
Université catholique de Louvain (UCL)
Institute of Information and Communication Technologies,
Electronics and Applied Mathematics (ICTEAM)
Louvain Verification Lab (LVL)

Symbolic model checking
of multi-modal logics:

uniform strategies
and rich explanations

Simon Busard

Thesis submitted in partial fulfillment of the requirements
for the Degree of Doctor in Engineering Sciences

Dissertation committee
Prof. Charles Pecheur, Advisor UCL, Belgium
Prof. Kim Mens, Secretary UCL, Belgium
Prof. Franco Raimondi Middlesex University, United Kingdom
Prof. Pierre-Yves Schobbens University of Namur, Belgium
Prof. Radu Mateescu Inria, France
Prof. Peter Van Roy, President UCL, Belgium

July 2017

Abstract

Model checking is a verification technique that performs an exhaustive
search among the states of safety-critical systems to check whether a
given property is satisfied. These properties are usually expressed within
a logic that captures different aspects of the system such as its evolution
through time.

Multi-modal logics mix several aspects of the system such as the
knowledge and strategies of its agents. They usually are branching
logics, that is, they can express properties about several successors of
the states of interest. Nevertheless, logics to reason about the strategies
of agents with an imperfect view of a system under fairness constraints
have been seldom considered, and model-checking algorithms appeared
only recently.

In this thesis, we first define ATLKirF , a multi-modal logic reasoning
about time, knowledge and uniform strategies of concurrent agents under
unconditional fairness constraints. This logic can be used to reason about
multi-agent programs under the supervision of a fair scheduler.

We then describe three approaches to solve its model-checking prob-
lem. They are all based on an explicit enumeration of the strategies.
The first one simply enumerates and checks all uniform strategies of
the agents. The second one limits this enumeration to partial strategies,
and uses early termination and caching to improve its performances in
practice. The last one performs a backward exploration of the system to
directly build the winning strategies. Furthermore, we present variants
of these approaches based on pre-filtering losing moves. Finally, we im-
plement and compare them with state-of-the-art symbolic solutions. The
experiments show that the different approaches outperform the others in
different situations.

Second, we attack the problem of generating and manipulating rich
explanations for multi-modal logics. One of the main advantages of

ii

model checking is its capability to produce a counter-example showing
why the checked property is violated. But multi-modal logics have rich
and complex explanations, and state-of-the-art model checkers such as
NuSMV provide only partial explanations.

We thus present a µ-calculus based model-checking framework. The
propositional µ-calculus is a logic integrating modal operators and least
and greatest fixpoint operators. The goal of this framework is to help
a designer to solve her top-level model-checking problem by translating
it into µ-calculus. It integrates a µ-calculus model checker with rich
explanations. It also integrates a set of functionalities to help the designer
to translate these explanations back into the top-level language, such
as formula aliases, a relational graph algebra, and choosers to guide the
generation process. The framework is then used on the case of ATL, the
standard logic to reason about the strategies of the agents of a system,
to show its applicability.

Acknowledgements

First of all, I would like to thank Charles for the opportunity to pursue
this PhD. I thank him for his guidance and advice through this adventure.
I am also grateful to Prof. Franco Raimondi who introduced me to the
world of strategic reasoning. I am thankful to the members of my jury
for their useful comments and questions.

Many thanks to Antoine, who shared lunchtime, an office, long
discussions and many other activities for these last twelve years, from our
bachelor degree to today. I also thank my INGI friends, Xavier, Jérôme,
Samuel, Jean-Baptiste, and the others, who spent much valuable time
with me for these last twelve years as well.

I am grateful to all my colleagues from the INGI pole, and particularly
to my colleagues from the Louvain Verification Lab, Sébastien, José,
Christophe, Guillaume, Xavier, and Hossein. Our discussions, technical
or not, were always a pleasure.

I also thank my family and friends, who supported me during these
years of research. And, last but not least, I mostly thank Gaëlle for the
support she gave me. We overcame many obstacles together, and will
continue to do so.

Contents

1 Introduction 1
1.1 Research goals . 3

1.1.1 Model checking uniform strategies 3
1.1.2 Handling rich explanations 4

1.2 Contributions . 5
1.3 Publications . 6
1.4 Structure of the thesis . 7

2 Background 9
2.1 Rich logics . 9

2.1.1 Computation tree logic 9
2.1.2 Fair computation tree logic 12
2.1.3 Alternating-time temporal logic 12
2.1.4 Alternating-time temporal logic

with imperfect information 15
2.1.5 Propositional µ-calculus 16

2.2 Symbolic model checking . 18
2.2.1 Binary decision diagrams 18
2.2.2 Encoding models with binary decision diagrams . . 20
2.2.3 Model checking rich logics

