
mental model of the system.

Tasks have long been used in the context of human-machine
interactions. They can be defined during the system design
process and used for system validation like in [5]. They can
also be synthesised through a goal that a user needs to achieve
and relate to controler synthesis as explained in the Ramadge-
Wonham framework [6]. In this work, we propose tasks that
have the property of being small and combinable, with no
guarantee that they correspond to meaningful objectives for
users.

In this paper, we introduce an operator to combine mental
models and we argue that it is coherent with the intuition of
learning a task. We describe the related decomposition oper-
ation and show that mental models can be decomposed into a
finite set of basic mental models. We also show that it is pos-
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sible to build a set of tasks that properly control the system
and such that all their combinations also control the system
and eventually have full-control over it. Finally, we define
the task complexity as a measure of the difficulty to learn a
system.

The remaining of this article is organized as follows. First we
introduce the required definitions of mental models and con-
trollability in the“background” section. In the “HMI-LTS de-
composition” section, we introduce the composition operator
and the decomposition properties. Finally, we show how to
obtain the desired decomposition in the section “Full-control
mental model decomposition”.

BACKGROUND
In this section we define HMI-LTSs, mental models and the
full control property. We also introduce full-control mental
models, a concept that lies at the intersection of these three
notions. This section is intended as a reminder of the required
concepts defined in [1].

We start with the concept of labelled transition systems for
human-machine interactions (HMI-LTSs) which are slightly
modified labelled transition systems (LTSs). An LTS is a state
transition system where each transition has an action label.
LTSs interact with their environment based on this set of ac-
tions. Additionally, LTSs can have an internal τ action that
cannot be observed by the environment. Two small LTSs are
shown in figure 2.

DEFINITION 1 (LABELLED TRANSITION SYSTEM).
A labelled transition system (LTS) is a tuple 〈S ,L, s0,→〉
where S is a finite set of states, L is a finite set of labels
representing visible actions, s0 ∈ S is the initial state and
→ ⊆ S × (L ∪ {τ})× S is the transition relation, where τ < L
is the label for the internal action.

The executions of LTSs can be observed from the environ-
ment via traces. An execution of an LTS is a sequence of tran-
sitions s0

a1
→ s1 . . . sn−1

an
→ sn where each (si−1, ai, si) ∈ →.

A trace of an LTS is a sequence σ = a1, a2, . . . an where
each ai ∈ L and such that there exists an execution s0

τ∗a1τ∗
−→

s1 . . . sn−1
τ∗anτ∗
−→ sn, where s0

τ∗a1τ∗
−→ s1 is itself an execution

whose only observable action is a1. For example the Lamp
system of figure 1 can exhibit the trace “on, off, on, off, burn”
and the trace “smash, replace, on” among infinitely many
other.

HMI-LTSs refine LTS by distinguishing two kinds of actions,
commands and observations. Like any I/O transition system,
observations are uncontrollable outputs generated by the sys-
tem and commands are controllable inputs. HMI-LTSs are
exactly equivalent to Tretmans’ LTS/IOs[8].

DEFINITION 2 (HUMAN-MACHINE INTERACTION LTS).
A human-machine interaction labelled transition sys-
tem (HMI-LTS) is a tuple 〈S ,Lc,Lo, s0 ,→〉 where
〈S ,Lc ∪ Lo, s0,→〉 is a labelled transition system, Lc

is a finite set of command labels and Lo is a finite set of
observation labels. The two sets Lc and Lo are disjoint and
the set of visible actions is L = Lc ∪ Lo.

Lamp
burn

replace

smash

on

off

Figure 1. An HMI-LTSs model of a lamp with four commands and one
observation. A lamp can be switched on and off as long as it does not
burn. When burned or smashed, the lamp needs to be replaced and we
are back to the starting point. This HMI-LTS is our its simplicity, it is
also its own and only minimal full-contol mental model.

A on

off

off
B

τ

on

off

unplug

Figure 2. Two examples of nondeterministic systems. A can be turned
on then off at least once, but it is impossible to say if it can be turned on
again. B can be turned on and off, but it can also unobsevably change to
a state where the only way to restart it is to unplug it.

HMI-LTSs are used to describe both systems and mental
models. Mental models are user views of a system. They
are by definition deterministic and represent the knowledge
an operator has about the system he controls. It is important
to note that mental models do not represent the behaviour of
a user, but the behaviour of a system as seen by a user. A
command in a mental model corresponds exactly to the same
command on the system. The interactions between a system
S and an operator behaving according to its mental modelM
are defined by the synchronous parallel composition S ‖ M.
This distinguishes HMI-LTSs from LTS/IOs where inputs of
the system must be synchronised on the outputs of the user
and vice versa.

In addition, we want mental models to control systems with-
out surprises. In particular, we want to avoid mental models
to contain commands that are impossible on the system and
to ignore observations that the system could produce. This
motivates the introduction of the control property.

The following definition uses the s afterσ operator that de-
scribes the set of states that can be reached from the state s
after an execution whose observable trace is σ. Also, Ac(s)
(resp. Ao(s)) is the set of possible commands (resp. observa-
tions) of s. An action is possible in s if it is the first action of
some trace starting at s. Moreover, an LTS is deterministic if
|s afterσ| ≤ 1 for any σ. The HMI-LTS A from figure 2 can
be in two states after the trace “on, off” and is therefore not
deterministic. The HMI-LTS B has two possible actions in its
middle state: ‘off’ and ‘unplug’

DEFINITION 3 (CONTROL PROPERTY).
Given two HMI-LTSs S = 〈S S,Lc,Lo, s0S,→S〉 and M =
〈SM,Lc,Lo, s0M,→M〉, M controls S ifM is deterministic
and for all traces σ ∈ L∗ such that sS ∈ s0S after σ and
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{sM} = s0M after σ :

Ac(sS) ⊇ Ac(sM) and Ao(sS) ⊆ Ao(sM).

This definition is symmetric because it allows the mental
model not to know the full set of available commands while
allowing the system to produce less observations than ex-
pected by the mental model. From now on, this is the for-
mal definition we refer to when we say that a mental model
controls a system.

For a given system, there always exists a mental model that
contains no commands and still allows to control the system.
That mental model contains only the traces of observations
available from the initial state and corresponds to the mental
model needed by an agent to avoid surprises when not inter-
acting with a system. For example, you need to know that
your desk phone may ring even when you do not want to in-
teract with it. Someone who ignores that fact will be surprised
whenever the phone rings.

We see that a mental model that controls a system does not
necessarily explore the full range of possible behaviours of
that system. When a mental-model ensures control over a
system and allows to access all the available commands of
the system, we say that the model fully controls the system.

DEFINITION 4 (FULL-CONTROL PROPERTY).
Given two HMI-LTSs S = 〈S S,Lc,Lo, s0S,→S〉 and
M = 〈SM,Lc,Lo, s0M,→M〉, M is a full-control mental
model for S, which is denotedM fc S, ifM is deterministic
and for all traces σ ∈ L∗ such that sS ∈ s0S after σ and
{sM} = s0M after σ :

Ac(sS) = Ac(sM) and Ao(sS) ⊆ Ao(sM).

A full-control mental model is therefore a deterministic HMI-
LTS representing the required information for an operator to
interact with a system to the full extent of its possibilities, and
without surprises. Full-control mental models are minimal
if they have a minimal number of states compared to other
full-control mental models of the same system. Also, being
full-control deterministic is the property of all the systems for
which there exists a full-control mental model.

Minimal full-control mental models are important because
they represent the minimal model that a perfect operator
should learn. Compact training material and user guides
should describe a minimal full-control mental model. As
already stated the introduction, different algorithms exist to
generate such models.

HMI-LTS DECOMPOSITION
While minimal full-control mental models are perfect in
terms of control, they are inefficient when training operators
as they require to be completely mastered before using a sys-
tem. We provide a way to split huge models into smaller ones
that can be learned independently and reassembled to form
larger models.

In this section, we define a new merge operator that combines
two HMI-LTSs and we claim that this operator is a natural

A ⊕ B ⊕C
a a a c

b

d

C
a a a

d

B
a a a c

A
a a

b

Figure 3. Example of the merge operation on three HMI-LTSs

way to encode the increase of knowledge arising from learn-
ing new partial models. We provide a finite decomposition of
any HMI-LTS into in a set of basic HMI-LTSs.

HMI-LTS merging
Merging two HMI-LTSs produces a third HMI-LTS much
like the traditional choice operator, except that common pre-
fixes are merged. This is a kind of lazy choice, as the final be-
haviour does not commit to behave like the first or the second
operand until a decision is required. Notice that the definition
does not rely on observations and commands. This definition
can therefore be generalized to LTSs.

DEFINITION 5 (MERGE). The merge of two determin-
istic HMI-LTSs A = 〈S A,L

c
A,L

o
A, s0A,→A〉 and B =

〈S B,L
c
B,L

o
B, s0B,→B〉, denoted A ⊕ B, is an HMI-LTS

〈S ,Lc,Lo, s0,→〉 where Lc = Lc
A ∪ L

c
B, Lo = Lo

A ∪ L
o
B and

S is a partition of S A ] S B such that

1. s0 contains at least {s0A, s0B};

2. S is the finest partition of S A ] S B such that for all
(m, a,m′) ∈ →A and (n, a, n′) ∈ →B with m, n ∈ X for
some X ∈ S , there exists Y ∈ S such that {m′, n′} ⊆ Y; and

3. → is the set of transitions (X, a,Y) for which there exists
x ∈ X and y ∈ Y such that (x, a, y) ∈ →A or (x, a, y) ∈ →B.

In this definition, S is always well defined. It can be com-
puted by starting with a complete partition where each state
is a different element and merging all the states that do not
respect the required criterion. This process stops when the
criterion is enforced and this happens within a finite number
of steps as it must end when the partition contains only one
element with all the states in it. The merge of two determin-
istic HMI-LTS is unique, but this is not necessarily the case
in general.

An example of the action of the merge operator is given in
figure 3. This example uses the fact that the merge operator
is associative. The operator is also commutative. While com-
mutativity can be assumed from the symmetry of the defini-
tion, commutativity is more complex and the demonstration
is left to the reader.

We can show that the result of merging two deterministic
HMI-LTSs is deterministic. Indeed, as the two operands of
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the merge are deterministic, they cannot contain τ transitions
and so their merge is free of τ transitions too. Let’s assume
that the result contains a state X such that there exists two
transitions with the same label a leading to different states
Y and Y ′. This means that there exists (m, a,m′) ∈ →A and
(n, a, n′) ∈ →B such that m, n′ ∈ X, m′ ∈ Y and n′ ∈ Y ′ which
violates the property on S . Namely, m′ and n′ must belong
to the same state Y . The resulting HMI-LTS can contain no
τ transitions and no fork where a transition with a same label
leads to two different states. This is sufficient to prove that it
is deterministic.

The HMI-LTS A ⊕ B can switch his behaviour from A to B
provided A can reach a state that was merged with a state of
B. This conversely holds from B to A. If the HMI-LTS can
switch from A to B and from B to A, then it can alternate
its behaviour arbitrarily often. We can see that this operator
is different from the traditional choice operator because it is
more than the union of the traces. It allows to build complex
behaviours from two simple models. In figure 3, we can see
that the trace a, a, a, d, a, b, a, a, a, c was not possible on the
different models but is valid on their merge.

This operator is useful because the set of traces of a merge is
always larger or equal to the union of the traces of the merged
transitions systems. This means that the possible behaviours
of a merge can be richer than the union of the behaviours of
its operands. This is needed to ensure that the decomposition
of a big system is a small set of small systems. By compar-
ison, the behaviours of a choice are exactly the union of the
behaviours of its operands. For synchronous parallel compo-
sition, the resulting behaviours are the intersection of the be-
haviours of the two operands if we synchronise on the union
of the alphabets.

Furthermore, the merge operator enforces the interpretation
of HMI-LTSs as scenarios. When a scenario loops or termi-
nates, the system is assumed to have returned in a state equiv-
alent to the initial one. In particular, the scenario is assumed
to be repeatable infinitely often unless explicitly stated. When
an HMI-LTS loops to a given state, it should that the system
has returned to a state that is completely equivalent to the ini-
tial one for controllability purposes.

The merge operator is therefore great for decomposing sys-
tems and is a natural way to encode how mental models grow
when learning new ones.

Basic HMI-LTSs
In this section, we explore the decomposition induced by the
merge operator on the HMI-LTSs.

The merge operator naturally defines a partial order relation
on the HMI-LTSs. The merge order is such that A ≤⊕ B if
and only if A ⊕ B = B. The strict partial order relation also
requires A to be different from B. We can intuitively see that it
well defined because merging HMI-LTSs can only increases
the set of described behaviours and the merge order captures
this.

Furthermore, due to the definition of the merge order, the set
of deterministic HMI-LTSs is lattice-structured. Indeed, any

A

a
≤⊕

B

a

b

≤⊕

C

a

b

b

≤⊕

D

a

b

Figure 4. Illustration of the order relation on basic HMI-LTSs. For
example, we have C ≤⊕ D because C ⊕ D = D.

A B

α

C

β

D

α

β

E

β γ

F

α

β γ

Figure 5. Different shapes of basic HMI-LTSs. They can be A) empty,
B) sequences, C) loops, D) lassos and E,F) tulips with and without stem.
Dotted lines represent any oriented sequence of states and transitions.
All these shapes are degenerated tulips where action sequences α, β and
γ can be empty

two HMI-LTSs A and B are (upper) bounded by A⊕B. There-
fore, there exists minimal elements called atoms. These are
the HMI-LTSs with only one transition. If the lattice was
atomistic, we would be able to generate generate all the deter-
ministic HMI-LTSs by merging some of its atoms. This is not
the case as we can see in figure 4. There is no way to obtain
the graph B by merging HMI-LTSs with only one transistion.
However, there exists a larger family of HMI-LTSs that can
generate all the deterministic HMI-LTSs, we call them basic
HMI-LTSs.

DEFINITION 6 (BASIC HMI-LTS). A deterministic
HMI-LTS A is basic if it cannot be decomposed into two
strictly smaller HMI-LTSs. That is, for all HMI-LTS X,Y
such that X ⊕ Y = A, either X = A or Y = A.

It turns out that such basic HMI-LTS take the form of be sin-
gle loops, single sequences, lassos or tulips. Loops and se-
quences can be seen as degenerated lassos with no stem or
no loop. The fully degenerated lasso is the HMI-LTS with
no transitions at all. Finally, a tulip is a branching HMI-LTS
where the two branches reunite in the last state. Like lassos,
they may have no stem. All these shapes are drawn in figure
5.

Any finite deterministic HMI-LTS can be decomposed into
a finite set of basic HMI-LTS. This arises from the fact that
any HMI-LTS is the merge of a basic HMI-LTS and another
HMI-LTS strictly smaller than the previous one. Were it not
the case, that HMI-LTS would be basic itself. By induction on
the remaining HMI-LTS, we show that it eventually reduces
to the empty HMI-LTS after a finite number of basic HMI-
LTS removal. All the removed basic elements form a set that
we call the decomposition of the HMI-LTS.
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T1

on

off

T2

smash

replace

T3

burn

replace

on
T4

burn

smash

on

Figure 6. All the basic HMI-LTSs of the Lamp mental model defined in
figure 1. T1 is the only mental model that does not control the Lamp
system of figure 1. T1,2,3 are loops and T4 is a tulip. Amongst the three
loops, T1 represents the fact that the lamp can be switched on and off for-
ever, T2 that it can be smashed and replaced forever and T3 that a lamp
can be turned on and replaced when it burns to turn it on again. Being
a tulip, T4 has a different meaning. It expresses the fact that smashing a
lamp is equivalent to turn it on and observe it burn.

A decomposition is non-redundant if it does not contain two
elements such that one is strictly smaller than some other with
respect to the merge order defined above. The decomposition
algorithm just sketched always produces a non-redundant de-
composition because each basic HMI-LTS contains actions
that were not part of the previously removed basic elements,
and that are removed with it. For example, the decomposition
of the Lamp system into {T1,T2,T3,T4} as shown in figure 6
is non redundant.

A decomposition is minimal if no other decomposition of the
same HMI-LTS contains less basic elements. The size of a
minimal decomposition is called the complexity of an HMI-
LTS. Minimal decompositions of the Lamp system contain
exactly three elements so its complexity is 3. With the basic
HMI-LTSs defined in figure 6, we see thatT4 states the equiv-
alence of the “smash” and “on, burn” traces. This implies that
T2 is equivalent to T3 in a set containing T4. The two mini-
mal decompositions of the Lamp system are {T1,T2,T4} and
{T1,T3,T4}.

We know how to decompose an HMI-LTS into basic ele-
ments, and that decomposition gives us a measure of the com-
plexity of that HMI-LTS.

FULL-CONTROL MENTAL MODEL DECOMPOSITION
In this section, we show that it is possible to build a set of
tasks that each control a given model and can be combined
into a full-control mental model.

The main idea is to decompose a full-control mental model
of the system into basic subgraphs. It appears that basic sub-
graphs can be completed to form tasks that can control the
system. This means that the completed basic subgraphs of a
full-control mental model of a system form a set of indepen-
dent compatible mental models that can be merged to repro-
duce the behaviour of the full-control mental model.

Basic subgraphs
A subgraph of a graph G is a graph that contains some of the
edges of G. This notion can be extended to HMI-LTSs.

T1 on

off

T ′1
burn

on

off

Figure 7. The observation completion of T1 with respect to the only
minimal full-control mental model of Lamp, which is Lamp itself, is T ′1 .
It contains all the observation transitions from Lamp reachable from T1.
The other basic models Ti,i,1 need not be completed. The interpretation
of T ′1 is that the lamp can be switched on and off forever as long as it
does not burn. When the burning occurs, either the objective is reached
or the user is stuck. To unblock the situation, the user can for example
read the manual to increase its knowledge of the system or ask a more
experienced user.

DEFINITION 7 (SUBGRAPH). Given two HMI-LTS T =
〈S T ,Lc,Lo, s0T ,→T 〉 andM = 〈SM,Lc,Lo, s0M,→M〉, T
is a subgraph ofM, denotedT ⊆ M, if S T ⊆ SM, s0T = s0M
and→T ⊆ →M

Given two subgraphs T and T ′ of an HMI-LTSM, we have
the nice property that their merge T ⊕ T ′ is a subgraph of
M up to a relabelling of the states. That is, the merge of two
subgraphs ofM is isomorphic to some subgraph ofM. This
can be seen from the fact that ⊕ merges states that can be
reached with the same traces, and that states must correspond
to the same state ofM asM is deterministic.

Therefore, any HMI-LTS can be decomposed into a non-
redundant finite set of its basic subgraphs.

Tasks
Starting from a full-control mental modelM of a system S,
we can decompose it into a set of basic HMI-LTSs. How-
ever, these basic HMI-LTSs do not necessarily control S. To
achieve this property, they need to be completed with respect
to observations. This holds because of the symmetric nature
of the control property. A mental model that controls a system
must accept all the observations of that system, but is allowed
to ignore commands.

If we call →o
S the transition relation of S restricted to ob-

servations, then any basic subgraph of a full-control mental
model can be completed with →o

S in order to control S. Of
course, only the connected component reachable from the ini-
tial state should be kept after the completion. Figure 7 shows
the completion of the basic HMI-LTS T1 from figure 6.

DEFINITION 8 (OBSERVATION COMPLETION).
Given an HMI-LTS M = 〈S ,Lc,Lo, s0,→

c ∪ →o〉 and one
subgraph T = 〈S T ,Lc,Lo, s0,→T 〉 of M, the observation
completion of T is an HMI-LTS T ′ such that T ′ is the con-
nected component of 〈S ,Lc,Lo, s0,→T ∪ →

o〉 reachable
from s0.

The observation completion of any subgraph of a full-control
mental modelM controls the intended system. Indeed, such
a completed subgraph cannot prevent observations from oc-
curring as the full-control mental model does not, and the
completed graph has all the observations from the system. In
particular, the observation completion of basic subgraphs of
full-control mental models of a system S control that system
S. These elements also have the nice property of merging
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into completed subgraphs ofM that themselves have control
over S.

DEFINITION 9 (BASIC TASK).
Given a full-control mental models M = 〈S ,Lc,Lo, s0,→〉
where → = →c

M
∪ →o

M
, a basic task is a mental model

T = 〈S T ,Lc,Lo, s0,→T 〉 such that →T = →
o
M
∪ →b and

〈S T ,Lc,Lo, s0,→b〉 is a basic subgraph ofM.

With this definition, we can state that any full-control deter-
ministic system is fully controlled by the merge of a set of
basic tasks. As an example, T ′1 , T2 and T 4 form such a set
from figures 6 and 7 form such a set.

THEOREM 1 (TASK DECOMPOSITION). Any finite fc-
deterministic HMI-LTS S can be decomposed into a finite set
T = {T1,T2, . . .Tn} of basic tasks such that

• each Ti controls S;

• for each subset I ⊂ {1, 2, . . . n} of indices, the partial merge⊕
i∈I Ti of elements of T controls S; and

• the complete merge
⊕n

i=1 Ti has full-control over S.

PROOF. By definition, any fc-deterministic HMI-LTS S
has at least one minimal full-control mental model M. We
have shown that such a full-control mental model can be de-
composed into a finite set of basic tasks which are completed
basic subgraphs. Because these elements are completed sub-
graphs they have control overS and any partial merge of these
elements have too. As the elements are the completion of the
decomposition of M into basic HMI-LTS, their full merge
will be exactlyM, and therefore fully controls S. This proves
that there exists a decomposition of S meeting the required
properties.

Task-complexity
The decomposition of an fc-deterministic system into a set of
tasks is far from unique. Indeed, there exists an infinity of
full-control mental models for a given system, and for each
full-control mental model there may exist multiple decompo-
sitions into basic tasks.

Nevertheless, we define the task-complexity of a system as
the size of the smallest set of tasks that can be merged into
a full-control mental model of that system. This metric mea-
sures the number of small tasks that an operator needs to learn
before being able to control all the features of the system.

This metric is different from both the number of states and the
number of transitions which are the most common measures
of transition systems.

CONCLUSION
We have defined the merge operation that represents how a
human augments its mental model by leaning new mental
models. We have shown that this operation is more natural
than the parallel synchronisation operation and more power-
ful than the classical choice operation.

We have shown how tasks can be split into simple opera-
tions. In particular, we have shown that the full-control men-
tal model of a system is itself a composition of basic tasks.
With this decomposition, we have defined a measure of the
complexity of HMI-LTSs based on tasks.

We know how to generate decompositions of a system into
tasks, and we know that there exists a minimal decomposi-
tion, but we do not yet know how to generate minimal de-
compositions. In the near future, we expect to work on an
algorithm capable of computing one.

This works can be used to validate system design by detecting
irreducible large tasks. But, more importantly, this works lays
the ground for automated generation of user manuals and as-
sisted generation of other training material. With small well-
defined tasks, it is possible to decompose manuals into self-
contained chapters.
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2. Sébastien Combéfis, Dimitra Giannakopoulou, Charles
Pecheur, and Michael Feary. 2011a. A formal
framework for design and analysis of human-machine
interaction. In Systems, Man, and Cybernetics (SMC),
2011 IEEE International Conference on. IEEE,
1801–1808.
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ABSTRACT 

App-Ensembles are interactive systems comprised of 
several self-contained apps that are connected in a 
purposeful manner via navigation links and input/output 
channels. This paper describes the current state of 
development of a formal modeling language for App-
Ensembles. The development is part of the Application 
Orchestration Framework Language (AOF-L) that includes 
other modeling languages based on the same vocabulary, 
e.g. for semantic description of apps. In the presented 
research, the focus lies on the graphical representation of 
App-Ensembles. The graphical modeling elements used in 
the developed language are taken exclusively from 
BPMN 2.0. It is shown that App-Ensembles can be easily 
integrated into classical business process models modeled 
in BPMN 2.0. The utility of App-Ensembles and the 
practicality of the modeling approach are demonstrated via 
a use case example covering maintenance tasks in a nuclear 
power plant. Finally, an approach to apply a formal BPMN 
modeling approach to App-Ensembles is presented.  
Author Keywords 

App-Ensembles, App-Orchestration, BPMN, Formal 
Methods, Formal Modeling, Interactive Systems, Linked 
Data, Mobile Information Systems, Semantic Web, 
Workflows.  
ACM Classification Keywords 
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User/Machine Systems; I.5.5. Model Development: 
Modeling methodologies; D.2.9. Management: Software 
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INTRODUCTION 

Originally, the term app was just an abbreviation for the 
word application. Today, in times of ubiquitous mobile 
devices the notion of app 
software application, as e.g. an operating system or a web 
server. Apps are specialized programs, mostly used on 

mobile devices that assist users in completing tasks that 
have a clearly defined scope. Early apps were used by 
delivery services in the late nineties on Windows CE 
devices to capture signatures for parcel reception 
confirmation. At that time, these monolithic apps served 
their purpose well. Even today, delivery people can still be 
seen working with these systems. However, as workflows 
become more dynamic and change more regularly in 
structure, composition, and goals, rigid user interfaces for 
mobile information systems are tedious to keep up to date 
and may pose a burden to implementing agile work 
processes.  

This paper presents research towards establishing a formal 
model for interactive systems comprised of self-contained 
apps that are connected in a purposeful manner via 
navigation links and input/output channels (App-

Ensembles). 

The paper is organized as follows. In the following section, 
the background for the presented work is briefly described. 
Then the AOF-Language is introduced and its graphical 
notation is explained. Next, the textual notation of the 
language using Semantic Web technologies is shown. Then 
the graphical language is applied to a use case example for 
a maintenance task in a nuclear power plant. Afterwards an 
approach for formal modeling of App-Ensembles is 
described. The presented work is discussed and the paper 
closes with a conclusion and outlook. 

BACKGROUND 

Pfeffer et al. [9] describe a concept to orchestrate apps into 
interactive systems that can support users in performing 
complex tasks. The approach addresses the challenge to 
generate flexible, adaptable and usable app-based user 
interfaces with minimal effort. It takes into account that 
data sources, workflows, users and the apps themselves 
may be subject to continuous change. The approach heavily 
relies on the Semantic Web stack [2]. For easy integration 
in existing business processes and virtual manufacturing 
networks, it is based on established concepts from the field 
of business process modeling.  

The App-Orchestration process [12] consists of three steps: 
Select, Adapt, and Manage (as shown in Figure 1). The 
process relies on a set of semantically described mobile 
apps, a well-defined information space, and a business 
process model that defines necessary tasks and their 
relations. In the Select step, a subset of apps is selected 
from an app pool that best support the tasks given in the 
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actual business process. To increase reusability, in addition 

to commercial off-the-shelf commercial apps, the app pool 

may contain generic apps made for orchestration that are 

not yet adapted to a specific use case or information source. 

Instead, they are adaptable to various specific tasks. This is 

done in the Adapt step. Adaptation may include the visual 

appearance, the interaction style, the actual data source, and 

others. In the Manage step, the adapted apps are connected 

according to a navigation design model which is derived 

from the business process model. Therefore, only useful 

navigation paths are presented to the user. 

All three steps are performed at design time. As a result, a 

deployable App-Ensemble consisting of a model and 

installable app artifacts is produced. The App-Ensemble is 

then deployed to a device (e.g. an Android tablet). At 

runtime, a workflow execution engine enforces the 

navigation design (switching from app to app, allowing the 

user to make decisions at workflow branches) and 

facilitates information exchange between the apps. The 

same set of apps can be orchestrated in many ways, 

depending on the needs of the underlying business process.  

The set of tools and specifications for App-Orchestration is 

collected in the Application Orchestration Framework 

(AOF). The modeling language to describe apps, App-

Ensembles and Orchestration is called AOF-Language 

(AOF-L).  

 

Figure 1. App-Orchestration steps - Select, Adapt, Manage 

THE AOF-LANGUAGE 

The AOF-Language is currently in development and 

consists of two parts. The first part defines language 

elements that allow semantic description of properties of an 

app. This includes name, textual description, version, and 

others. Also, the interface of the app is described (entry 

points, exit point, inputs, outputs) and other information 

needed to start the app, provide data to it and receive 

results. This part of the language is not a major subject of 

this paper. The second part which is the main focus of this 

paper allows the formal description of an App-Ensemble. 

The language specification [14] also includes a formal 

semantic vocabulary (AOF-Vocabulary) specified using 

RDFS [13] and concepts from OWL 2 [15]. 

App-Ensembles are described using a graphical notation 

that is based on BPMN 2.0 [16]. This paper is only 

concerned with version 2.0 of BPMN. Therefore, from here 

on the version is omitted for brevity.  

The combination of a well-known business process 

modeling language and Semantic Web technologies makes 

it possible to easily publish BPM and App-Ensembles in 

form of Linked Data [2,4]. This enables integration in 

collaborative Virtual Enterprises as described in [8].  

For execution the model is serialized as RDF using 

concepts defined in the AOF-Vocabulary, from a BPMN-

Ontology [10], Friend of a friend (FOAF) [17], Dublin Core 

(DC) [6], RDF and RDFS [13]. There is a graphical 

representation which is exclusively based on modeling 

elements of BPMN. This paper is mainly concerned with 

the graphical notation because it is well-suited to illustrate 

an App-Ensemble model for a use case. 

Graphical Modeling Elements  

AOF-L uses a subset of BPMN modeling elements as 

shown in Figure 2. BPMN modeling elements other than 

those shown are not allowed. All BPMN connection rules 

that apply to the allowed modeling elements are valid (for 

an overview see [16], p. 40ff). None of the semantics of 

BPMN are contradicted. 
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 Figure 2: Subset of BPMN modeling elements used in AOF-L 
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Activities 

By definition, a User Task is executed by a human being 

through a user interface. In AOF-L this task type is used to 

represent an app in an App-Ensemble. The Activity type 

User Task is extended in compliance with the BPMN 

specification ([16], p 55) with a reference to a semantic app 

description. The activity is completed when the app is 

closed by the user or an interaction with the app is 

performed that yields output values. 

A Manual Task is executed by a human without the help of 

an app or other type of user interface. A typical example in 

the use case domain would be to open or close a valve. By 

using a Manual Task in an App-Ensemble tasks can be 

modeled that users have to perform without assistance of an 

app. They are treated as tasks and have to be confirmed as 

completed to the execution engine before the control flow 

continues past the activity. 

Gateways 

Gateways are used to split or join a workflow. The flow of 

control is affected in the same manner as in standard 

BPMN. However, due to the fact that User Tasks represent 

apps that run on a physical device and can be used by a user 

only one at a time, no real parallelism is possible. Thus, 

when two or more branches with User Tasks are activated 

at the same time as a result of a split, they are placed in an 

App-Dash. The App-Dash is a list of available apps – 

comparable to a task list in classical business process 

execution engines. Where appropriate, the user is asked by 

the process execution engine to choose between possible 

next apps to continue the workflow.  

The behavior of the gateways in an App-Ensemble is 

described in the following paragraphs. This is a 

specialization of the behavior specified by BPMN. 

An XOR-Split splits an App-Ensemble workflow into 

multiple branches (see Figure 3). Exactly one of the 

branches is activated based on user decision. The other 

branches are not activated. An XOR-Join joins multiple 

workflow branches. The workflow continues as soon as one 

of the incoming branches is activated. In an App-Ensemble, 

this occurs when at least one app (User Task) directly 

preceding the gateway finishes. 

The AND-Split splits an App-Ensemble workflow into 

multiple branches that are all activated at the same time. 

This results in multiple new apps placed in the users App-

Dash (see Figure 3). An AND-Join allows the workflow to 

continue when all of the incoming branches are activated, 

i.e. when all preceding apps have finished. 

For an OR-Split the App-Ensemble workflow is split based 

on user decision. The user may decide to activate one or 

more branches resulting in one or more apps being placed 

in the App-Dash (see Figure 3). At an OR-Join the 

workflow is continued based on user decision when at least 

one incoming branch has been activated. 
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Figure 3: Branching XOR, AND & OR gateways 

Events 

Data can be received from a superordinate Process using 

Throwing Message Events (intermediate or initiating). Data 

can be sent to a superordinate process using Catching 

Message Events (intermediate or terminating). 

Connecting Objects 

The Control Flow arrow is used just as in BPMN. Message 

Flow arrows are used to connect an App-Ensemble with 

superordinate business processes. They are used to 

synchronize the business process with the App-Ensemble. 

Swimlanes 

Optionally, App-Ensembles may be placed in their own 

Pool. They must be placed in their own exclusive Pool 

whenever the BPM describes a collaboration (more than 

one participant). Lanes may be used to organize the 

modeling elements in the Pool but have, as in BPMN, no 

relevance to the control flow. 