with binary decision diagrams 21
2.3 Tools . 26

2.3.1 NuSMV . 26
2.3.2 PyNuSMV . 26

vi Contents

I Symbolic model checking of uniform strategies
under fairness constraints 31

3 Logics and algorithms for model checking strategies 33

3.1 Reasoning about strategies 33

3.1.1 Alternating µ-calculus 34

3.1.2 Strategy logic . 34

3.1.3 Alternating-time temporal logic
with strategy contexts 35

3.1.4 Coalition logic . 36

3.1.5 Expressiveness comparison 36

3.2 Strategies and knowledge . 36

3.2.1 Alternating temporal epistemic logic 37

3.2.2 Alternating-time temporal logic
with imperfect information 38

3.2.3 Alternating epistemic µ-calculus 41

3.2.4 Epistemic strategy logic 41

3.2.5 Strategy contexts and imperfect information 43

3.2.6 Epistemic coalition logic 43

3.2.7 Other logics . 44

3.3 Strategies and fairness . 46

3.4 Complexities and expressiveness 48

3.5 Model checking uniform strategies 50

3.5.1 Model-checking algorithms
for alternating-time temporal logic
with imperfect information 51

3.5.2 Epistemic strategy logic 54

3.5.3 Other algorithms . 56

4 Reasoning about uniform strategies
under fairness constraints 59

4.1 Syntax . 59

4.2 Models . 60

4.3 Semantics . 63

4.4 Discussion . 65

4.4.1 Fairness constraints 66

4.4.2 Vacuous strategies . 68

4.4.3 Memory and perfect information 69

4.5 Comparison with related work 71

Contents vii

5 Model Checking uniform strategies
under fairness constraints 73

5.1 Checking individual strategies 75

5.2 Enumerating all strategies 79

5.3 Partial strategies . 81

5.3.1 Optimizations . 87

5.4 Pre-filtering . 90

5.4.1 Computing the winning moves 92

5.4.2 The naive approach with pre-filtering 93

5.4.3 The partial approach with pre-filtering 94

5.5 Backward generation of strategies 96

5.6 Complexity analysis . 101

5.7 Implementation . 103

5.7.1 Implementing the algorithms
with binary decision diagrams 103

5.7.2 Modeling language 106

6 Existing symbolic approaches 111

6.1 Interleaving strategy generation and verification 111

6.1.1 Checking all extensions of partial strategies 113

6.1.2 The model-checking algorithm 116

6.1.3 Pre-filtering . 119

6.1.4 Optimizations . 121

6.1.5 Implementation . 122

6.2 A fully symbolic approach 124

6.2.1 Pre-filtering . 128

6.2.2 Implementation . 129

7 Experimental comparison 133

7.1 Models and properties . 133

7.1.1 Tian Ji and the king 133

7.1.2 The three castles . 135

7.1.3 The prisoners and the light bulb 137

7.2 Measures and comparisons 139

7.2.1 Tian Ji and the king 140

7.2.2 The three castles . 149

7.2.3 The prisoners and the light bulb 155

7.2.4 BDD variable reordering techniques 157

7.2.5 Conclusions on the experiments 159

viii Contents

8 Part I: Conclusion 163

8.1 Comparison with related work 166

8.2 Future work . 169

II Rich diagnostics for multi-modal logics 173

9 Explanations for modal logics 175

9.1 Explanations for CTL model checking 176

9.1.1 Branching explanations for CTL model checking . 176

9.1.2 Proof-like counter-examples 181

9.1.3 CTL and Boolean equation systems 183

9.1.4 Other solutions . 184

9.2 Explanations for multi-modal logics 187

9.3 Tree-like annotated counter-examples for CTLK 191

9.4 Explanations for the µ-calculus 194

9.4.1 Explanation graphs for µ-calculus 194

9.4.2 Using games to explain formula violation 195

9.4.3 Boolean equation systems and µ-calculus 195

9.4.4 Model-checking certificates 199

9.5 Summary . 200

10 A framework for µ-calculus based logic explanations 201

10.1 µ-calculus explanations . 205

10.2 Translating µ-calculus explanations 208

10.2.1 Aliases . 211

10.2.2 Relational graph algebra 214

10.2.3 Obligation and edge attributes 216

10.2.4 Local translation . 218

10.2.5 Choosers and partial explanations 222

10.2.6 Markers . 227

10.3 Implementation . 231

10.3.1 Encoding the model 232

10.3.2 Defining µ-calculus formulas 233

10.3.3 Implementation of translation features 233

10.3.4 Visualization tool . 234

10.4 Application to ATL . 236

10.4.1 Translating ATL structures 237

10.4.2 Translating ATL formulas 239

10.4.3 Translating explanations 240

10.4.4 Visualizing explanations 245

10.4.5 Conclusion . 246

Contents ix

11 Part II: Conclusion 249
11.1 Comparison with related work 251

11.1.1 Explanations for CTL model checking 251
11.1.2 Explanations for multi-modal logics 253
11.1.3 Explanations for the µ-calculus 254

11.2 Future work . 255

12 Conclusion 257

References 263

A Model checking uniform strategies:
correctness of the approaches 277
A.1 Checking individual strategies 277
A.2 Enumerating all strategies 287
A.3 Partial strategies . 290
A.4 Pre-filtering . 293

A.4.1 Computing the winning moves 293
A.4.2 The naive approach with pre-filtering 295
A.4.3 The partial approach with pre-filtering 298

A.5 Backward generation of strategies 306
A.6 Interleaving strategy generation and verification 309

A.6.1 The early model-checking algorithm 309
A.6.2 Pre-filtering . 312

A.7 The fully symbolic approach 317
A.7.1 Pre-filtering . 319

B µ-calculus rich explanations:
proofs of theorems 323

Chapter 1

Introduction

Safety-critical systems are everywhere in our daily life. They are embed-
ded in planes, cars and trains, but also lie in health-related systems such
as pacemakers and radiotherapy machines. These systems must be safe
and bug-free since a fault can put the life of their users in danger, or
harm the economical future of their builders.

Techniques are necessary to ensure that such systems really do what
they are intended to. Many methods exist, from testing and simulation
to formal methods. In particular, verification techniques are designed
to make sure that a given system satisfies a particular property. Model
checking is one of them. It mainly applies to reactive systems, that is,
systems that react to their environment and exhibit infinite behaviors,
instead of merely computing an output value in response to their inputs.

In essence, model checking performs an exhaustive search to verify
that all the possible behaviors satisfy the property. More precisely, it
takes a model of the system, usually represented by a (finite) state-
transition graph, and a property to check, usually expressed in a logic.
Then it performs an exhaustive search among the states and paths of the
graph to check that it satisfies the property [CGP99, BK08]. Compared
to other verification techniques such as theorem proving, model checking
is fully automatic and can extract an explanation of why the property is
satisfied (or not) by the model.