Start and End Events are optional according to the BPMN 

specification (see [16], p. 237 and p. 246). In AOF-L they 
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are not allowed, except for initiating and terminating 

message events.  

Textual Notation of the Model 

The notation of an App-Ensemble model is facilitated using 

RDF. Since the focus of this paper is the graphical notation 

for a specific use case, this shall be illustrated only briefly 

by the example of a single User Task representing an app. 

Using the BPMN ontology [10] and the AOF-Vocabulary 

an instance of a User Task can be described in Turtle RDF 

notation [1] as follows: 

@prefix aof: <http://eatld.et.tu-dresden.de/aof/>. 

@prefix bpmn2: <http://dkm.fbk.eu/index.php/ 

                                 BPMN2_Ontology#>. 

@prefix ae: <http://example#>. 

 

ae:userTask1 a aof:App_1;  

  bpmn2:id "App_1"; 

  bpmn2:name "App 1". 

 

In the listing, ae:userTask_1 is an instance of 

aof:App_1 (in Turtle “a” is an abbreviation for rdf:type 

which describes an instance-of relation). aof:App1 is a 

resource describing the app semantically. The semantic 

description describes the interface of the app by defining 

entry points with input variables of a certain type and exit 

points with output variables (for an example of a semantic 

app description see [14]).  

All other modeling elements can be written in the same 

fashion. Naturally, any other RDF serialization such as N3 

or RDF-XML can be used in place of Turtle. 

USE CASE EXAMPLE 

The use case presented here is loosely based on Use Case 1, 

Control of a Nuclear Power Plant, from the FoMHCI 

workshop call. A nuclear power plant is a special type of 

process plant with very high security requirements. 

However, like any other process plant, it consists of 

machines, devices, physical connections (pipes, wires, etc.) 

sensors and other equipment. The use case focuses on a 

fraction of a business process model (BPM) that models 

maintenance tasks for the feedwater pumps of the nuclear 

power plant, see Figure 4.  

Existing BPM can be adapted for execution with App-

Ensembles by adding message events before and after tasks 

that are completed with the help of apps. In the use case, the 

BPM is triggered when the maintenance interval for the 

feedwater pump is reached. The presented model has been 

simplified for reasons of brevity but the basic workflow is 

realistic.  

At the beginning, the maintenance personnel checks the 

state of the safety valves and performs a visual inspection 

of the pump (e.g. for leakage). The latter two tasks are 

manual and are not supported by any tool controlled by the 

process. If something notable is observed a report on the 

findings is created. Finally, the pump diagnosis is 

performed and another report is written. In a BPM that is 

not supported by an App-Ensemble, the process looks just 

the same, with the exception of the additional send and 

receive events. Thus, existing BPM can be easily extended 

for use with App-Ensembles by adding a participant (in 

BPMN terminology this refers to separate process) 

containing the App-Ensemble model to the collaboration. 
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Figure 4: BPM perspective on the maintenance workflow 

In Figure 5, the process is modeled from the perspective of 

the App-Ensemble. The maintenance personnel uses two 

apps for diagnosing the pump. The control flow starts with 

a token being generated either on the receiving start 

message event or the receiving intermediate message event. 

In the first case, the control flow splits into two parallel 

branches and the token is cloned. Now the user must 

serialize this parallelism by choosing the order in which the 

apps shall be presented by selecting an app from the App-

Dash. Only when both apps have been used (i.e. the activity 

has been completed) and expected data has been yielded, 
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the control flow continues and a report can be created. 

There is a second entry point to the App-Ensemble that is 

triggered when a report has to be written after preliminary 

inspection of the pump. This shows that parts of App-

Ensembles can be flexibly reused and may be instantiated 

multiple times. After the result data set (which may consist 

of the diagnosis result and/or the report) is returned to the 

superordinate process, the token is consumed. 
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Figure 5: App-Ensemble perspective on the maintenance 

workflow 

 

FORMAL MODELING  

On the one hand, the AOF-Language is RDF-based and 

represents an RDF graph. On the other hand, it makes 

heavy use of concepts from BPMN. Thus, it is self-evident 

to evaluate formalization via methodologies that have been 

used to formalize business process models. In the following 

section this is investigated in order to discuss the approach 

during the workshop. 

BPMN-based model 

Since App-Ensembles can be expressed via a subset of 

BPMN modeling elements it is possible to formally model 

an App-Ensemble process along the lines described in [3]: 

An App-Ensemble process is a tuple 𝒫 =  

(𝒪, 𝒜, ℰ, 𝒢, {𝑡𝑈}, {𝑡𝑀}, {𝑒𝑆}, {𝑒𝐼𝑅}, {𝑒𝐼𝑆}, {𝑒𝐸}, 𝒢 𝑆, 𝒢𝐽, 𝐺𝑂𝑆 , 

 𝒢𝑂𝐽 , 𝒢 𝑋, 𝒢𝑀, ℱ) where: 

𝒪 is a set of objects which can be partitioned into disjoint 

sets of activities 𝒜, events ℰ, and gateways 𝒢,  

𝒜  can be partitioned into disjoint sets of user tasks {𝑡𝑈} 

and manual tasks {𝑡𝑀},  

ℰ can be partitioned into disjoint sets of start message 

events  {𝑒𝑆}, receiving intermediate message events  {𝑒𝐼𝑅}, 

sending intermediate message events {𝑒𝐼𝑆},  and end 

message events {𝑒𝐸},  

𝒢 can be partitioned into disjoint sets of splitting AND 

gateways 𝒢 𝑆, joining AND gateways 𝒢𝐽, splitting OR 

gateways 𝐺𝑂𝑆, joining OR gateways 𝒢𝑂𝐽 , splitting XOR 

gateways 𝒢 𝑋, and joining XOR gateways 𝒢𝑀.  

ℱ ⊆ 𝒪 × 𝒪 is the control flow relation, i.e. a set of 

sequence flows connecting objects.  

Within this definition, an App-Ensemble is a directed graph 

with nodes 𝒪 and arcs ℱ. For any node 𝑥 ∈ 𝒪, input nodes 

of 𝑥 are given by 𝑖𝑛(𝑥) = {∈ 𝒪 | 𝑦ℱ𝑥} and output nodes of 

𝑥 are given by 𝑜𝑢𝑡(𝑥) = {∈ 𝒪 | 𝑥ℱ𝑦}. 

Based on this formal syntax, an App-Ensemble Model can 

be formulated and requirements for it being well-formed 

can be defined. As shown in [3] the model can now be 

mapped to Petri nets.  

DISCUSSION 

It should be noted that due to ambiguities in the BPMN 

specification in certain cases the mapping may be 

problematic. For instance when multiple start events occur 

it is not clearly defined whether a new process instance 

should be created or a new token should be created in the 

currently running instance. However, aside from these 

ambiguities, transformation to Petri nets opens a rich and 

well-established set of tool for analysis and verification of 

App-Ensembles. 

The App-Ensemble model relies on the formal BPMN-

ontology [10]. Consequently, it inherits many of its 

strengths as well as its limitations. Strengths include the 

ability to run reasoning services on the model (e.g. for 

consistency checking or inferring implicit types), the ability 

to query the model using languages such as SPARQL, and 

the ability to perform a formal verification regarding 

contradictions and BPMN compliance. Due to OWL 2 

limitations,  some conditions and default values described 

in the BPMN specification are not encoded in the ontology 

(see [10], p. 5f). 

App-Ensembles are interactive systems of user interfaces. 

The granularity of the App-Ensemble model ends at the 

level of the app – a self-contained user interface that is 

tailored for tending to a well contained need. It should be 

investigated if the notion of app can be seen as a 

specialization of the term user interface as defined in [11]. 

If so, instances of user interfaces in App-Ensembles could 

be modeled using the FILL and VFILL language. While 

AOF-L is restricted to modeling input and output of an app 

that is provided by a business process, FILL can model 

input and output that is generated or consumed by the user 
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(e.g. changing diagnosis parameters and viewing the 

results). By linking a FILL model of an app user interface 

to a semantic app-description a more complete model of the 

whole interactive system could be created. 

CONCLUSION AND OUTLOOK 

This research has presented advancements towards a 

language for modeling App-Ensembles. Its application in a 

use case has been shown to substantiate the ability of the 

language to model interactive systems of user interfaces. 

The ontological formalization of the AOF-L is not yet 

complete.  

Currently, the authors are working on extending the 

AOF-Vocabulary towards a lightweight ontology and 

joining it with the BPMN-ontology to create a unified 

formal ontology of the complete AOF-Language. 

Since AOF-L is an RDF-based language, RDF-based 

approaches to formalization should also be considered. In 

[5] bipartite Graphs are used as an intermediate model for 

RDF. The authors of [7] model RDF as a directed 

hypergraph which is a very concise and expressive model 

for RDF graphs. These approaches will be investigated in 

coming research.  
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ABSTRACT 

Formal methods provide support for validation and verifica-

tion of interactive systems by means of complete and un-

ambiguous description of the envisioned system. They can 

also be used (for instance in the requirements/needs identi-

fication phase) to define precisely what the system should 

do and how it should meet user needs. If the entire devel-

opment process in supported by formal methods (for in-

stance as required by DO 178C [7] and its supplement 333 

[8]) then classical formal method engineers would argue 

that the resulting software is defect free. However, events 

that are beyond the envelope of the specification may occur 

and trigger unexpected behaviors from the formally speci-

fied system resulting in failures. Sources of such failures 

can be permanent or transient hardware failures, due to 

(when such systems are deployed in the high atmosphere 

e.g. aircrafts or spacecrafts) natural faults triggered by al-

pha-particles from radioactive contaminants in the chips or 

neutron from cosmic radiation. This position paper propos-

es a complementary view to formal approaches first by 

presenting an overview of causes of unexpected events on 

the system side as well as on the human side and then by 

discussing approaches that could provide support for taking 

into account system faults and human errors at design time. 

Author Keywords 

Formal methods; interactive systems; human reliabil-

ity; fault-tolerant systems. 

ACM Classification Keywords 

D.2.2 [Software] Design Tools and Techniques – Computer 

aided software engineering (CASE). 

INTRODUCTION 

The overall dependability of an interactive system is the 

one of its weakest component and there are many compo-

nents in such systems ranging from the operator processing 

information and physically exploiting the hardware (input 

and output devices), interaction techniques, to the interac-

tive application and possibly the underlying non interactive 

system being controlled. 

Building reliable interactive systems is a cumbersome task 

due to their very specific nature. The behavior of these 

reactive systems is event-driven. As these events are trig-

gered by human operators, these systems have to react to 

unexpected events. On the output side, information (such as 

the current state of the system) has to be presented to the 

operator in such a way that it can be perceived and inter-

preted correctly. Lastly, interactive systems require address-

ing together hardware and software aspects (e.g. input and 

output devices together with their device drivers).  

In the dependable computing domain, empirical studies 

have demonstrated (e.g. [20]) that software failures may 

occur even though the development of the system has been 

extremely rigorous. One of the many sources of such fail-

ures is called natural faults [1] triggered by alpha-particles 

from radioactive contaminants in the chips or neutron from 

cosmic radiation. A higher probability of occurrence of 

faults [31] concerns systems deployed in the high atmos-

phere (e.g. aircrafts) or in space (e.g. manned spacecraft 

[13]). Such natural faults demonstrate the need to go be-

yond classical fault avoidance at development time (usually 

brought by formal description techniques and properties 

verification) and to identify all the threats that can impair 

interactive systems. 

WHY FORMAL METHODS AND ZERO DEFECT 
APPROACHES ARE NOT ENOUGH  

To be able to ensure that the system will behave properly 

whatever happens, a system designer has to consider all the 

issues that can impair the functioning of that system. In the 

perspective of identifying all of them, in the domain of 

dependable computing, Avizienis et al [1] have defined a 

typology of faults. This typology leads to the identification 

of 31 elementary classes of faults. Figure 1 presents a sim-

plified view of this typology and makes explicit the two 

main categories of faults (top level of the figure): i) the 

ones occuring at development time (including bad designs, 

programming errors, …) and ii) the one occuring at opera-
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tion times (right-hand side of the figure including user error 

such as slips, lapses and mistakes as defined in [25]). 

We propose to organize the leaves of the typology in five 

different groups as each of them brings a special problem 

(issue) to be addressed: 

 Development software faults (issue 1): software faults 

introduced by a human during the system development.  

 Malicious faults (issue 2): faults introduced by human 

with the deliberate objective of damaging the system 

(e.g. causing service denial or crash of the system).  

 Development hardware faults (issue 3): natural (e.g. 

caused by a natural phenomenon without human in-

volvement) and human-made faults affecting the hard-

ware during its development.  

 Operational natural faults (issue 4): faults caused by a 

natural phenomenon without human participation, af-

fecting the hardware and occurring during the service 

of the system. As they affect hardware, they are likely 

to damage software as well.  

 Operational human-errors (issue 5): faults resulting from 

human action during the use of the system. These faults 

are particularly of interest for interactive system and 

the next subsection describe them in detail. 

We consider that malicious faults are beyond the scope of 

this position paper and will thus not be further discussed. 

However, it might be interesting within the workshop to 

address this aspect that is more and more relevant with the 

open, collaborative interactive systems.  

Considering system faults 

In the domain of fault-tolerant systems, empirical studies 

have demonstrated (e.g. [20]) that software crashes may 

occur even though the development of the system has been 

extremely rigorous. One of the many sources of such crash-

es is called natural faults [1] triggered by alpha-particles 

from radioactive contaminants in the chips or neutron from 

cosmic radiation. A higher probability of occurrence of 

faults [31] concerns systems deployed in the high atmos-

phere (e.g. aircrafts) or in space (e.g. manned spacecraft 

[13]). Furthermore the evolution of modern IC components 

may lead in the next future to a higher probability of physi-

cal faults in operation. Although the recommendation for 

avionics systems is 100 FITs over 25 years lifetime, the 

current Deep Sub-Micron (DSP) technology may lead to a 

failure rate up to 1000 FITs, only during 5 years operational 

life time [28]. This is major worry in the avionics industry 

since this tendency has two bad sided effects, i) the reduc-

tion of the life time of the systems and ii) the increase of the 

failure rate due to hardware faults. Such natural faults 

demonstrate the need to go beyond classical fault avoidance 

at development time (usually brought by formal description 

techniques and properties verification) and to identify all 

the threats that can impair interactive systems. 

Considering human errors 

Several contributions in the human factors domain deal 

with studying internal human processes that may lead to 

actions that can be perceived as erroneous from an external 

view point. In the 1970s, Norman, Rasmussen and Reason 

have proposed theoretical frameworks to analyze human 

error. Norman, proposed a predictive model for errors [21], 

where the concept of "slip" is highlighted and causes of 

error are rooted in improper activation of patterns of action. 

 

Figure 1. Typology of faults in computing systems (adapted from [1]) and associated issues for the resilience of these systems 
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Rasmussen proposes a model of human performance which 

distinguishes three levels: skills, rules and knowledge (SRK 

model) [25]. This model provides support for reasoning 

about possible human errors and has been used to classify 

error types. Reason [26] takes advantages of the contribu-

tions of Norman and Rasmussen, and distinguishes three 

main categories of errors: 

1. Skill-based errors are related to the skill level of perfor-

mance in SRK. These errors can be of one of the 2 fol-

lowing types: a) Slip, or routine error, which is defined 

as a mismatch between an intention and an action [21]; 

b) Lapse which is defined as a memory failure that pre-

vents from executing an intended action. 

2. Rule-based mistakes are related to the rule level of per-

formance in SRK and are defined as the application of an 

inappropriate rule or procedure. 

3. Knowledge-based errors are related to the knowledge 

level in SRK and are defined as an inappropriate usage 

of knowledge, or a lack of knowledge or corrupted 

knowledge preventing from correctly executing a task. 

At the same time, Reason proposed a model of human per-

formance called GEMS [26] (Generic Error Modelling 

System), which is also based on the SRK model and dedi-

cated to the representation of human error mechanisms. 

GEMS is a conceptual framework that embeds a detailed 

description of the potential causes for each error types 

above. These causes are related to various models of human 

performance. For example, a perceptual confusion error in 

GEMS is related to the perceptual processor of the Human 

Processor model [5].  

Causes of errors and their observation are different concepts 

that should be separated when analyzing user errors. To do 

so, Hollnagel [15] proposed a terminology based on 2 main 

concepts: phenotype and genotype. The phenotype of an 

error is defined as the erroneous action that can be ob-

served. The genotype of the error is defined as the charac-

teristics of the operator that may contribute to the occur-

rence of an erroneous action.  