Since the 80s, many logics have been proposed to address different
aspects of the system. The first ones were designed to reason about
the temporal evolution of the system: Linear Temporal Logic (LTL)
expresses properties about the execution traces of the system [MP92],
while Computation Tree Logic (CTL) expresses properties about its
computation tree [CE81]. Starting from these logics, many others have

2 Chapter 1. Introduction

been designed to reason about other aspects of the system, such as (the
evolution of) the knowledge of the agents of the system [FHMV95, PL03,
vdMS99], or the strategies they can play to achieve their goals [AHK02].

To illustrate the concepts and techniques presented in this thesis, we
will use the simple example of a card game derived from [JvdH04]. This
game is explained in Example 1.1 and will be referred as the simple card
game in the sequel; the variant of the game that is repeated infinitely
many times will be referred as the repeated card game.

Example 1.1. The game is played with three cards A, K and Q, between
a player and a dealer. A wins over K, K wins over Q, and Q wins over
A. First, the dealer gives one card to the player, keeps one and leaves
the last one on table, face down. Then the player can keep his card or
swap it with the one on the table. Finally, the player wins if his card
wins over the dealer’s.

Branching logics express properties about the branching structure of
the system. For instance, CTL allows the user to express the fact that
all plays of the card game will lead to an end, or that there exists no path
to a state in which all successor states are winning for the player.

Many extensions of CTL have been proposed to take into account
other aspects of the verified systems. The Computation Tree Logic of
Knowledge (CTLK) extends CTL to express properties about time and
knowledge altogether [PL03]. Within this logic, we can express properties
such as in every state of the game, the player knows his card, or after the
first step of the game, the player does not know the card of the dealer.

Another extension of CTL is the Alternating-time Temporal Logic
(ATL), that reasons about the strategies the agents of the system have
to achieve some objectives [AHK02]. For instance, we can say that the
player has a strategy to win the card game, or that the dealer can choose
to give the Q to the player. Many variants of ATL have been proposed
to reason about the strategies that agents with limited knowledge of
the system can actually play [JvdH04]. In particular, ATLir [Sch04]
can be seen as the minimal ATL-based logic to reason about uniform
memoryless strategies [JD06], that is, strategies of agents that base their
choices on the observations they can make on the current state of the
system. Such a logic is well-suited for the card game since the player does
not know the card of the dealer before the end of the game. It is also
well-suited to reason about strategies of multi-agent programs [DJ10], or
to check and synthesize security policies, for instance.

Logics such as CTLK and ATL can be translated into the proposi-
tional µ-calculus [Koz83]. This logic is based on the notion of fixpoints

1.1. Research goals 3

and allows the user to express properties such as for every game instance,
there is always a way for the player to lose or win.

Different techniques have been proposed to solve the model-checking
problem of these logics. The first ones to appear were explicit techniques
in the sense that they handle the model as a state-transition graph
defined by explicit sets of states and transitions [CE81].

Symbolic techniques appeared later. Instead of representing the model
explicitly, they represent sets of states and transitions with particular
data structures such as binary decision diagrams (BDDs) [Bry86] or
satisfiability problems [BCM+90, BCCZ99]. Binary decision diagrams
work well with branching logics, as shown by their model-checking algo-
rithms. These logics are state-based in the sense that their properties are
interpreted over states of the model, and the main advantage of BDDs is
that they can compactly represent large sets of states.

The production of an explanation of why a property is satisfied
by a given model is one of the claimed advantages of model checking.
Nevertheless, only few works attacked the problem of generating and
visualizing them in the case of branching logics. Indeed, these explana-
tions can be very rich as, in general, branching logics need branching
counter-examples [BEGL01]. For instance, to show that the player has
a strategy to eventually know the card of the dealer, we need to exhibit
a strategy for him, that is, for each state of the system, the action the
player must play. Furthermore, we also need to show that this strategy
really achieves its goal by showing that any play of the game following
the strategy leads to a state in which the player knows the card of the
dealer. The generation, as well as the presentation of explanations for
branching logics are thus difficult problems that have got little attention
in the past.

1.1 Research goals

The overall goal of this thesis is to improve the generation and pre-
sentation of explanations in model checking of branching logics. More
precisely, this improvement is achieved by tackling two more specific
problems: (1) the model checking of uniform strategies and (2) the devel-
opment of methods to generate, visualize and manipulate explanations
for µ-calculus based branching logics.

1.1.1 Model checking uniform strategies

To illustrate the first problem, let us go back to the example of the
card game. We are interested in whether the player has a strategy to

4 Chapter 1. Introduction

win the game, given that he does not see the card of the dealer before
the end. This amounts to finding a winning uniform strategy for the
player, that is, a strategy that defines the same action in states that are
indistinguishable from the player. In the present game, the player has
no uniform strategy to win.

To go further, we can consider that the game is played infinitely. Even
in this situation, the player cannot eventually win a play since, whatever
he plans to do, the dealer can give him the wrong hand. Nevertheless, if
we consider a fair dealer, that is, a dealer who gives every possible hand
infinitely often, then any strategy of the player is winning as he is sure
to eventually get a winning hand.

Logics reasoning about uniform strategies have gathered a lot of
attention in the last decade (see for instance [JvdH04, Sch04, JÅ07]).
Nevertheless, only few works investigated the development of practical
algorithms to perform their model checking. More precisely, an explicit
algorithm for ATLir was proposed by Calta et al. a few years ago [CSS10],
but symbolic approaches appeared only recently [PBJ14, HvdM14b]. The
first goal of this thesis is thus to propose a BDD-based algorithm for
model checking uniform strategies.

To this end, we first describe ATLKirF , a new extension of ATLir
for reasoning about uniform strategies under unconditional fairness con-
straints. This logic expresses properties about (branching) time, knowl-
edge, and uniform strategies of agents under fairness constraints. These
fairness constraints can be useful, for instance, to model a fair scheduler.

A second contribution is the design of several BDD-based model-
checking algorithms for ATLKirF . These algorithms are based on an
explicit enumeration of uniform strategies represented with BDDs. While
the first algorithm simply checks all these strategies to find a winning
one, some improvements are made by restricting the search to partial
uniform strategies, that is, strategies that are not specified for all the
states of the model. Other improvements are made by exploring and
enumerating the strategies starting from the objective states, and by
pre-filtering losing moves.

Third, we describe an implementation of the algorithms and a compar-
ison with other state-of-the-art symbolic approaches for model checking
ATLir.

1.1.2 Handling rich explanations

To illustrate the second problem, let us consider the property that in
every play of the card game, the player knows the dealer’s card before
swapping or keeping his cards. The property is obviously violated as the

1.2. Contributions 5

player does not see the card of the dealer before the end of the game.
Showing that the property is false amounts to showing a play of the
game ending in a state in which the player cannot distinguish two states
with different cards for the dealer.

While linear logics such as LTL reason about single executions of
the systems—and thus have explanations consisting in single executions—
branching logics have explanations that must show different branches of
the execution tree of the system to fully explain the truth value of the
property.

Nevertheless, current state-of-the-art tools such as NuSMV only
produce single executions of the model when explaining why a property
is violated by the model [CCG+02]. The second goal of this thesis is thus
to propose techniques and tools to generate, visualize and manipulate
explanations for µ-calculus based logics.

To this end, we give a definition of rich explanations for µ-calculus
properties, as well as a BDD-based algorithm to generate them. Based
on these explanations, a framework is developed to easily generate and
modify explanations for logics that can be translated into the µ-calculus,
such as CTL, ATL and CTLK. The framework provides a µ-calculus
model checker that generates rich explanations. Furthermore, practical
solutions to handle the translation and the richness of such explanations
are presented, such as formula aliases, explanation node attributes, or
formula markers. Finally, an implementation of the framework in Python
is described, as well as a tool to visualize and manipulate the explanations.

This framework takes inspiration from preliminary work on rich ex-
planations for CTLK [BP12]. These explanations are tree-like annotated
counter-examples that exhibit the paths of the system explaining why
CTLK sub-formulas are satisfied.

1.2 Contributions

In summary, the contributions for solving the two problems identified in
the previous section are:

• the definition of ATLKirF , a new logic mixing time, knowledge
and uniform strategies under unconditional fairness constraints;

• three symbolic approaches for solving its model-checking problem,
with variants based on pre-filtering losing moves;

• an implementation of these algorithms and a comparison with other
state-of-the-art symbolic approaches;

6 Chapter 1. Introduction

• a definition of explanations for µ-calculus properties, as well as a
BDD-based algorithm to generate them;

• a framework to generate and modify explanations for logics that
can be translated into the µ-calculus, with features to help the
translation;

• an implementation of the framework and a tool to visualize and
manipulate the explanations.

The tools have been built with PyNuSMV, a NuSMV-based Python
library developed to support the implementation of the ideas presented
in this thesis [BP13].

1.3 Publications

Most of the work has already been published in

[BP12] Simon Busard and Charles Pecheur. Rich counter-examples for
temporal-epistemic logic model checking. In Proceedings Second
International Workshop on Interactions, Games and Protocols,
IWIGP 2012, Tallinn, Estonia, 25th March 2012, pages 39–53,
2012.

[BPQR13] Simon Busard, Charles Pecheur, Hongyang Qu, and Franco
Raimondi. Reasoning about strategies under partial observability
and fairness constraints. In Fabio Mogavero, Aniello Murano, and
Moshe Y. Vardi, editors, Proceedings 1st International Workshop
on Strategic Reasoning, SR 2013, Rome, Italy, March 16-17, 2013,
volume 112 of EPTCS, pages 71–79, 2013.

[BP13] Simon Busard and Charles Pecheur. PyNuSMV: NuSMV as
a Python library. In Guillaume Brat, Neha Rungta, and Arnaud
Venet, editors, Nasa Formal Methods 2013, volume 7871 of LNCS,
pages 453–458. Springer-Verlag, 2013.

[BPQR14] Simon Busard, Charles Pecheur, Hongyang Qu, and Franco
Raimondi. Improving the model checking of strategies under partial
observability and fairness constraints. In Stephan Merz and Jun
Pang, editors, Formal Methods and Software Engineering, volume
8829 of Lecture Notes in Computer Science, pages 27–42. Springer
International Publishing, 2014.

1.4. Structure of the thesis 7

[BPQR15] Simon Busard, Charles Pecheur, Hongyang Qu, and Franco
Raimondi. Reasoning about memoryless strategies under partial
observability and unconditional fairness constraints. Information
and Computation, 242:128 – 156, 2015.

The model-checking algorithm for uniform strategies based on back-
ward generation, the comparison of symbolic approaches for model check-
ing uniform strategies and the work on the framework for µ-calculus
based logics explanations have not been published yet.

1.4 Structure of the thesis

Chapter 2 describes the background material. Part I presents the con-
tributions about model checking uniform strategies under fairness con-
straints. Chapter 3 presents related work on the subject. Chapter 4
describes the logic ATLKirF itself, its syntax and semantics, and the
complexity of its model-checking problem. Chapter 5 proposes several
BDD-based algorithms for model checking the logic. Chapter 6 presents
other recent symbolic approaches. Chapter 7 experimentally compares
all the presented algorithms. Chapter 8 draws some conclusions about
this first part.

Part II presents the contributions about the explanations of rich
logics. Chapter 9 presents related work on the subject. Chapter 10
describes the framework for µ-calculus based logics explanations and its
implementation in Python. Chapter 11 draws some conclusions about
the second part.