These concepts and the classifications above provide sup-

port for reasoning about human errors and have been wide-

ly used to develop approaches to design and evaluate inter-

active systems [29]. As pointed out in [21] investigating the 

association between a phenotype and its potential genotypes 

is very difficult but is an important step in order to assess 

the error-proneness of an interactive system. 

PROPOSALS FOR DEALING WITH SYSTEM FAILURES 
AND HUMAN ERRORS 

Although system failures and human errors can both occur 

at runtime and be strongly correlated, these two problems 

are handled separately when developing an interactive sys-

tem. 

Dealing with operational natural faults 

The issue of operational natural faults has hardly been stud-

ied in the field of human-computer interaction and just a 

few contributions are available about this topic. However, 

this issue has long been studied in the field of dependable 

computing systems. As the operational natural faults are 

unpredictable and unavoidable, the dedicated approach for 

dealing with them is fault-tolerance [1] that can be achieved 

through specialized fault-tolerant architectures, by adding 

redundancy or diversity using multiple versions of the same 

software or by fault mitigation: reducing the severity of 

faults using barriers or healing behaviors [19]. 

To deal with these faults, we proposed two approaches: 

 The reconfiguration of the interaction techniques or 

possibly the organization of display when required by 

the occurrence of hardware faults [18]. 

 The adaptation of fault-tolerant architecture for devel-

oping fault-tolerant widgets as proposed in [33] or for 

extending this approach to all the interactive compo-

nents of the interactive system (including for example 

the interaction techniques) as proposed in [10]. 

Dealing with human errors 

Many techniques have been proposed for identifying which 

human errors may occur in a particular context and what 

could be their consequences in this given context. 

 Several human reliability assessment techniques such 

as CREAM [12], HEART [35], and THERP [33] are 

based on task analysis. They provide support to assess 

the possibility of occurrence of human errors by struc-

turing the analysis around task descriptions. Beyond 

these commonalities, THERP technique also provides 

support for assessing the probability of occurrence of 

human errors. 

 Task models based techniques have also been proposed 

to identify, describe and analyze potential human errors 

and human tasks deviation such as in [29], [9] and [23]. 

Dealing with both operational natural faults and human 
errors 

Integrated approaches can be envisioned for taking into 

account both system faults and human errors. Such ap-

proaches can leverage existing techniques in the fields of: 

dependable computing, human reliability assessment and 

human computer interaction. As proposed in [16], a step-

wise and iterative process can be used to identify in a sys-

tematic way human error and system failures for an under-

development interactive systems. From this systematic 

identification, the construction of enriched task models 

(embedding potential human errors and system faults), can 

provide support for analyzing their impact and proposing 

changes for modifying the system. 

ILLUSTRATIVE EXAMPLE FROM THE ATM WORLD 

The typology of faults introduced in Figure 1 can be easily 

applied to any application providing support to understand-
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ing how the approach followed for the development of a 

system is addressing the various faults.  

In the case of AMAN application proposed for the work-

shop, the various faults can lead to failures in the manage-

ment of the aircrafts by the air traffic controllers. For in-

stance, as detailed in [17], we have analysed 3 types of 

failures leading to 3 automation degradation scenarios: 

advisories from AMAN being not available anymore, advi-

sories being frozen for a while then starting again and advi-

sories provided being delayed.  

If a rigorous development process is followed and formal 

methods are used (as proposed in DO178-C [7]) one could 

expect that such failures would not occur. However, natural 

faults could easily produce such undesired behaviours. Sim-

ilarly human errors such as not perceiving the advisories or 

interpreting them incorrectly could also end up with similar 

malfunction (but this time at organizational level only as 

the system is supposed to function correctly).  

CONCLUSION  

This position paper argues that formal methods are good 

candidates for dealing with development faults. However, 

this position paper has also presented a typology of faults 

that identify other sources of failures that development 

faults: natural faults and human errors.  

In order to cover all these faults and to prevent related fail-

ures to occur we argued that multiple combined approaches 

(including formal methods) should be applied. For instance, 

it is interesting to note that detection and recovering mech-

anisms for natural faults could be described using formal 

methods in order to guarantee that their behaviour will be 

conformant with the expected one (as presented in [34]).  

We have not addressed issues related to malicious faults 

that could however be discussed during the workshop.  
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ABSTRACT 

During early phases of the development of an interactive 

system, future system properties are identified (through 

interaction with end users e.g. in the brainstorming and 

prototyping phases of the development process, or by re-

quirements provided by other stakeholders) imposing re-

quirements on the final system. Some of these properties 

rely on informal aspects of the system (e.g. satisfaction of 

users) and can be checked by questionnaires, while other 

ones require the use of formal methods. Whether these 

properties are specific to the application under development 

or generic to a class of applications, the verification of the 

presence of these properties in the system under construc-

tion usually involve verification tools to process the formal 

description of the system. The usability [26] of these tools 

has a significant impact on the V&V phases which usually 

remains perceived as very resource consuming. This posi-

tion paper proposes the application of action theory to iden-

tify complex aspects of verification and exploits it for iden-

tifying areas of improvement.  

Author Keywords 

Formal methods; interactive systems; object oriented Petri 

nets; Analysis. 

ACM Classification Keywords 

D.2.2 [Software] Design Tools and Techniques – Computer 

aided software engineering (CASE). 

INTRODUCTION 

Nowadays interactive applications are deployed in more 

and more complex command and control systems including 

safety critical ones. Dedicated formalisms, processes and 

tools are thus required to bring together various properties 

such as reliability, dependability and operability. In addi-

tion to standard properties of computer systems (such as 

safety or liveness), interaction properties have been identi-

fied. Properties related to the usage of an interactive system 

are called external properties [6] and characterize the capac-

ity of the system to provide support for its users to accom-

plish their tasks and goals, and prevent or help to recover 

from errors. Although all types of properties are not always 

completely independent one from each other (any might be 

conflicting), external properties are related to the user’s 

point of view and usability factor, whereas internal proper-

ties are related to the design and development process of the 

system itself (modifiability, run time efficiency). Interactive 

systems have to support both types of properties and dedi-

cated techniques and approaches have been studied for this 

purpose, amongst them are formal methods. Formal lan-

guages have proven their value in several domains and are a 

necessary condition to understand, design, develop systems 

and check their properties. 

Formal methods have been studied within the field of HCI 

as a means to analyze in a complete and unambiguous way 

interactions between a user and a system. Several types of 

approaches have been developed [9], which encompass 

contributions about formal description of an interactive 

system and/or formal verification of its properties. Other 

approaches such as [6] exploit formal methods for under-

standing interactive systems and provide a better descrip-

tion of their specificities.  

The use of formal methods depends on the phase of the 

development process describing the activities necessary to 

develop the interactive system under consideration. In the 

case of critical interactive systems, [16] proposes a devel-

opment process relying on formal methods and taking into 

account both interactive and critical aspects of such systems 

which necessitates several formal descriptions used by dif-

ferent user types (system designers, human factor special-

ists…). Consequently, the usability of tools for validation 

and verification of these interactive systems target will 

depend on their users’ activity in the development process. 

Whether being used as a means for describing in a complete 

and unambiguous way the interactive system or as means 

for verifying properties, formal description techniques and 

their associated tools need to be designed to be usable and 

not error prone.  
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The paper proposes a user–centered view on the use of 

formal methods. We take as a running example the ICO 

notation [18] and its associated tool Petshop [2] and use 

Norman’s action theory [19] as a framework for identifying 

usability gaps and error sources. We believe however that 

this framework would be applicable to other notations and 

tools and hope to discuss this during the workshop.  

VALIDATION AND VERIFICATION TOOLS FOR THE 
DEVELOPMENT OF INTERACTIVE CRITICAL? 
SYSTEMS 

Norman’s action theory is quickly presented in Figure 1. Its 

application to formal modelling is presented in Figure 2.  

 

Figure 1. The seven stages of the action theory 

That figure shows the refinement of specific activities to 

take into account modelling activities. The two main stages 

we are focusing on are:  

 On the execution side, the activity of going from an in-

tention to its actual transcription into some model,  

 On the perception side, the activity of perceiving model 

behavior and interpreting this perception. 

 
Figure 2. Formal modelling within the action theory 

 

User tasks when validating and verifying interactive 
critical systems 

We have identified three main tasks when verifying formal 

model, and Petri nets (which is the underlying formalism of 

ICOs) in particular: analysis, simulation in conjunction of 

the edition task the formers reflecting the verifiability [11] 

and the latter the executability [8] aspects. 

Simulation is the task where users (people building the 

formal model) have to check that the model built exhibits 

the expected behavior. The interpretation task can be eased 

if the state changes in the model are shown in an animated 

way thus reducing the users’ activity of comparing the cur-

rent state with the previous one.  

For analysis related tasks, users check the validity of some 

properties hold on the model. One of the issues is then to 

understand the analysis result (for instance one place in not 

in any “P invariant”) in Petri net tools and then to map this 

analysis result with the goal (was this place meant to be 

unbounded?).  

Existing tools for validation and verification of interac-
tive critical systems 

Verification and validation of formal models can be divided 

in two categories, whether they rely on static analysis or on 

simulation (step by step, interactive…). 

System models 

A representative classification of User Interface Description 

Languages (UIDLs) have shown only few frameworks de-

scribing the interactive system behavior and providing sup-

port for analysis [10]. 

Among these, Marigold [24] addresses limited validation 

and verification analysis based on reachability graph analy-

sis and allows exporting to the Integrated Net Analyzer tool 

[22] offering other analysis capabilities. Proton++ [14] only 

provides static analysis as the tool only handles gesture 

conflict detection between models at compilation time. ICO 

[18] provides support for validation and verification but 

only through invariant analysis (Place/Transition invariants) 

provided by the Petshop tool as detailed in the tool descrip-

tion section.  

Finally, the colored Petri nets (CPN) approach is more 

complete in terms of analysis enabling validation, verifica-

tion and performance analysis accomplished by all different 

types of analysis techniques (e.g. reachability analysis) 

except invariants. The analysis of CPN models is supported 

by the CPN Tools [13].  

In addition, both CPN and PetShop enable simulation of the 

models they produce. However, CPN does not connect the 

model to the user interface of the application requiring an 

additional step when interactive application are concerned, 

forcing the system designers .  

Goals (Model a system) 

Intention to act 

Sequence of 

actions 

Writing model 

Interpreting the 

perception 

Evaluation of 
interpretation 

Perceiving model’s 

behaviour 

The world 

Intention to 

act 

Sequence of 

actions 

Execution of the 
action sequence 

Interpreting the 
perception 

Evaluation of 

interpretation 

Perceiving the state 
of the world 

The world 

Goals 

Execution  

path 

Interpretation 

path  

Interpretation 

path  

Execution  

path 

25



Tasks models 

CTT [21] proposed an approach based on formal model-

checking (with CADP1 toolset) of LOTOS [12] specifica-

tions of tasks between the user and the system. The 

HAMSTERS tool [15] (supporting the HAMSTERS nota-

tion) also provides static analysis support via basic check 

on the model’s structure.  

However, here again, tasks have to be checked on the user 

interface and simulation should integrate execution on the 

user interface. If this is not the case then a gulf exists be-

tween the task model and its simulation and the actual be-

havior of the interactive application.  

Tools Usability  

Building or modifying system and task models belongs to 

the type of human activities that is highly demanding on the 

user's side. Figure 2 provides a generic framework for in-

vestigating where the main difficulties can occur, and thus 

to provide design rules for environments to support user's 

activities and reduce difficulties. 

In order to increase usability during validation and verifica-

tion phases, tools should provide "continuous and perma-

nent feedback", “modeless support to users’ tasks”, “revers-

ibility of actions (undoing actions)” and taking into account 

the different formalisms’ characteristics. This dimension 

becomes particularly important when considering large and 

complex interactive systems for which both user and system 

models are used jointly. 

CIRCUS: A CASE TOOL FOR FORMAL ANALYSIS AND 
DESCRIPTION OF INTERACTIVE SYSTEMS 

In the following section, we illustrate the validation and 

verification of interactive system using formal methods 

with the Circus suite which combines task models in 

HAMSTERS and high level Petri nets in 

Notations supported by the tool suite 

The ICO notation 

The ICO notation [18] (Interactive Cooperative Objects) is 

a formal description technique devoted to specify interac-

tive systems. Using high-level Petri nets for dynamic be-

havior description, the notation also relies on object-

oriented approach (dynamic instantiation, classification, 

encapsulation, inheritance and client/server relationships) to 

describe the structural or static aspects of systems. 

This notation have been applied to formally specify interac-

tive systems in the fields of Air Traffic Management [18], 

satellite ground systems [20] and cockpits of military [4] 

and civil [1] aircrafts. 

                                                           

1 http://cadp.inria.fr/ 

The HAMSTERS’ tool tasks notation 

HAMSTERS features a task model notation that enables 

structuring users ’goals and sub-goals into a hierarchical 

tasks tree in which qualitative temporal relationship 

amongst tasks are described by operators [17]. Goals or 

sub-goals are modeled using the type of task called “ab-

stract”. An abstract task can be refined in 3 types of tasks: 

“user task”, “system tasks” and “interactive tasks”. A “user 

task” can be refined in the following sub-types: “perceptive 

task”, “cognitive task” and “motor task”. An interactive 

task can be refined in the following sub-types: “input task” 

and “output task”. 

In addition, [25] extended the notation to integrate objects, 

knowledge and information; thus describing the exchanges 

between users and the systems they interact with. 

Tool description 

The following sub-sections describe both tools (system and 

task models’ tool) which are merged into a single frame-

work called Circus as introduced in [2]. 

Though one recommendation is to provide modeless tools, 

PetShop combines these three modes and allow the users 

direct visualization of the structural analysis results while 

editing and simulating the Petri nets’ models. These analy-

sis mode can be activated without stopping either the edi-

tion or the simulation. In addition, a dedicated panel pre-

sents the incidence matrix and the P/T invariants, which 

allow the identification of potential deadlock in the system 

models. 

The HAMSTERS tool [15] is the part of the framework 

which enable task model editing and analysis.  

The Circus tool provides a framework for both system and 

task models. It enables the co-execution of the system with 

the corresponding user’s task model [2] which corresponds 

to executability related tasks. Regarding the verifiability, 

the tool provides a checking mechanism to ensure tasks and 

system models are compatible. 

Tool usability 

The Circus tool targets engineers, system designers and 

human factors specialist and helps them achieve their spe-

cific tasks while developing interactive critical systems. 

Their objective is to design and develop usable, reliable and 

dependable applications for these critical systems. It en-

compasses formal verification of the system’s behavior as 

well as its compatibility with the system’s targeted users.  

The Circus tool development has been, so far, oriented 

towards enhancing one particular dimension of usability: 

effectiveness. We developed new capabilities so the tools’ 

users can achieved their goals by being able to complete 

their tasks during most phases of the development process. 

Therefore, the tool enables the analyst to formally validate 

both system and tasks models and ensure they match so that 

the end-users will be able to perform their tasks on the sys-

tem described. In addition, the tool allows the assessment of 
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the impact of dependability on usability on the considered 

interactive critical systems as well as exhibiting design 

choices and trade-offs in (potentially) conflicting user inter-

face guidelines. Finally Circus provides support for usabil-

ity testing by providing execution logs at the model level so 

system designers are able to match the potential issues with 

the model's nodes and opens the way to user performance 

measurement.  

Although the various Circus user types are identified, we 

did not measure their satisfaction and analyze improve-

ments to be made with respect to their user profiles and the 

related tool functionalities. The evaluation of users’ effi-

ciency during verification and validation is also identified 

for future work with performance measures among others. 

ILLUSTRATIVE EXAMPLE: WXR APPLICATION 

This section illustrates the use of the Circus tool which 

enables the formal description of interactive critical system 

as a socio-technical system; and which supports is valida-

tion and verification. 

Case study description 

Weather radar (WXR) is an application currently deployed 

in many cockpits of commercial aircrafts. It provides sup-

port to pilots’ activities by increasing their awareness of 

meteorological phenomena during the flight journey, allow-

ing them to determine if they may have to request a trajec-

tory change, in order to avoid storms or precipitations for 

example.  

    

Figure 3 - Image of a) the weather radar control panel b) of 

the radar display manipulation 

Figure 3 presents a screenshot of the weather radar control 

panel, used to operate the weather radar application. This 

panel provides two functionalities to the crew.  The first 

one is dedicated to the mode selection of weather radar and 

provides information about status of the radar, in order to 

ensure that the weather radar can be set up correctly. The 

operation of changing from one mode to another can be 

performed in the upper part of the panel.  

The second functionality, available in the lower part of the 

window, is dedicated to the adjustment of the weather radar 

orientation (Tilt angle). This can be done in an automatic 

way or manually (Auto/manual buttons).  Additionally, a 

stabilization function aims to keep the radar beam stable 

even in case of turbulences. The right-hand part of Figure 3 

presents an image of the controls used to configure radar 

display, particularly to set up the range scale (right-hand 

side knob with ranges 20, 40, … nautical miles).  

Figure 4 shows screenshots of weather radar displays ac-

cording to two different range scales (40 NM for the left 

display and 80 NM for the right display). Spots in the mid-

dle of the images show the current position, importance and 

size of the clouds.  

 

Figure 4 - Screenshot of weather radar displays 

Formal modelling of the application’s behavior using 
ICO 

The first model presented here describes how it is possible 

to handle the weather radar configuration of both its mode 

and its tilt angle.  

 

Figure 5 - Behavior of the WXR mode selection and tilt angle 

setting 

Figure 3 shows the interactive means provided to the user 

to: 

 Switch between the five available modes (upper part of 

the figure) using radio buttons (the five modes being 

WXON to activate the weather radar detection, OFF to 

switch it off, TST to trigger a hardware checkup, STDBY 

to switch it on for test only and WXA to focus detection 

on alerts). 
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 Select the tilt angle control mode (lower part of the fig-

ure) amongst three modes (fully automatic, manual with 

automatic stabilization and manual selection of the tilt 

angle. 

The corresponding task model is not presented in this paper 

but is described in [15]. 

Illustration of verification and validation tasks to be tool 
supported  

In this section we emphasis on the validation aspect of the 

system model presented in Figure 5. When activated, the 

static analysis mode of PetShop displays a dedicated panel 

we do not present in this paper but which results are also 

displayed in the main edition view as shown Figure 6. The 

green overlay on the places and transitions identifies the 

node part of the model’s invariants otherwise the red over-

lay is used as for the place UpdateAngleRequired. Places 

with yellow borders are syphons whereas taps use a blue 

stroke. 

In order to determine which nodes belong to the same in-

variant as another node, a model pop-up menu is provided, 

taking over the standard pop-up menu for edition. This 

modal pop-up menu can be switch from analysis mode to 

normal edition mode using a dedicated icon on the toolbar. 

The main current limitation of the tool regarding the static 

analysis lies in the fact that the PetShop algorithms do not 

close opened models (models that provided services to oth-

er models). 

CONCLUSION AND PERSPECTIVES 

This position paper has presented the use of a generic mod-

el in the field of HCI and its application for identify issues 

related to the use of formal methods for interactive systems.  

The framework has been applied to the tool suite called 

CIRCUS which embeds the HAMSTERS and Petshop 

tools.  

We would like to discuss and possibly extend and refine 

this approach to understand better where usability problems 

arise while using formal methods for the design and analy-

sis of interactive systems.  

We hope also that participants will provide information 

about the notations and tools they are using to assess if the 

proposed framework is applicable more widely. 

 

Figure 6 - Representation of invariants with the Analysis feature of Petshop CASE tool 
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ABSTRACT
This paper describes LIDL, a language dedicated to the spec-
ification of interactive systems. LIDL is based on the idea
that most programming languages are useful to specify com-
putations, but are not adequate when it comes to specifying
interactions. We first introduce the context and the need for
new paradigms for interactive systems specification. Then we
describe the basic concepts of LIDL, such as Interfaces, Data
activation, Interactions, and LIDL program structure. Some
uses of LIDL programs such as verification and code gen-
eration are then explained. Finally, a boiling water nuclear
reactor user interface is partially developed using LIDL, as
an example use case.

ACM Classification Keywords
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INTRODUCTION
A lot of research work have focused on how to design, pro-
gram and verify functional concerns for critical systems and
more particularly aeronautical systems. HMI systems did not
benefit from the same attention and efforts.

A significant amount of work has focused on devising models
for the development process of software systems in the field
of software engineering.

The system development process in critical domains as, for
instance, in aeronautics inherited these models. This process
is now widely based on the use of standards that take into
account the safety and security requirements of the systems
under construction. In particular the DO178C standard [1],
in aeronautics, defines very strict rules and instructions that
must be followed to produce software products, embedded
systems and their equipments. The objective is to ensure that
the software performs its function with a safety level in ac-
cordance with the safety requirements.

Paste the appropriate copyright statement here. ACM now supports three different
copyright statements:
• ACM copyright: ACM holds the copyright on the work. This is the historical ap-
proach.
• License: The author(s) retain copyright, but ACM receives an exclusive publication
license.
• Open Access: The author(s) wish to pay for the work to be open access. The addi-
tional fee must be paid to ACM.
This text field is large enough to hold the appropriate release statement assuming it is
single spaced.
Every submission will be assigned their own unique DOI string to be included here.

Because of the problem stated in Figure 1, the HMI devel-
opment does not follow the same processes. Nevertheless, in
aeronautics, HMI systems are now made up by multiple hard-
ware and software components embedded in aircraft cockpits.
These systems are large and complex artifacts that also face
tough constraints in terms of usability, security and safety.
They support interactive applications that must behave as in-
tended with a high degree of assurance because of their crit-
icity. An error in the software components that implement
interactions in these applications may lead to a human or sys-
tem fault that may have catastrophic effects.

For example, the BEA report [6] about the crash of Rio-Paris
AF-447 A330 Airbus establishes that, during the flight, inter-
face system displayed some actions to be performed by the
pilot in order to change the pitch of the aircraft and to nose it
up while it was stalling. These indications should clearly not
have been displayed. Indeed, by following those erroneous
displayed instructions the pilot increased the stalling of the
aircraft.

In fact, in the industrial context, the development process of
critical interactive embedded applications stays very primi-
tive. The usual notations are essentially textual and coding
is generally performed from scratch or by reusing previous
developments based themselves on textual specifications. In
aeronautics, the produced code must be in conformance with
the ARINC 661 standard [4]. It may be noticed that some
tools recently appeared to enhance the design and coding
stages of these systems. But these tools, as for instance Scade
Display [23], deal mainly with presentation layers of the sys-
tems and do not deal with their complex functional behaviour.
In this context, the validation process of the interactive appli-
cations is very restricted and poor because it resides practi-
cally only in a massive test effort and in expensive evaluation
phases at the end of the development process. Moreover there
is no actual formal reference to check the implementation is
in conformance with. So new approaches and new paradigms
are today needed to help in the development process of criti-
cal interactive embedded applications.

THE LIDL LANGUAGE
It seems to us that the current state of the art provides no
complete solution to the need described in the previous sec-
tion. The aim of LIDL is to provide a language and tools to
deal with this set of problems.

Informal presentation
While most programming languages focus on the description
of computations, the main idea behind LIDL is to describe
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Figure 1. Critial UIs development is as the intersection of two clashing
domains.

interactions. This is quite a paradigm shift in the sense that
many experienced programmers will at first be surprised by
the language semantics. However, we argue that LIDL pro-
vides an easier way to specify interactive systems, since its
main concepts (interfaces and interactions) are more relevant
to the field of interactive systems than other programming
languages concepts (objects, functions, algorithms...)

LIDL programs are defined in a declarative manner, and rep-
resent interactive systems whose execution is synchronous.

Interfaces
Typed programming languages rely on data types to check
the composability of functions and operations. This is con-
venient when the goal is to describe computations. But this
is not enough when we try to describe interactions. When
composing interactions, another very important aspect which
is rarely stated is the direction data goes in.

As an answer to that matter, an important feature of LIDL is
the notion of interface. An interface is the combination of
two orthogonal aspects: the data type and the data direction.

The notion of data type is well known to most programmers.
The notion of data direction is also quite easy to understand:
the data can either go in or go out. The notion of interface
is hence quite easy to catch, here are a few example of basic
interfaces: Number in, Boolean out, Text in...

The same way compound data types exist, one can express
compound interfaces. The syntax to specify compound in-
terfaces is inspired by the Javascript Object Notation (JSON)
[14]. Listing 1 shows an example compound interface defined
in LIDL.

1 interface Example is
2 {
3 redSquares : Square in,
4 greenPentagons : Pentagon in,
5 yellowTriangles : Triangle out,
6 blueCylinders : Cylinder out
7 }

Listing 1. LIDL definition of the example interface

Metaphorically, interfaces can be seen as the specification of
pipes of specific shapes that allow objects to go in specific

directions. Figure 2 shows a way to visualise the example
interface of Listing 1.

Figure 2. A metaphor of interfaces as pipes that allow specific data types
to flow in specific directions

Every interface has a conjugate interface, which has the same
data types, but opposite directions. Two interactive systems
can only connect if their interfaces are conjugate. This is the
consequence of the natural intuition that the output of an en-
tity is the input of another one.

Interfaces are central in LIDL as they have the same role as
data types in typed programming languages.

Data activation
Interactive systems rely on two different paradigms: flow-
based representations and event-based representations.

Flow-based representations maps well to systems whose data
is defined on continuous time intervals, such as the pressure
inside a reactor. Examples of flow-based representations in-
clude Lustre [17], Scade...

On the other hand, event-based systems maps well to systems
whose data is defined on discrete time sets, such as clicks on
a button. Examples of event-based representations include
most User Interface (UI) Toolkits such as Java Swing, Qt...

Several approaches tried to bridge the gap between flow and
event representations [2]. However most approaches are bi-
ased toward one paradigm or the other. Interestingly, some
approaches treat input and output differently, for example by
only allowing discrete inputs (events) and continuous output
(status). Figure 3 presents the positioning of different aca-
demic approaches regarding this aspect. Shown approaches
include [17], [12], [11], [13], [18], [3], [21], [20] and LIDL.

Restriction to a paradigm or the other often prevents natural
description of interactive systems, which generally are best
described using a mix of both. LIDL proposes a simple way
to unify and mix the two paradigms: the notion of data acti-
vation.

The notion of data activation is latent in industrial art. Most
languages exhibit constructions such as the null value, the
maybe monad, callback functions, listeners, observers, signal
slots...
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In the context of interactive systems, all these constructions
boil down to one unique concept: identify the presence of a
piece of data, most of the time a message that has to be re-
ceived or sent. This is exactly what the data activation feature
of LIDL does.

Without exception, every piece of data in a LIDL program in-
tegrates a notion of activation. The implementation is really
simple: all LIDL data types are extended with the inactive
value noted ⊥. For example, the following table shows exam-
ple values for the basic data types of LIDL:

Type Example values
Activation ⊥, >
Boolean ⊥, true, f alse
Number ⊥, 0, 1, 3.14159
Text ⊥, ”Foo”, ”Bar”, ”Baz”

Very simplistically, a flow is represented in LIDL by a piece
of data which is almost always active. For example, through
an execution, the pressure in a reactor would have the fol-
lowing trace: {451, 453, 452, 450, 454, ...}. On the other hand
an event is represented by a piece of data which is almost al-
ways inactive. For example, through an execution, clicks on a
button would have the following trace: {⊥,⊥,⊥, click,⊥, ...}

The notion of activation does not break composability.
Here is a compound data type expressed in LIDL :
{x:Number,y:Number}. This data type is a labelled
product data type, similar to a struct of the C language.
Here are a few example of values of this type: {x:3,y:2},
{x:⊥,y:3}, ⊥.

Interactions
LIDL is a language to describe interactions. The interaction
language has a simple syntax, which uses a lot of parenthe-
ses. An interaction is a phrase between parentheses, and it

composes trivially. Listing 2 shows an example interaction
expression, while Figure 4 shows its structure.

1 (when(not(powered))then(turn(light)red))

Listing 2. An example interaction expression

(when(not(powered))then(turn(light)red))

(not(powered))

(light)(powered)

(turn(light)red)

Figure 4. The structure of the example expression. Arrows represent the
data flow direction

The semantics of interactions is the most challenging part of
LIDL for newcomers, because it is the most disruptive part of
the language, since it leverages interfaces and the notion of
activation.

Each interaction (i.e. each pair of parentheses, i.e. each block
in Figure 4) is attributed a value at each execution step. De-
pending of the data direction of the interface of the interac-
tion, this value can be defined by the interaction itself (out)
or by an external interaction (in).

Interactions that comply to the out interface behave like
functions. They output a value, based on their arguments. For
example (not(powered)) receives a boolean (powered)
and outputs a boolean that is the negation of (powered).

This is explained in the following table, which should be easy
to understand, with parameters on the left column, and results
on the right:

(powered) (not(powered))
true f alse
f alse true
⊥ ⊥

Interactions that comply to the in interface behave the oppo-
site way, which is completely foreign to programmers. Imag-
ine a function that does not return a value based on the argu-
ments it receives, but that receive a value, and returns values
to its arguments. For example (turn(light)red) receives
an activation, and outputs a colour light which is red when
the interaction is active, or ⊥ the rest of the time. This is sum-
marised in the following table, which will look unfamiliar to
most programmers, with parameters on the left column, and
computation result on the right:

(turn(light)red) (light)
> {red : 255, green : 0, blue : 0}
⊥ ⊥
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The main advantage of LIDL interaction expressions is that
they are very general. Many first-class constructions of other
programming languages can be represented as LIDL interac-
tions. As an example, the following table quickly summarises
the semantics of the ()=() interaction. Note that this inter-
action complies with the in interface, indeed, its behaviour
consists in sending to the left-hand-side the value it receives
on the right-hand-side, only when the interaction is active.

((x)=(y)) (y) (x)
> 5 5
> ⊥ ⊥

⊥ 5 ⊥

⊥ ⊥ ⊥

LIDL programs structure
LIDL programs structure is similar to functional programs
structure. Functional programs are represented as a function.
A LIDL program is nothing more than an interaction.

The same way that functional programming languages use
function signatures to define functions, LIDL use interaction
signatures. Since LIDL uses interfaces instead of data types,
interaction signatures are described in terms of interfaces.

As an example, here is the signature of the interaction when
()then() which is instantiated as the root of the example
interaction expression of Listing 2:

1 ( when (condition: Boolean in)
2 then (effect: Activation out)
3 ): Activation in

Listing 3. The signature of an interaction

The same way that functional programming languages allow
to define functions by specifying a signature and the expres-
sion it reduces to, LIDL allow to define interactions by spec-
ifying a signature and the expression it reduces to.

As an example, here is the definition of the interaction turn
()red which is used in our example expression of Figure 4:

1 interaction
2 (turn (thing: Color out) red): Activation in
3 is
4 ((thing)=({red:(255),green:(0),blue:(0)}))

Listing 4. Complete LIDL definition of an interaction

Finally, the same way a functional programmer composes
functions in order to make more complex functions, a LIDL
programmer composes simple interactions in order to make
more complex interactions, ending with a final complex in-
teraction: the LIDL program itself.

USE OF LIDL PROGRAMS
LIDL is only a convenient textual way to describe Directed
Acyclic Graph (DAG) structures. Indeed, the compiler first
expands interactions into base interactions, using definitions.
Then it assigns data flow directions using interfaces defini-
tions. This results in a DAG which express the transition
function of a state machine. As an example, Figure 5 shows
the graph associated with our example expression.

It is really important to notice that the graph shown in Figure
5 is really nothing more than a graph ordering of the graph
shown in Figure 4, with data dependency as the ordering re-
lationship. Data dependency is easily inferred from the inter-
faces.

when()then()

not()

light

powered

turn()red

Figure 5. The example expression compiled into a directed acyclic graph

This graph representation is in fact Single Static Assignment
(SSA) form [9] of the executable implementing the specified
interaction. This form allows different uses such as optimisa-
tions, verification, proofs and code generation.

Optimisation
Optimisation can be performed by analysing the graph rep-
resentation, and generating different execution schemes de-
pending on the requested inputs and outputs, using techniques
such as push (data driven evaluation) and pull (demand driven
evaluation) as applied to functional reactive programming in
[15].

Verification
Verification and proof can be performed by transforming in-
termediate representation into state machines. The graph rep-
resentation exactly describes the transition function of such a
system, while the state vector is easily derived. It is important
to note that the only way for data to persist from one execu-
tion step to the next is to be part of a previous() interaction.
Hence, the state vector is exactly the set of interactions which
are included in previous() interactions. Finally, the gener-
ated system has a structure which is very similar to systems
generated by other synchronous data flow programming lan-
guages such as Scade or Lustre [17]. This potentially allows
to leverage the verification tools that have been developed and
used for these languages.