Finally, Chapter 12 concludes the thesis, shows the link between the
two presented parts, and draws some perspectives.

Chapter 2

Background

This chapter presents the background material the rest of the thesis
relies on. First, it describes several logics that will be referred to in the
text. Then it discusses their symbolic model checking. Finally it presents
the tools used to implement the different techniques and to perform the
experiments.

2.1 Rich logics

This section presents Computation Tree Logic and some of its extensions
to reason about strategies, as well as the propositional µ-calculus, a
fixpoint-based logic into which all the previous ones can be translated.

2.1.1 Computation tree logic

Computation tree logic (CTL) reasons about the possible future ex-
ecutions of a system [CE81]. The syntax of the formulas follows the
grammar

φ ∶∶= true ∣ p ∣ ¬φ ∣ φ ∨ φ ∣ E ψ

ψ ∶∶= X φ ∣ φ U φ ∣ φ W φ

where p is an atomic proposition from a fixed set AP . Formulas φ (resp.
ψ) are called state (resp. path) formulas.

Other operators can be defined in terms of the previous ones:

false ≡ ¬true
φ1 ∧ φ2 ≡ ¬(¬φ1 ∨ ¬φ2)

10 Chapter 2. Background

φ1 Ô⇒ φ2 ≡ ¬φ1 ∨ φ2

φ1 ⇐⇒ φ2 ≡ (φ1 Ô⇒ φ2) ∧ (φ2 Ô⇒ φ1)
A ψ ≡ ¬E ¬ψ
F φ ≡ true U φ

G φ ≡ φ W false

E and A operators are called path quantifiers and X, U, W, G and F
are path operators.

Intuitively, E[φ1 W φ2] means that there exists a path such that all
states of the path satisfy φ1 unless φ2 has been true before. On the other
hand, A[φ1 U φ2] means that φ2 will eventually be true, for all possible
behaviors, and φ1 will be true in the meantime.

For instance, the fact that all plays of the card game will lead to an
end can be translated into CTL as AF end. The fact that there exists
no path to a state in which all successor states are winning for the player
can be written as ¬EF AX win.

The U and W operators can be derived from one another:

¬(φ1 U φ2) ≡ (¬φ2) W (¬φ1 ∧ ¬φ2),
¬(φ1 W φ2) ≡ (¬φ2) U (¬φ1 ∧ ¬φ2).

Nevertheless, both operators are needed if we want to derive positive
normal forms (PNF) of CTL formulas—that is, equivalent formulas in
which the negation ¬ only applies to atomic propositions—as the formula
¬E[φ1 U φ2] has no PNF without the W operator.

CTL formulas are interpreted over the states of Kripke structures
S = ⟨Q,Q0,R, V ⟩ where

• Q is a set of states;

• Q0 ⊆ Q is the set of initial states;

• R ⊆ Q × Q is a serial transition relation; we write q → q′ for
⟨q, q′⟩ ∈ R;

• V ∶ Q → 2AP is a labeling function determining the set of atomic
propositions true in each state.

We call a path of S an infinite sequence π = q0, q1, ... such that
qd → qd+1 for all d ≥ 0; we write π(d) for qd. We say that a path π
starts in q if π(0) = q.

The Kripke structure for the simple card game is illustrated in Fig-
ure 2.1. The states are decorated with the cards of the player and the

2.1. Rich logics 11

dealer, respectively, and each row of states belong to the same game
step. Atomic propositions include pcard = C and dcard = C to refer to
the fact that the player (resp. the dealer) has card C ∈ {A,K,Q}, and
the propositions win and lose label the states in which the player wins
the game (resp. loses it).

−,−

Q,K A,K A,Q K,Q K,A Q,A

Q,K A,K A,Q K,Q K,A Q,A

Figure 2.1: The Kripke structure for the card game. Circles are states,
with pairs of cards (K,A means player has K, dealer has A). Arrows are
transitions. Atomic propositions are not pictured but are easily inferred.

The semantics of CTL formulas is defined over the states of S by the
relation S, q ⊧CTL φ. We say that q satisfies φ in S when S, q ⊧CTL φ.
This relation is defined as

S, q ⊧CTL true,
S, q ⊧CTL p ⇔ p ∈ V (q),
S, q ⊧CTL ¬φ ⇔ S, q /⊧CTL φ,
S, q ⊧CTL φ1 ∨ φ2 ⇔ S, q ⊧CTL φ1 or S, q ⊧CTL φ2,

S, q ⊧CTL E ψ ⇔ { there exists a path π of S starting in q
s.t. S,π ⊧CTL ψ.

The relation S,π ⊧CTL ψ on paths is defined as

S,π ⊧CTL X φ ⇔ S,π(1) ⊧CTL φ,

S, π ⊧CTL φ1 U φ2 ⇔ { there exists d ≥ 0 s.t. S,π(d) ⊧CTL φ2

and for all c < d,S, π(c) ⊧CTL φ1,

S, π ⊧CTL φ1 W φ2 ⇔ S,π ⊧CTL φ1 U φ2 or ∀d ≥ 0, S, π(d) ⊧CTL φ1.

12 Chapter 2. Background

Given a structure S = ⟨Q,Q0,R, V ⟩ and a CTL formula φ, we say
that S satisfies φ—and write S ⊧CTL φ—if all initial states of S satisfy
φ, that is, if

∀q ∈ Q0, S, q ⊧CTL φ.

For instance, the Kripke structure of Figure 2.1 satisfies EF win because
the right-most path (among others) leads to the third-step state ⟨Q,A⟩
in which the player wins.

CTL restricts the path operators to be immediately preceded by a
path quantifier. Removing this restriction gives CTL∗, in which we can
express properties such as there exists a path along which the player wins
and the dealer never gets an A, written

E (F win ∧G dcard ≠ A).