Code generation
Code generation has two main objectives: prototype code
generation, and production code generation. Both are simi-
lar in nature, and are made relatively easy thanks to the in-
termediate representation. The target languages only have to
provide a few features: compound data types, functions, and
data types corresponding to LIDL basic data types. At the
moment, code generation tools are being developed for two
languages: The first is Javascript, in order to enable quick
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prototyping in a web app, and even some sort of Read-Eval-
Print-Loop similar to the one available online for the Elm
functional reactive programming language [10]. The other
target language is C, as it is probably the most common lan-
guage in use for critical systems.

Human models and automatic testing
We have seen that LIDL can be used to specify interactions
to be performed by computers. It is also a surprisingly con-
venient way to model interactions to be performed by human
agents.

The high abstraction capabilities of LIDL coupled with its
close-to-natural-language syntax allows to specify human in-
teractions associated with a system in a very formal way,
while remaining similar to a user manual. LIDL descriptions
of human interactions are interesting because they bridge the
gap between task models and user manuals [8], being a gen-
eralisation of both.

Typically, LIDL developers would code two things:
computer-side interactions (e.g a widget behaviour), and their
human-side counterparts (e.g. how to use a widget). This ap-
proach is similar to test driven development, applied to inter-
active systems. This formal specification of human interac-
tions enables automatic testing, by executing a system com-
posed of the computer-side interactions on one side, and the
human-side interaction on the other, in an approach similar to
[5].

Furthermore, LIDL makes it easy to take into account and
model human errors and non deterministic behaviour such as
those detailed in [7] and [19]. This allows to test interac-
tive systems even more completely, by simulating the conse-
quences of human errors. Listing 5 shows an example human-
side interaction that details how to click on a button, taking
into account one error type: omission. The either()() in-
teraction represents a non-deterministic choice.

1 interaction
2 (click on (theButton: Button)): Activation in
3 is
4 ( either
5 ((theButton.click)=(active)) // Nominal
6 (nothing) // Omission !
7 )

Listing 5. LIDL definition of a potentially faulty human interaction

USE CASE
In this section, we will use LIDL to describe the Boiling Wa-
ter Reactor (BWR) use case. For the sake of simplicity, we
will limit ourselves to an abstract interface as described in
[22]. However, LIDL is not restricted to the specification of
abstract user interfaces.

LIDL puts an emphasis on reusability. In the use case, this
means that we will take advantage of the similarities between
components in order to limit the bulk of code. Figure 6 shows
common elements in coloured frames, these common ele-
ments will be coded as reusable components.

LIDL implementation of a basic component

Figure 6. A screenshot of the BWR simulator with some common ele-
ments outlined in common colors

To get started, let’s look at the implementation of a simple ab-
stract slider, which could be part of a standard abstract widget
library for LIDL.

Listing 6 shows the interface that this abstract slider complies
to. The abstract slider outputs two things to the user: The
value of the slider, concretely implemented by the position of
the cursor, and the slider range, concretely implemented by
the labels at each end of the slider. The abstract slider has
one input from the user: The position that the user wants the
slider to be at.

1 interface Slider is
2 {
3 value: Number out,
4 range: {min: Number, max: Number} out,
5 selection: Number in
6 }

Listing 6. The interface of an abstract slider

We could define many interactions that implement this inter-
face. Listing 7 presents one of them. This implementation
follows these arbitrary design choices:

• It takes an enabled argument that specifies if the slider is
enabled or not.

• It takes two arguments to specify the range of the slider.

• In case no value is provided for the slider position, it will
initialise as the lower bound of the range.

• It sets the value of the argument theSelection when
changed by the user, or when the range is changed so that it
becomes incompatible with the previous value of the slider.

• It take an argument constrainedPosition that allows
to programatically set the value of the slider, overriding
user input.
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Several interactions are used in order to define the slider inter-
action. For example, note the use of the ()fallbackto()
fallbackto... interaction (lines 16-19). This interaction
uses the activation of its arguments, and picks the first argu-
ment which is active.

Another important point to notice is the argument named
theSelection (line 5). Since it is an out, it will not be read
in order to compute a result. In fact, it will be written to, i.e.
a value will be sent to it. This is unlike other arguments that
are in, which have roles similar to arguments programmers
are used to.

By looking at this implementation of the slider, it is really
easy to notice that it is a stateful component. Indeed we can
see a previous() interaction (line 18). The interaction in-
side the previous() is currentValue, so currentValue
is the state variable.

1 interaction
2 ( slider (enabled: Activation in)
3 between (min:Number in) and (max:Number in)
4 constrained to (constrainedPosition: Number in)
5 selecting (theSelection: Number out)
6 ): Slider
7 is
8 ((when (enabled)
9 then ({

10 value:(currentValue),
11 range:({min:(min),max:(max)}),
12 selection:(userInput)
13 }))
14 behaviour
15 ((current value)=
16 (((constrainedPosition)
17 fallback to (userInput)
18 fallback to (previous(currentValue))
19 fallback to (min))
20 kept between (min) and (max))
21 ))
22 with
23 interaction (currentValue):Number ref
24 interaction (userInput):Number ref

Listing 7. The definition of an abstract slider interaction

Listing 8 shows an example use of the slider defined in List-
ing 7. This instance will always be enabled, because the
enabled argument is set to the constant active. Since the
constrained value is set to inactive, this instance will allow
the user to select a number in the constant range [0, 2000],
and the value selected by the user will be sent to a variable
named myValue.

1 (slider (active) between (0) and (2000)
2 constrained to (inactive) selecting (myValue))

Listing 8. An instance of the abstract slider

LIDL implementation of a compound component
We will describe the components framed in green on Figure
6. These components, that we will call “complex sliders”, are
composed of:

• A label indicating the purpose of the slider to the user

• A slider allowing the user to select a value. The slider is
the one defined in the previous section

• A toggle button to switch between manual and auto modes

• A label indicating the value and units of the selection

Figure 7. A screenshot of a complex slider component

Figure 7 shows the concrete implementation of this complex
slider, and Listing 9 shows its LIDL interface. Note that it
reuses the Slider interface defined in the previous section,
as well as other interfaces.

1 interface ComplexSlider is
2 {
3 title: Label,
4 slider: Slider,
5 toggle: ToggleButton,
6 value: Label
7 }

Listing 9. The interface of the complex slider

Listing 10 shows an implementation of this complex slider.
1 interaction (
2 complex slider
3 named (title: Text in)
4 between (min:Number in) and (max:Number in)
5 (units:Text in)
6 constrained to (constrainedPosition: Number in)
7 selecting (theSelection: Number out)
8 requesting (mode: Activation out) automation
9 ):ComplexSlider

10 is
11 ({
12 title: (
13 label (active)
14 displaying (title)),
15 slider: (
16 slider (active)
17 between (min) and (max)
18 constrained to (constrainedPosition)
19 selecting (theSelection)),
20 toggle: (
21 toggle (active)
22 pushed (when(constrainedPosition))
23 displaying ("A")
24 toggling (mode)),
25 value: (
26 label (active)
27 displaying ((theSelection) " " (units)) )
28 })

Listing 10. Definition of a complex slider interaction

Listing 11 shows an example instance of this complex slider,
corresponding to the concrete implementation depicted in
Figure 7.

1 ( complex slider
2 named ("Control Rods Level")
3 between (0) and (100) ("%")
4 constrained to (controlRodsAutoValue)
5 selecting (controlRodsLevel)
6 requesting (controlRodsAutoMode) automation
7 )

Listing 11. An instance of the complex slider interaction
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CONCLUSION
This paper presented a quick overview of LIDL, a language
dedicated to the description of interactions, and a use case.
The use case showed that LIDL allows to specify safe com-
plex behaviour. In particular, it is noteworthy that, as com-
pared to other approaches, the LIDL way of thinking as two
consequences:

• Removing duplicate or boilerplate code as seen in other
languages, such as getter/setters and observer pattern func-
tions. This is noticeable by the relatively small size of
LIDL programs.

• Forcing designers into thinking about the actual interac-
tion, enforcing to explicitly define aspects that are usually
implicit or merged into objects whose semantics are not
clear. This is noticeable in the slider example (Listing 7),
where an explicit distinction is made between the user in-
put and the slider current value. This explicit distinction
allows to have a sane behaviour, even when the slider range
is dynamically changed, while keeping the code simple.

LIDL is only a language. Architectural concepts that fit with
LIDL are being developed, but not detailled in this paper.
The architectural ideas behind LIDL converge with those re-
cently presented in [16] and similar approaches around uni-
directional data flow. A general framework for the specifi-
cation of abstraction levels of interactive systems inspired by
[24] is being developed in parallel with LIDL.

REFERENCES
1. 2012. DO178C. Software Consideration in Airborn

Systems and Equipment Certification, release C. (2012).
RTCA,Inc.

2. Gregory D Abowd and Alan J Dix. 1994. Integrating
status and event phenomena in formal specifications of
interactive systems. Proceedings of the ACM SIGSOFT
Symposium on Foundations of Software Engineering 22
(December 1994), 23.

3. G. A. Agha. 1986. Actors: a model of concurrent
computations in distributed systems. MIT Press (1986).

4. ARINC 2012. Specification 661 (supplement 5, draft 1
ed.). ARINC. http://www.aviation-ia.com/aeec/
projects/cds/index.html

5. Eric Barboni, Jean-François Ladry, David Navarre,
Philippe Palanque, and Marco Winckler. 2010. Beyond
Modelling: An Integrated Environment Supporting
Co-execution of Tasks and Systems Models. In
Proceedings of the 2Nd ACM SIGCHI Symposium on
Engineering Interactive Computing Systems (EICS ’10).
ACM, New York, NY, USA, 165–174. DOI:
http://dx.doi.org/10.1145/1822018.1822043

6. BEA. 2012. Rapport final sur l’accident survenu le 1er
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exploité par Air France, vol AF 447 Rio de Janeiro -
Paris. Technical Report. Direction Générale de
l’Aviation Civile. http://www.bea.aero/docspa/2009/
f-cp090601/pdf/f-cp090601.pdf.

7. M.L. Bolton and E.J. Bass. 2011. Evaluating
human-automation interaction using task analytic
behavior models, strategic knowledge-based erroneous
human behavior generation, and model checking. In
Systems, Man, and Cybernetics (SMC), 2011 IEEE
International Conference on. 1788 –1794. DOI:
http://dx.doi.org/10.1109/ICSMC.2011.6083931

8. Judy Bowen and Steve Reeves. 2012. Modelling User
Manuals of Modal Medical Devices and Learning from
the Experience. In Proceedings of the 4th ACM SIGCHI
Symposium on Engineering Interactive Computing
Systems (EICS ’12). ACM, New York, NY, USA,
121–130. DOI:
http://dx.doi.org/10.1145/2305484.2305505

9. Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N.
Wegman, and F. Kenneth Zadeck. 1991. Efficiently
Computing Static Single Assignment Form and the
Control Dependence Graph. ACM Transactions on
Programming Languages and Systems 13, 4 (Oct 1991),
451–490.
http://doi.acm.org/10.1145/115372.115320

10. Evan Czaplicki. 2012. Elm: Concurrent FRP for
Functional GUIs. (2012).

11. A. Dix and C. Runciman. 1985. Abstract models of
interactive systems. In Proceedings of the HCI’85
Conference on People and Computers: Designing the
Interface. 13–22.

12. Alan John Dix. 1991. Formal methods for interactive
systems. Academic Press.

13. D.J. Duke and M.D. Harrison. 1993. Abstract
Interaction Objects. Computer Graphics Forum 12, 3
(1993), 25–36. DOI:
http://dx.doi.org/10.1111/1467-8659.1230025

14. ECMA. 2013. The JSON Data Interchange Format.
(October 2013). http://www.ecma-international.
org/publications/files/ECMA-ST/ECMA-404.pdf

15. Conal M. Elliott. 2009. Push-pull Functional Reactive
Programming. In Proceedings of the 2Nd ACM
SIGPLAN Symposium on Haskell (Haskell ’09). ACM,
New York, NY, USA, 25–36. DOI:
http://dx.doi.org/10.1145/1596638.1596643

16. Facebook. 2013. React - a JavaScript library for building
user interfaces. (2013).
http://facebook.github.io/react/

17. Nicolas Halbwachs, Paul Caspi, Pascal Raymond, and
Daniel Pilaud. 1991. The synchronous dataflow
programming language Lustre. In Proceedings of IEEE
(79). 1305–1320.

18. D. Harel. 1987. Statecharts: A visual formalism for
complex systems. Science of Computer Programming 8,
3 (1987), 231–274.
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ABSTRACT
The paper briefly explores a layered approach to the analysis
of two interactive systems (Nuclear Control and Air Traffic
Control), indicating how the analysis enables exploration of
the particular features emphasised by the use cases relating
to the examples. These features relate to the interactive be-
haviour of the systems. To facilitate the analysis, property
templates are proposed as heuristics for developing appropri-
ate requirements for the respective user interfaces.
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INTRODUCTION
Formal modelling can have substantial benefits when they en-
able clarification of the assumptions made about a design.
This paper looks at two case studies, provided as part of the
preparation for the Workshop on Formal Methods in Human
Computer Interaction. In the two cases to be discussed, for-
malism has already been used by the providers of the case
studies to explore different features of the two examples. The
nature of their analyses and the illustrative examples suggest
different approaches to analysis in the two cases. The first
case appears to focus on features of the device interface while
the second case uses a notation for describing the tasks sup-
ported by the interface. In this paper we indicate how a com-
mon modelling approach based on layers can be used to spec-
ify the systems, enabling clear distinctions between levels of
analysis while at the same time maintaining the integrity of
the specification. We further comment that the analysis of

properties in relation to these layers can be facilitated through
the use of property templates.

THE USE CASES
Two examples of safety critical interactive systems1 dis-
cussed in the paper illustrate two distinct and important fo-
cuses commonly found in the analysis of interactive systems.
Both examples present the interactive behaviour of the sys-
tem, and a description of normative tasks that should be fol-
lowed by operators to use the system. The first, the nuclear
control example, focuses on the user interface and on check-
lists2, while the second, the air traffic control (ATC) example,
focuses on the user interface and distributed tasks carried out
by operators and pilots in coordination.

In the first case the analysis is concerned with the role of an
operator in interacting with a device. It is concerned with
whether the operator can control aspects of the system in a
clearly understandable way and be aware of the situation and
the recovery mechanism if a failure occurs that can only be
managed by the protection system. The focus of a model of
the nuclear use case would be the display, the graphics, the
status display, the sliders, the enabled actions and how these
change the display. It would also be concerned with how ef-
fectively the protection system supports failure events. The
properties of the protection system will be concerned with
whether the system blocks the user effectively when unsafe
actions are detected, and whether the user can trace the pro-
cess through the information provided by the interface.

In the second use case there are more details about the tasks
that controllers and the pilots are engaged in. The two op-
erators have different roles and these roles are made explicit
through a notation for describing the tasks. The question in-
vited by the ATC description is how the arrival sequence dis-
play supports their activities and roles.

Whatever the level of analysis of the user interface, there are
low level questions about the underlying system that are nec-
essary to understand the design of the user interface. These
1https://sites.google.com/site/wsfomchi/use-cases
(downloaded 28/5/15)
2http://www.hci-modeling.org/nppsimulator/
BWRSimulationDescription.pdf (downloaded 28/5/15)
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include: understanding which parts of the underlying process
are visible in the user interfaces; which user actions produce
visible feedback that can help the operators assess what has
been done, and what has been achieved; and whether there
are modes, and how transparent the effect of these modes is.
In fact, interactive systems of any complexity have a common
characteristic that some elements of the state of the system are
perceivable (for example, visible or audible), and that user ac-
tions transform the state [5]. Furthermore, not all actions are
permitted all of the time, and the behaviour of actions can
depend on distinguished state attributes called modes, see [6]
for further discussion.

STRUCTURE OF THE MODELS
It is important to distinguish between interactive systems and
the components of the interactive systems. Interactive sys-
tems are socio-technical systems involving people, devices,
and artefacts (desks, pieces of paper, pens, tablets and so on).
The primary focus of the modelling approach illustrated here
is based on the models of the interactive devices that are a part
of the interactive system, whilst the property templates pre-
sented capture aspects of the system that can facilitate device-
user interaction.