2.1.2 Fair computation tree logic

Fair CTL (FCTL) is a variant of CTL that quantifies over fair paths
only [CES86]. More precisely, FCTL formulas follow the same syntax
as CTL ones, but are interpreted over states of fair Kripke structures
S = ⟨Q,Q0,R, V,FC⟩ where ⟨Q,Q0,R, V ⟩ is a CTL Kripke structure and
FC ⊆ 2Q is a set of unconditional fairness constraints. A fair path π of
S is a path such that, for each fairness constraint fc ∈ FC, there exist
infinitely many positions d such that π(d) ∈ fc. We call a fair state a
state from which there exists a fair path.

The semantics of FCTL is the same as for CTL, except for the path
quantifier E:

S, q ⊧FCTL E ψ⇔{ there exists a fair path π starting in q
s.t. S,π ⊧FCTL ψ,

where the relation S,π ⊧FCTL ψ follows the relation S,π ⊧CTL ψ.
Figure 2.2 presents the repeated card game with a fair dealer modeled

by adding one fairness constraint per second-step state. In this Kripke
structure, the initial state ⟨ , ⟩ satisfies AF dcard = A under the seman-
tics of Fair CTL because every fair path of the model must go through
all given pairs of cards.

2.1.3 Alternating-time temporal logic

Alternating-time Temporal Logic (ATL) extends CTL by replacing the
path quantifiers E and A with coalition modalities ⟪Γ⟫ and JΓK reasoning

2.1. Rich logics 13

−,−

Q,K

fc1

A,K

fc2

A,Q

fc3

K,Q

fc4

K,A

fc5

Q,A

fc6

Q,K A,K A,Q K,Q K,A Q,A

−,−

Figure 2.2: The fair Kripke structure of the repeated card game. Fairness
constraints fci label the intermediate states.

about the strategies of groups of agents Γ to enforce an objective [AHK02].
More precisely, ATL formulas follow the grammar

φ ∶∶= true ∣ p ∣ ¬φ ∣ φ ∨ φ ∣ ⟪Γ⟫ ψ

where p is an atomic proposition from a fixed set AP , Γ is a set of agents,
and ψ path formulas follow the same grammar as for CTL. The logic
includes the derived path operators of CTL F and G, and keeps the
duality between the two strategic modalities, that is, ⟪Γ⟫ ψ ≡ ¬JΓK ¬ψ.
Furthermore, ⟪Γ⟫U and ⟪Γ⟫W operators can be translated into one
another:

¬⟪Γ⟫[φ1 U φ2] ≡ JΓK[(¬φ2) W (¬φ1 ∧ ¬φ2)],
¬⟪Γ⟫[φ1 W φ2] ≡ JΓK[(¬φ2) U (¬φ1 ∧ ¬φ2)].

Intuitively, ⟪Γ⟫ ψ means that the agents of Γ have a collective strategy
such that all resulting paths satisfy ψ, that is, Γ can enforce ψ. On the
other hand, JΓK ψ means that Γ have no collective strategy such that no
resulting path satisfies ψ, that is, Γ cannot avoid ψ.

For instance, the fact that the player has a strategy to win the game
is translated as ⟪player⟫F win, and the dealer can give the A to the
player is written ⟪dealer⟫X pcard = A.

14 Chapter 2. Background

ATL formulas are interpreted over the states of concurrent game
structures (CGS)1 S = ⟨Ag,Q,Q0,Act, e, δ, V ⟩ where

• Ag is a set of agents;

• Q is a set of states;

• Q0 ⊆ Q is the set of initial states;

• Act is a set of actions; a joint action is a tuple of actions, one for
each agent;

• e ∶ Ag → (Q → (2Act/∅)) defines, for each agent ag and state q,
the non-empty set of actions ag can choose in q, that is, actions
enabled in q; we write eag for e(ag);

• δ ∶ Q × ActAg ↛ Q is a partial deterministic transition function2

defined for all states q ∈ Q and all joint actions enabled in q; we
write q

aÐ→ q′ for δ(q, a) = q′;

• V ∶ Q→ 2AP labels the states of Q with atomic propositions.

A joint action a ∈ ActAg completes an action aΓ ∈ ActΓ for agents
in Γ, written aΓ ⊑ a, if the actions of Γ in a correspond to the ones in
aΓ. From e we define E ∶ 2Ag → (Q→ 2Act

Ag) as E(Γ)(q) = ∏ag∈Γ eag(q),
that returns the set of actions for Γ enabled in q. A path of S is an
infinite sequence π = q0, a1, q1, a2... such that δ(qd, ad+1) = qd+1 for all
d ≥ 0.

A strategy for agent ag is a function fag ∶ Q+ → Act such that
∀q0, ..., qn ∈ Q+, fag(q0, ..., qn) ∈ eag(qn). We write Fag for the set of
strategies of agent ag. The outcomes of a strategy fag from a state q are
the set of paths resulting in applying the strategy and are defined as

out(fag, q) = {q0, a1, q1, a2... ∣ q0 = q ∧ ∀d ≥ 0, fag(q0, ..., qd) ⊑ ad+1}

Finally, a strategy fΓ for a set of agents Γ is a tuple of strategies, one for
each agent of Γ, and the outcomes of fΓ is the intersection of outcomes
of each strategies, that is, out(fΓ, q) = ⋂fag∈fΓ

out(fag, q). We write FΓ

for the set of strategies of the group Γ.

1Alur et al. originally defined the semantics of ATL on states of alternating
transition systems [AHK98]; the two classes of models are equivalent [GJ04].

2Imposing a deterministic transition function is not an actual restriction. A
model with a non-deterministic transition relation can be translated into a model
with a deteministic transition function by adding a new agent that breaks the non-
determinism [BPQR15].

2.1. Rich logics 15

The semantics of ATL is defined over the states of a CGS S by the
relation S, q ⊧ATL φ. This relation is the same as the CTL one for atomic
propositions and Boolean connectives. For the coalition operator ⟪Γ⟫ ψ,
the relation is defined as

S, q ⊧ATL ⟪Γ⟫ ψ⇔ { there exists a strategy fΓ for Γ
s.t. ∀π ∈ out(fΓ, q), S, π ⊧ATL ψ,

where the relation S,π ⊧ATL ψ follows the CTL one. The relation
S ⊧ATL φ is defined in the standard way.

As for CTL, we can remove from ATL the restriction that path
operators must be immediately preceded by a strategic operator, giving
the logic ATL∗. In this logic, we can express properties such as the
player and the dealer have a strategy to make the player win and to avoid
giving an A to the dealer, written as

⟪player, dealer⟫ (F win ∧G dcard ≠ A).

ATL subsumes CTL in the sense that every CTL formula can be
translated into an equivalent ATL formula. Indeed, the E modality
corresponds to the ⟪Ag⟫ one, and the A modality corresponds to the
JAgK one.

2.1.4 Alternating-time temporal logic
with imperfect information

ATLir is an extension of ATL restricted to memoryless uniform strategies,
that is, strategies that choose an action for an agent based on the
observations the agent can make on the current state [Sch04]. The ir
subscripts mean imperfect information (i) and imperfect recall (r), in
opposition to perfect information (I) and perfect recall (R). ATL can be
seen as ATLIR. ATLir is used to reason about the strategies of agents
with a partial view of the system as the strategies the logic considers are
the ones that the agents can actually play [JvdH04].

The syntax of ATLir is the same as for ATL. The models over
which ATLir formulas are interpreted are imperfect information con-
current game structures (iCGS) S = ⟨Ag,Q,Q0,Act, e, δ,∼, V ⟩ where
⟨Ag,Q,Q0,Act, e, δ, V ⟩ is a CGS and ∼∶ Ag → 2(Q×Q) defines, for each
agent ag, an equivalence relation over states. We write ∼ag for ∼ (ag). We
assume that each agent can choose his action based on his observations
of the current state only, that is, ∀q, q′ ∈ Q s.t. q ∼ag q′, eag(q) = eag(q′).

A memoryless strategy for agent ag is a strategy fag such that

∀π,π′ ∈ Q+ s.t. π(∣π∣ − 1) = π′(∣π′∣ − 1), fag(π) = fag(π′),

16 Chapter 2. Background

that is, the strategy fag is memoryless if it chooses the action to play based
on the current state only. Such a strategy can be viewed as a function
fag ∶ Q→ Act depending only on the current state. A memoryless uniform
strategy, also called uniform strategy in the sequel, is a memoryless
strategy fag such that

∀q, q′ ∈ Q s.t. q ∼ag q′, fag(q) = fag(q′),

that is, the agent chooses the action to play based on his observations
of the current state. We write F uag for the set of uniform memoryless
strategies of agent ag, and F uΓ for the set of uniform memoryless strategies
for a group of agents Γ.

The semantics of ATLir formulas is the same as for ATL, except for
the coalition operator that is restricted to the existence of a uniform
memoryless strategy for all indistinguishable states:

S, q ⊧ATLir ⟪Γ⟫ ψ⇔
⎧⎪⎪⎪⎨⎪⎪⎪⎩

there exists a uniform strategy fΓ for Γ s.t.
for all ag ∈ Γ, for all q′ ∈ Q s.t. q ∼ag q′,
for all π ∈ out(fΓ, q

′), S, π ⊧ATLir ψ,

where the relation S,π ⊧ATLir ψ follows the one for ATL.

For instance, the player has no uniform strategy to win the card game
because he must distinguish the state ⟨A,K⟩ from the state ⟨A,Q⟩, in
which he must choose different actions to win. So, in this model, the
formula ⟪player⟫F win is not satisfied by the initial state.

The model checking problem for ATLir is ∆P
2 -complete, that is,

it needs a polynomial number of calls to an NP oracle to solve the
problem [JD06, JD08].

2.1.5 Propositional µ-calculus

The propositional µ-calculus (abbreviated in the sequel as the µ-calculus)
is a logic based on fixpoints [Koz83]. Its syntax is composed of a set of
atomic properties AP , the special properties true and false, a set of
variables V ar, the standard Boolean combinators ¬, ∧ and ∨, the least
and greatest fixpoint operators µ and ν, and a set of existential and
universal modes ◇i and ◻i. More formally, µ-calculus formulas follow
the grammar

φ ∶∶= true ∣ p ∣ v ∣ ¬φ ∣ φ ∨ φ ∣ ◇i φ ∣ µv. φ

where p ∈ AP are atomic propositions and v ∈ V ar are variables. In the
sequel, we write Lµ for the set of µ-calculus formulas. As usual, other

2.1. Rich logics 17

operators can be defined in terms of the ones above:

◻i φ ≡ ¬◇i ¬φ,
νv. φ ≡ ¬µv. ¬φ(¬v).

A variable v is bound in φ if it is enclosed in a sub-formula µv. ψ
or νv. ψ; otherwise, it is free. We sometimes note µv. ψ(v), νv. ψ(v),
and ψ(v) to stress the fact that ψ contains free occurrences of variable
v. We also write ψ[χ/v]—or equivalently ψ(χ) when v is clear from the
context—for the µ-calculus formula ψ where every occurrence of v is
replaced by χ. This notation is extended for any sub-formula, that is,
φ[φ2/φ1] is the formula φ where every occurrence of the sub-formula φ1

is replaced by φ2. A formula φ is called closed if all variables occurring
in φ are bound in φ; otherwise, φ is open. We write ψ ≤ φ to express the
fact that ψ is a sub-formula of φ.