Users have difficulty understanding the progress of a system
when elements of the state of the system, that are relevant to
that understanding, are not visible in a form that makes sense
to them. At the same time, confusion can arise when actions
relevant to the current activity are either apparently or actu-
ally disabled by the system, or when the actions have an unex-
pected or inconsistent effect with respect to the users’ knowl-
edge and experiences of the system. Actions and states are
therefore elemental in understanding interactive behaviour.
Modes are also important. It is unusual that an interactive
system is so simple that actions always have the same effect.

To achieve the goals and activities required of the users, most
interactive systems are designed more or less effectively to
ensure that the information required (we call them informa-
tion resources [2]) are made explicitly available, and in a
form that can be easily understood by the users. A role of
a model of the interactive system is therefore to make these
information resources explicit so that assumptions about the
constraints they impose may be analysed.

The interface specification
Interactive systems can be specified by defining the set of ac-
tions, including user actions, that are possible within them.
These actions affect the state of the system and are affected by
many attributes of the state of the system. In the case of the in-
teractive device they are often determined by the mode of the
device. The model of the interactive system we develop aims
to make explicit the relevant information resources needed
for the analysis of the interactive behaviour of the system and
that includes models of the interactive devices as well as the
particular actions that define the activities that are the work
of the system. The interface specification describes what the
display shows and captures the effects of user level actions.
The display will show some features of the state of the reac-
tor, these features may be encoded as part of the interface. It

will also show the user actions that are translated into actions
within the reactor. The specification includes display wid-
gets: showing simple status information. These include the
RKS, RKT , KNT , TBN , WP, WP ,CP , AU . These
displays are associated with a range of colours. The change of
colour presumably results from some combination of reactor
states not made clear in the documentation. The display also
shows actions associated with the valves: SV , SV  ,WV ,
WV .

Analysis of an interactive device is then concerned with prov-
ing that relevant feedback is given on completing an action,
that relevant information is available before an action is car-
ried out, that it is possible to recover from an action in spec-
ified circumstances, that it is always possible simply to step
to some home mode whatever the state of the device and that
actions can be completed consistently.

Structuring specifications
We structure our model of the interactive system as four lay-
ers. The first layer simply specifies the constants and types
used throughout the specification. It includes types relating
to the devices involved and the entities that are in the broader
system. For example, in the case of the reactor these types
would include pressure and volume defined as part of an
aggregate type defining the tanks. There would also be types
associated with pumps and valves. Constants would include
maximum and minimum values that could raise error events
in certain situations.

The second layer describes assumptions about the underlying
process, managed or controlled by the devices, that are re-
quired as a basis for understanding the user interface specifi-
cation. In practice this layer is often reused across families of
device models when exploring the effects of differing user in-
terfaces [7]. It will describe the most primitive representation
of the nuclear process or the aircraft space required to con-
sider the interactive system. A specification of the underlying
reactor, describing the details of the relation between reac-
tor core and turbine, would include attributes defining water
level and pressure for each. The specification at this level
would also define the characteristics of the pumps and valves.
The pumps would be associated with rates per minute and the
valves would be on or off. A number of actions will be spec-
ified at this level. An action tick would represent the interval
of one minute and update the levels and pressure depending
on the setting of pump and valve. There will be further ac-
tions switching pumps on and off, opening and closing valves
and changing the value of flow in the pump.

The third layer describes the interfaces for the various devices
used in the interactive system. These models use the process
descriptions described in the second layer. They make those
aspects of the state visible through the interface explicit. They
describe the user actions, including for example how the slid-
ers or buttons or other display widgets work. The third layer
of the specification of the nuclear control user interface spec-
ifies how the user sets, controls and views the operation of the
device. It is specific to this particular interface, whereas the
reactor specification may be more generic.
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The fourth, and final, layer makes explicit the information
resources that are required for different actions in different
circumstances. It captures constraints on action based on the
goals and activities that the user achieves or carries out [2].
This layer contains an interactive system view. The activities
and actions are “resourced” by user interfaces for devices that
are used in the interactive system or, indeed, any other source
of relevant information that is present within the interactive
system. It adds attributes that are not captured by the devices
and includes (meta-)actions that describe activities that may
involve actions of the interactive devices. An example of this
fourth layer used in a different context can be found in [9].

Tool support
Full details of the models that are developed of the two use
cases are not the focus of this paper, rather we intend an indi-
cation of our approach. Indeed different languages might be
used within the context of the approach proposed depending
on the type of analysis intended.

Two approaches to specification and proof are possible with
the example just given: model checking and theorem proving.
In the present case we focus on a theorem proving approach
because an important feature of the analysis, that has issues
from a user interface point of view, concerns the mechanisms
for number entry. Since the domain of numbers is relatively
large, proof using model checking can result in analyses of
very large models that can be intractable.

The automated theorem prover used is Prototype Verifica-
tion System (PVS) [11]. It combines an expressive specifica-
tion language based on higher-order logic with an interactive
prover. PVS has been used extensively in several application
domains. It is based on higher-order logic with the usual basic
types such as boolean, integer and real. New types can be
introduced either in a declarative form (these types are called
uninterpreted), or through type constructors. Examples of
type constructors that will be used in the paper are function
and record types. Function types are denoted [D -> R],
where D is the domain type and R is the range type. Pred-
icates are Boolean-valued functions. Record types are de-
fined by listing the field names and their types between square
brackets and hash symbols. Predicate subtyping is a language
mechanism used for restricting the domain of a type by using
a predicate. An example of a subtype is {x:A | P(x)},
which introduces a new type as the subset of those elements
of type A that satisfy the predicate P on A. The notation (P)
is an abbreviation of the subtype expression above. Predicate
subtyping is useful for specifying partial functions. Depen-
dent subtypes can be defined, e.g., the range of a function or
the type of a field in a record may depend on the value of a
function argument or the value of another field in the record,
respectively.

Specifications in PVS are expressed as a collection of the-
ories, which consist of declarations of names for types and
constants, and expressions associated with those names. The-
ories can be parametrised with types and constants, and can
use declarations of other theories by importing them. The
prelude is a standard library automatically imported by PVS.
It contains a large number of useful definitions and proved

facts for types, including among others common base types
such as Booleans and numbers (e.g., nat, integer and real),
functions, sets, and lists.

The standard format of the specifications is that it contains a
definition of a set of actions

action: TYPE = [state -> state]

which are permitted in particular situations, sometimes all sit-
uations. For each action there is a predicate

per_action: TYPE = [state -> boolean]

that indicates whether the action is permitted.

MODELLING THE CASE STUDIES

Model of the Nuclear Control User Interface
“The operation of a nuclear power plant includes the full
manual or partially manual starting and shut down of the
reactor, adjusting the produced amount of electrical en-
ergy, changing the degree of automation by activating or
deactivating the automated steering of certain elements
of the plant, and the handling of exceptional circum-
stances. In case of the latter, the reactor operator pri-
marily observes the process because the safety system
of today’s reactors suspends the operator step by step
from the control of the reactor to return the system back
to a safe state.”

The interface involves schematics of the process, the avail-
ability of actions as buttons and graphical indications of key
parameters, for example temperature and levels. The speci-
fication of the model can be layered according to the levels
described above as follows. The first layer includes defini-
tions of constants such as the maximum and minimum water
levels in the reactor tank and condenser.

min_wl: nonneg_real
max_wl: {x: nonneg_real | x>min_wl}

The second layer specifies those aspects of the underlying
reactor that are required to produce a model of the interface.
It describes details of the relation between reactor core and
turbine. These details include state attributes defining water
level and pressure for each component of the core and tur-
bine. It also includes a definition of the characteristics of the
pumps and valves. Pump behaviour is abstracted as a num-
ber representing the pumping rate. Valves are abstracted as
on/off switches. Actions are specified that model the events
that are automatically triggered within the system. For exam-
ple, an action tick represents the periodic update of rate and
pressure depending on the setting of pump and valve.

tick(st: process_state): process_state =
p WITH [ reactor := tick(p‘reactor)

condensor := tick(p‘condensor)
]

...
tick(r: reactor_state): reactor_state =
r WITH [ rate := ...,

pressure := ...
]
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Further actions represent functions for switching pumps on
and off, opening and closing valves and changing the value
of flow in the pump.

The third layer describes what the reactor user interface
shows on displays, what user actions are permitted, and how
the system changes state in response to user actions. For the
considered user interface, the model includes a specification
of the actual status indicators (RKS, RKT , etc.), as well as
the level and pressure of reactor and condenser.

state: TYPE = [#
r: process_state
rksm, rkt: Colour,
rct_pressure: nonneg_real,
SV1_state_open: boolean,
... #]

The colours of the indicators are linked to states of the un-
derlying reactor (modelled in the second layer). The model
also specifies that the user can perform open/close actions on
valves, change the level of control rods, and change the rate of
the pumps by interacting with controls on the user interface.
All these actions are defined in terms of actions specified in
the second layer of the model.

click_close_SV1(st: state): state =
COND st’SV1_state_open -> st WITH
[r :=
close_valve(st‘process_state,sv1)],

ELSE -> st
ENDCOND

The fourth layer describes constraints on the action offered
by the user interface based on the goals and activities that
the user achieves or carries out [2]. For example, the ac-
tion OpenSV1 which opens a particular valve in the reactor
will be appropriate in certain circumstances and for partic-
ular purposes. The information required by the operator to
judge those circumstances should be visible to the operator.
This information includes water levels and pressures for the
relevant tank. To enable specification of these constraints an
understanding of the supported activities is required. The ef-
fect of this layer of specification is to further constrain the
behaviours of the user interface model to intended or plausi-
ble behaviours. The purpose of this constraint is to consider
whether plausible behaviours are excluded or whether addi-
tional behaviours would be allowed by the specification that
could indicate user confusions.

Actions may be specified at the level of user activity in this
layer. For example, consider the user activity recover in con-
trast to the autonomous action that causes recovery. This ac-
tion would specify constraints. For example, it would spec-
ify that “increasing pressure” using the relevant action in the
third layer would occur only if other actions had already been
completed and the displayed tank, valve and pump parame-
ters specified in the second layer were displayed (in the third
layer) indicating particular values.

Further activities include for example “monitor recovery”.
This would be expressed as an action that describes the con-

straints on the operator when monitoring an autonomous re-
covery. The specification of the action would include the in-
formation resources that would be required in the monitoring
process at different stages of the recovery and would specify
the conditions in which any user actions would take place.

Model of the Air Traffic Controller Radar Screen
“The AMAN (Arrival MANager) tool is a software plan-
ning tool suggesting to the air traffic controller an arrival
sequence of aircraft and providing support in establish-
ing the optimal aircraft approach routes. Its main aims
are to assist the controller to optimize the runway ca-
pacity (sequence) and/or to regulate/manage (meter) the
flow of aircraft entering the airspace . . . ’

In this case the first layer defines constants such as known
constraints for flight (e.g., aircraft performance model param-
eters and constraints) and runways (e.g., maximum capacity).

The second layer captures the logic of the arrival manager
planning software for suggesting arrival sequence and opti-
mal approach routes. State attributes would specify dynamic
parameters of the system, like flight plan, radar data, and
weather information. An action tick specifies how the sug-
gested arrival sequence and optimal approaches are updated
by the system on the basis of the actual values of flight plans,
radar data, etc. Further actions specify the logic for updating
dynamic parameters of the system. These will include: a tra-
jectory predictor algorithm, a sequencer module, a weather
data source, etc. Additional actions can be introduced for
modelling more complex scenarios in which pilots can re-
quest emergency landing.

It is worth noting that each action is a self-contained descrip-
tion of how the system state changes when a given event oc-
curs. Because of this, although adding new actions to the
model makes the overall behaviour of the model more com-
plex, it does not necessarily increase the complexity of the
model. The same applies for the complexity of the analysis:
if a new action does not affect the value of state variables rel-
evant to the analysis of a property, then the complexity of the
analysis of that property remains unchanged with and without
the new action. This is true of theorem proving. With model
checking this analysis is less straightforward.

The third layer describes what information is presented on
the screens to the plan controller and executive controller.
The model of the arrival manager display will therefore in-
clude a specification of the arrival timeline, time-management
information, aircraft callsign, and wake turbulence category.
The model of the radar screen display will include which air-
craft labels are visible, their positions on the screen, and their
speed vectors.

The fourth layer is based on the task descriptions provided
in the use case. The task representations provide the display
context required to constrain the actions. In this case actions
will be activity actions, actions that are permitted by the states
of the display but do not themselves change the display. They
specify the assumptions about when the operators’ actions are
permitted.
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Issues
Models of the type outlined have been developed for other in-
teractive systems using both a model checking approach and
a theorem proving approach [9, 7, 8, 1]. The advantage of
model checking is that it is possible to explore, more readily,
reachability properties as well as potential non-determinisms.
The disadvantage is that the size of model is seriously limited.
While it is possible to explore the essential details of the con-
trol of the nuclear plant using a model checking approach,
this is not possible of the ATC system. Aspects such as the
trajectory predictor algorithm mean the second layer of the
model would be too complex. Making it abstract enough to
make analysis feasible, would restrict what could be asked of
the model, in terms of relevant properties to prove, making
the analysis less relevant.

Theorem proving allows analysis of larger models but prop-
erties may be more difficult to formulate and prove. In par-
ticular, while model checking allows simple formulations of
reachability properties, these are difficult to specify using a
theorem proving approach.

There is a tradeoff to be made between the effort needed to
develop a model amenable for verification and the effort need
to carry out the proofs. Typically a theorem proving based ap-
proach will gain advantage in the former, because of more ex-
pressive languages, and model checking in the latter, because
of more automated analysis. In all cases, how to identify and
express the properties of interest is also an issue.

PROPERTY TEMPLATES
The analysis approach uses property templates as heuristics
to generate properties that are tailored to the device. Tailor-
ing the heuristics leads to insight about the device design as
well as producing properties that will, if true of the design,
lead to an interface being more predictable and easy to use.
The heuristics that will be considered in more detail and were
described in [3] are: completeness, consistency, feedback, re-
versibility and visibilty.

The heuristics have the following characteristics:

completeness captures the notion that it should be possible
to reach any other state (more likely mode) in one (or a
few) steps. A typical example of this property is that the
design has some “home” state and a single action is suffi-
cient to reach that home state regardless of what state the
device is currently in. The first use case would suggest a
completeness property which ensures that critical actions
can always be taken in one step. The user interface never
“modes the operator in” so that responding to a critical sit-
uation requires a complex interaction.

consistency requires that an action will always change the
state of the device in a consistent way. Consistency is also
concerned that similar actions have similar effects. These
properties can be expressed in a number of ways and re-
quire some invention to be assured that a property is of
the appropriate form. Examples of consistency properties
for the Nuclear Control interface are: control rods can al-
ways be stopped; switches for valves on the user interface
can always be used to change the valve states. A number

of consistency properties are like these based on actions.
However there are also properties that specify that a value
can only change as a result of a certain type of action, or if
the state is in a particular mode. An example is: all steam
valves can be closed only when all feed water valves are
closed, and the water level in the reactor is stable. An ex-
ample of a property that related to sets of actions is that all
actions that use a slider will involve similar effects.

feedback requires that an action that has an effect on the state
of the system has also an effect that can be perceived by
the user. For the Nuclear Control interface, an example
feedback property will check that the water level indicators
of the user interface correctly report changes to the actual
value of the corresponding state variable of the reactor. For
the Air Traffic Controller interface, an example feedback
property will stipulate that all actions that have an effect
on the system state will be signposted on the user interface
(e.g. whether or not the speed vectors take into account
changes in heading is a feedback issue).

reversibility ensures that an action can always be reversed.
It is important that certain actions can be reversed. There
will be constraints that limit this reversibility. For example
it may be the case that an action such as opening a valve
can be reversed within a specific time interval only in cer-
tain circumstances to prevent an inadvertent and extremely
costly action.

visibility specifies that a state attribute in the second layer
of the model is always “mirrored” by an appropriate state
attribute in the third layer model. An example of such a
property is that the tank level is always represented by the
tank graphic in the interface or that the ATM display al-
ways correctly represents the states of the aircraft that are
on approach.

For each heuristics a template is provided to express proper-
ties relevant for the heuristics. In its more general form these
properties are expressed over a state machine. Hence, in its
simplest form, the fact that action ac causes a perceivable ef-
fect (captuted by effectpercv) is expressed by

∀s∈State • effectpercv(s, ac(s))

For the model checking case, CTL (Computational Tree
Logic) and LTL (Linar Time Logic) (see [4] for an introduc-
tion) templates are provided by the IVY tool [7]. For PVS,
translation of the templates is relatively straightforward, re-
sorting to induction over the reachable states of the model.

The instances of the properties generated from the templates
are usually described in terms of concepts of the third layer
model. The significance of the fourth layer is that it constrains
the paths for which the properties are true. The fourth layer
of the specification identifies sets of plausible behaviours and
in many cases the properties to be considered are required to
be true only for these behaviours. For example it may be ap-
propriate to require that any action that may occur in a path
constrained by information resources will have visible feed-
back.
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DISCUSSION AND CONCLUSIONS
Two approaches to specification and proof are possible with
the considered examples: model checking and theorem prov-
ing. Model checking is the more intuitive of the two ap-
proaches. The language adopted Modal Action Logic with
interactors (MAL) [3] expresses state transition behaviour in
a way that is more acceptable to non-experts. The problem
with model checking is that state explosion can compromise
the tractability of the model so that properties to be proved are
not feasible. Model checking, hence, is more convenient for
analysing high level behaviour, for example when checking
the modal behaviour of the user interface. Theorem proving,
while being more complex to apply, provides more expressive
power. This makes it more suitable when verifying properties
requiring a high level of details, such as those related to a
number entry system, because the domain of numbers is rel-
atively large.

To employ the strengths of the two approaches simple rules
have been used to translate from the MAL model to the PVS
model that is used for theorem proving. Actions are mod-
elled as state transformations, and permissions that are used
in MAL to specify when an action is permitted are described
as predicates. The details of the specification carefully re-
flects its MAL equivalent. This enables us to move between
the notations and verification tools, choosing the more appro-
priate tool for the verification goals at hand.

One aspect that has not been discussed herein is the analysis
and interpretation of verification results. The possibility of
animating the formal models to create prototypes of the mod-
elled interfaces, and the possibilities these prototypes raise
in terms of discussing the results of verification with stake-
holders has been discussed in [10]. Such prototypes can be
used either to replay traces produced by a model checker or
interactively to both discuss the findings of the verification or
help identify relevant features of the system that should be
addressed by formal analysis.
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ABSTRACT
Our approach for modelling interactive systems has been to
develop models for the interface and interaction which are
light-weight but with an underlying formal semantics. Com-
bined with traditional formal methods to describe functional
behaviour this provides the ability to create a single formal
model of interactive systems and consider all parts (function-
ality, user interface and interaction) with the same rigorous
level of formality. The ability to convert the different models
we use from one notation to another has given us a set of mod-
els which describe an interactive system (or parts of that sys-
tem) at different levels of abstraction. which can be combined
into a single model for model-checking, theorem proving etc.
There are, however, many benefits to using individual models
for different purposes throughout the development process.
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INTRODUCTION
Developing suitable interfaces for safety-critical systems re-
lies on two things. First, they must be usable in their envi-
ronments by their users - i.e. be developed using a sound
user-centred design process and following known HCI prin-
ciples. Secondly, we must be able to verify and validate the
user interface and interaction with the same rigour as the un-
derlying functionality. While we can (we hope) assume the
former, the latter is harder, and requires us to develop suit-
able techniques which not only support these requirements
but which will also be useful (and used) by the interface de-
velopers of such systems. In the rest of this paper we describe
the different models and notations we use for different parts
of an interactive system. We also discuss how these can be
combined into a single model as well as the benefits provided
by using the individual models for specific purposes.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
FOMHCI15, June 23rd, 2015, Duisburg, Germany.

THE MODELS
In the usual way we initially consider interactive systems by
way of their two main components (functionality and inter-
face) separately. We rely on a combination of existing lan-
guages and models to specify the functionality, and have de-
veloped models for the interface and interactive components
as described next.

Functional Specification
We typically use the Z specification language [6, 5] for our
functional specifications along with the Pro-Z component of
the ProB tool for model-checking. However, any similar
state-based notation could be substituted. Z gives us the abil-
ity to reason about the functional behaviour of the system and
do any necessary theorem-proving or model-checking to en-
sure that the system not only does the right thing (expected
behaviour) but also does not do the wrong thing (unexpected
behaviour).

Presentation Model
This is a behavioural model of the interface of a system
described at the level of interactive components (widgets),
their types and behaviours, and where in the interface they
appear (or in the case of modal systems, which modes they
are enabled in). The presentation model can be derived from
early designs of interfaces (such as prototypes, story-boards
etc.), final implementations, or anything in between. As such
they can be produced from the sorts of artefacts interface de-
signers are already working with within a user-centred design
process. Each window or dialogue (or mode) is described
separately in a component presentation model (pmodel) by
way of its component widgets which are described using a
triple:

widget name, widget type, (behaviours)

The full interface presentation model is then the concate-
nation of the pmodels, and describes all behaviours of the
interface and which widgets provide the behaviours. Be-
haviours are split into two categories, interactive behaviours
(I-behaviours) are those which facilitate navigation through
the system (opening and closing new windows etc.) or affect
only presentational elements of the interface, whereas system
behaviours (S-behaviours) provide access to the underlying
functionality of the system.
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Presentation Interaction Model
The presentation interaction model (PIM) is a state transition
diagram where pmodels are abstracted into states and transi-
tions are labelled with I-behaviours from those pmodels. As
such the PIM gives a formal meaning to the I-behaviours as
well as providing an abstract transition model of the system’s
navigational possibilities. The usual ‘state explosion’ prob-
lem associated with using transition systems or finite state
automata to model interactive systems is removed by the ab-
straction of pmodels into states, so the size of the model is
bounded by the number of individual windows or modes of
the system.

Presentation Model Relation
Just as the PIM gives meaning to the I-behaviours of the pre-
sentation model, the presentation model relation (PMR) does
the same for the S-behaviours. These behaviours represent
functional behaviours of the system, which are specified in
the formal specification. The PMR is a many-to-one relation
from all of the S-behaviours in a presentation model to oper-
ations in the specification.

Combining the Models
The models of functionality (specification) and interface (pre-
sentation model and PIM) are already coupled via the PMR.
However, we can combine the models in other ways which
ultimately lead to a single model of the entire system. In
addition to the Z specification, we also use the visual lan-
guage, µCharts [7] which is used to model reactive systems.
PIMs can also be represented as µcharts, which provides ad-
ditional benefits over a simple PIM (including the ability to
compose specific sets of behaviours in different charts via a
feedback mechanism and embed complex charts into simple
states in order to ‘hide’ complexity) [1]. The µCharts lan-
guage includes several refinement theories which therefore in
turn gives us refinement theories for PIMs (trace refinement
is particularly useful as it can be represented as a much more
lightweight theory for interfaces based on contractual utility)
[2]. The semantics of µCharts is given in Z and there is a di-
rect translation available (via an algorithm and tool) from a
µchart to a Z specification [8], this in turn means we have an
algorithm and means to turn a PIM into a Z specification [4].
It is this which gives us the ability to create a single model of
all parts of an interactive system, which can then be used to
prove safety properties about that system for example [3].

Whilst this ability to create a single model to reason about
an interactive system in its entirety is beneficial, we have also
found that it can be useful to take advantage of the fact that the
individual models have different levels of abstraction. Even
when we want to investigate the system as a whole, we can
focus on specific parts of the system, or specific attributes of
its behaviour by using one specific model - or smaller com-
bination of models. We describe this next using the Nuclear
Power Plant Case study as an example.

THE NUCLEAR POWER PLANT CASE STUDY
We can describe the functionality given in the description
document using a Z specification. So we have a descrip-
tion of the observable states of the system (in a Z schema)

Figure 1. Part of Z Specification

Figure 2. Startup procedure µchart

along with the operations that can change the state of that
system. Using a model-checker, such as Pro-B we can then
investigate the system to ensure it behaves as expected, for
example we can give a description of the system in its stable
state and show that when this is not true, the system will be
in one of the two error control states - abnormal operation or
SCRAM. We could also investigate the described ‘Start-up’
and ‘Shut-Down’ steps in a similar manner using the Z, how-
ever in order to more easily consider the user inputs to con-
trol these procedures we can instead create a µchart which
shows the required input levels and reactions that occur in
these processes. In figure 2 we show a µchart describing
the ‘Start-up’ procedure. The transitions between the vari-
ous states the system goes through are guarded by required
values on key indicators (such as water level, power output
etc.) as well as user operations (such as opening and clos-
ing valves). In this model we do not distinguish between user
operations, system controlled operations and functional mon-
itoring of values. We are most interested here in ensuring the
correct outcomes are reached depending on the values and
that the components interact properly as shown by the feed-
back mechanism of the composed charts. Using the Z seman-
tics of µCharts we can then model-check this component of
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Figure 3. Simulation interface

behaviour or use theorem-proving to ensure that the system
progresses correctly through the start-up procedure (and sim-
ilary shut-down) only when the correct pre/post conditions
are met.

Once we are satisfied that the system will behave correctly as
described we also need to ensure that the users can perform
the required operations and that at the very least the interface
provides the necessary controls (we do not talk about the is-
sue of usability of the interface in this paper, however it is of
course equally important in ensuring the system can be used).
In the nuclear power plant control system we may start with
an initial design, such as that given by the provided simulator
and ensure that it does indeed provide all of the required be-
haviour. From the simulation interface shown in figure 3 we
can derive a presentation model and PMR (a snippet of these
is shown below).

Simulator is
PowerDisplay, Display, (S OutputPower),
RWaterLevelDisplay, Display,

(S OutputReactorWaterLevel),
RPressureDisplay, Display, (S OutputReactorPressure),
ControlRodCtrl, ActionControl (S RaiseControlRods,

S LowerControlRods),
WP1Ctrl, ActionControl(S IncWaterPressure1,

S DecWaterPressure1),
CPCtrl, ActionControl(S IncCPressure, S DecCPressure),
SV1Open, ActionControl(S OpenSV1),
SV1Close, ActionControl(S CloseSV1)

S RaiseControlRods 7→ RaiseRods
S LowerControlRods 7→ LowerRods
S IncWaterPressure1 7→ IncreaseWaterPressure
S DecWaterPressure1 7→ DecreaseWaterPressure
S OpenSV1 7→ OpenSV1
S CloseSV1 7→ CloseSV1

This ensures that all of the required operations are supported
by the user interface. We can then use these models to help
derive alternate (restricted) interfaces for use in error condi-
tions when the user may have only partial control of the sys-

tem, or when they have no control due to SCRAM mode. Ini-
tially a presentation model of the alternate interfaces provides
information about what operations are (and more crucially,
are not) available for the user. Subsequently we can use the
refinement theory based on µCharts trace refinement [2] to
examine alternatives and prove that they are satisfactory.

We can also use the PIM of the new interface modes (safe,
error 1, SCRAM) to ensure correct reachability, and via the
Z representation of the PIM use model-checking to show that
the correct modes are enabled given the defined safety param-
eters.

CONCLUSION
We have described the different models we use for interactive
systems. We have the ability to combine these models into a
single model which describes all parts of the interactive sys-
tem. We can also use each of the models independently as
the differing levels of abstraction mean that they are individ-
ually suitable for different tasks in the process of verifying
and validating safety-critical interactive systems.
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ABSTRACT
Domain-Specific Modeling allows domain experts with lim-
ited technical background to precisely model applications by
using domain concepts. These domain-specific models can
be simulated, optimized, transformed into other formalisms,
and from these models executable code and documentation
can be generated. Because of their syntactic simplicity they
are suitable for analysis, which is nonetheless often neglected
in current approaches. Especially in Human-Computer In-
teraction, verifying whether the model satisfies its require-
ments (specified as so-called properties) is essential. The
ProMoBox approach presents a highly automated solution for
the specification and verification of such properties. It pro-
vides a framework for model checking of temporal properties,
where all visible artifacts (system designs, properties, simu-
lation traces, etc.) are specified in the domain-specific way.

THE ProMoBox APPROACH
Domain-specific modeling (DSM) helps designing systems
at a higher level of abstraction. By providing languages,
“DSMLs” (defined by a metamodel), that are closer to the
problem domain than to the solution domain, low-level tech-
nical details can be hidden. An essential activity in DSM
is the specification and verification of properties to increase
the quality of the designed systems [3]. Providing support
for these tasks is therefore necessary to provide a holistic
DSM experience to domain engineers. Unfortunately, this has
been mostly neglected by DSM approaches. At best, support
is limited to translating models to formal representations on
which properties are specified and evaluated with logic-based
formalisms [6], such as Linear Temporal Logic (LTL). This
contradicts the DSM philosophy as domain experts desiring
to specify and verify domain-specific properties are not famil-
iar with such formalisms. We propose the ProMoBox frame-
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Figure 1. The ProMoBox approach applied to GISMO.

work to shift property specification and verification tasks up
to the DSM level. The scope, assumptions and limitations of
this approach are presented in [5].

We applied ProMoBox to GISMO [1], a DSML for executable
modeling of gestural interaction applications [2]. The Pro-
MoBox approach for GISMO is illustrated in Fig. 1. The Pro-
MoBox framework consists of (i) generic languages for mod-
eling all artifacts that are needed for specifying and verifying
properties, (ii) a fully automated method to specialize and in-
tegrate these generic languages in a given DSML, and (iii)
a verification backbone based on model checking that is di-
rectly pluggable to DSM environments such as AToMPM [7].
Properties in ProMoBox are translated to LTL and a Promela
model is generated that includes a translation of the system,
its environment and its rule-based operational semantics. The
Promela model is checked with the SPIN model checker [4]
and if a counter-example is found it is translated back to the
DSM level.

The ProMoBox framework [5] relies on a family of fully auto-
matically generated modeling languages based on the DSML
metamodel. These languages are required to modularly sup-
port specification and verification of model properties. The
design language (GIS MOD in Fig. 1) allows DSM engineers
to design the static structure of the system. The runtime lan-
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Figure 2. A bow model in state ArrowReady (highlighted) conform to
GIS MOR.

Figure 3. Property: when you fire the bow, there is no arrow left.

guage (GIS MOR) enables modelers to define a state of the
system, e.g., an initial state as input of a simulation, or a par-
ticular “snapshot” during runtime (as shown in Fig. 2). The
input language (GIS MOI) lets the DSM engineer model the
behavior of the system environment, e.g., by modeling an in-
put scenario as an ordered sequence of events containing one
or more input elements. The output language (GIS MOO) can
be used to represent execution traces (expressed as ordered
sequences of states and transitions) of a simulation or to show
verification results in the form of a counter-example. Output
models can also be created manually as part of an oracle for
a test case. The property language (GIS MOP) can be used
to express properties based on modal temporal logic, includ-
ing structural logic and quantification. A property is shown
in Fig. 3.

Maintaining five DSMLs instead of one unacceptably in-
creases the maintenance cost. Therefore, a fully automated
method specializes and integrates these languages to any
given DSML, thus minimizing the effort of the language en-
gineer. This is realized by manually annotating the DSML
metamodel entities (classes, associations and attributes) with
the necessary UML-like stereotypes. This annotated meta-
model (GISMO’ in Fig. 1) contains all information needed to
generate the five sublanguages, by merging a tailored version
of the metamodel with a fixed template containing generic
language constructs.

For fifteen properties, we verified whether the model shown
in Fig. 2 satisfies them. The above properties are transformed
to LTL, and are inserted in Promela code consisting of the

system shown in Fig. 2 with initial state, the environment
and rule-based model of the DSML’s semantics as shown in
step 1 of Fig. 1. In step 2, SPIN verifies whether the sys-
tem satisfies the formula, returning “True” if it does. If there
is a counter-example, steps 3 to 5 are followed: the counter-
example trace is played back by SPIN, and a readable trace
is printed (step 3), this trace is converted automatically to
the counter-example output model (step 4), and this counter-
example can be played out state by state by showing a runtime
model for each state (step 5).

Because of these counter-examples, we were able to find and
fix an error in our bow model of Fig. 2. In another instance,
we were able to find and correct an error in one of the se-
mantics model’s rules. The performance in terms of time and
memory consumption is good: evaluation never takes more
than a second on an average laptop, and never requires more
than 100 MB of memory.

The limitations of the framework are related to the mapping
to Promela as explained in [5]. In its current state, Pro-
MoBox does not allow dynamic structure models. Because
of the nature of Promela, boundedness is ensured in the trans-
lation. Other constraints can be circumvented by abstracting
the metamodel to make it suitable for model checking.
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