Any formula µv. ψ or νv. ψ, must be syntactically monotone, that is,
all occurrences of v in ψ must fall under an even number of negations.
A formula is in positive normal form if negations are only applied to
atomic propositions and variables. Any syntactically monotone formula
can be transformed into an equivalent syntactically monotone formula in
positive normal form.

We say that a formula φ is alternation-free if, when φ is in positive
normal form, there is no occurrence of the ν (resp. µ) operator on any
syntactic path between a µ (resp. ν) operator and the occurrences of the
variable it binds. We call the alternation-free µ-calculus the µ-calculus
restricted to alternation-free formulas.

µ-calculus models are Kripke structures S = ⟨Q,{Ri ∣ i ∈ Σ}, V ⟩ where

• Q is a set of states;

• Ri ⊆ Q × Q are ∣Σ∣ transition relations; in the sequel, we write
q →i q′ for ⟨q, q′⟩ ∈ Ri;

• V ∶ Q→ 2AP is a function labeling the states with atomic proposi-
tions of AP .

µ-calculus formulas are interpreted as sets of states under a given
environment. An environment is a function e ∶ V ar → 2Q associating a
set of states to all free variables of the formula. The set of environments
is noted E . We write e[Q′/v] for Q′ ⊆ Q and v ∈ V ar as the function e′

such that e′(v) = Q′ and e′ agrees with e for all other variables. The
semantics of formulas is given by the function JφKSe. It takes a formula
φ and an environment e defined at least for the free variables of φ, and

18 Chapter 2. Background

returns the corresponding set of states. e can be omitted when φ is
closed. This function is defined as:

JtrueKSe = Q,
JpKSe = {q ∈ Q ∣ p ∈ V (q)},
JvKSe = e(v),

J¬φKSe = Q/JφKSe,

Jφ ∨ ψKSe = JφKSe ∪ JψKSe,

J◇i φKSe = {q ∈ Q ∣ ∃q′ ∈ Q s.t. q →i q′ ∧ q′ ∈ JφKSe},
Jµv. φKSe = ⋂{Q′ ⊆ Q ∣ JφKSe[Q′/v] ⊆ Q′}.

2.2 Symbolic model checking

This section presents symbolic model checking, a set of techniques to
solve the model-checking problem of the logics presented above. The
model-checking problem for a logic L is, given a model S, a state q of
this model and a formula φ of L, determining whether S, q ⊧L φ or not.

These techniques are called symbolic because they use binary decision
diagrams to compactly represent sets of states and transition relations,
instead of representing them in an explicit way by enumerating all their
elements.

This section describes what are binary decision diagrams (BDDs),
how to encode models with BDDs, and how to solve the model-checking
problem of the logics with BDDs.

2.2.1 Binary decision diagrams

Binary decision diagrams are canonical representations for Boolean for-
mulas [Bry86, MT98]. A Boolean formula φ on propositional variables
v1, ..., vn can be seen as a function fφ(v1, ..., vn) such that fφ(b1, ..., bn)
returns true if and only if replacing vi by bi ∈ {true, false} in φ yields a
true formula.

Such a Boolean formula φ can be represented by a binary decision
tree where each non-terminal node is linked to a propositional variable
and has a left and a right child, and each terminal node is labelled by
true or false (or equivalently 1 or 0, respectively). Any path in such a
tree meets each propositional variable exactly once, always in the same
order, and the leaf node reached through a particular path is labelled by

2.2. Symbolic model checking 19

fφ(b1, ..., bn), where bi = true if the path goes through the left child of the
node labelled by vi, and bi = false otherwise. For instance, Figure 2.3
represents the binary decision tree of the formula v1 ∨ (v2 ∧ ¬v3).

v1

v2 v2

v3 v3 v3 v3

1 1 1 1 0 1 0 0

Figure 2.3: The binary decision tree for the formula v1 ∨ (v2 ∧ ¬v3). Left
(true) child is under the plain edge, right (false) child under the dashed
one.

Binary decision trees contain a lot of redundancy. For instance, the
tree of Figure 2.3 contains several identical subtrees, such as the two
subtrees rooted at v3 in the left part. Ordered binary decision diagrams—
simply called binary decision diagrams in the rest of this thesis—are
directed acyclic graphs with non-terminal binary nodes labelled by propo-
sitional variables and terminal ones by Boolean values. Furthermore,
on any path, all propositional variables are encountered at most once.
Also, the propositional variables are totally ordered, such that if vi < vj ,
then on any path of the diagram, if two nodes labelled by vi and vj are
encountered, the first one appears before the second one. Finally, these
graphs contain no isomorphic subtrees and no redundant nodes, that is,
no nodes with the same subtree on left and right. The binary decision
diagram of v1 ∨ (v2 ∧¬v3) is given in Figure 2.4. BDDs can be viewed as
binary decision trees on which we applied the following reduction rules
until no rule applies anymore:

• merge identical subtrees;

• remove redundant tests: if a non-terminal node has the same true
and false successors, it can be eliminated.

BDDs are canonical representations of Boolean formulas in the sense
that two formulas have isomorphic BDDs if and only if they are equiva-
lent, that is, they have the same truth values for the same assignments

20 Chapter 2. Background

v1

v2

v3

1 0

Figure 2.4: The binary decision diagram for the formula v1 ∨ (v2 ∧ ¬v3),
with variables ordered by v1 < v2 < v3. true child is under the plain edge,
false child under the dashed one.

to their variables. Testing the equivalence of two formulas, given their
corresponding BDDs, is thus checking that their roots are identical. Fur-
thermore, many standard Boolean operations, such as complementation,
conjunction, disjunction and existential quantification, can be performed
on BDDs in time polynomial to the number of nodes of the operands.

Nevertheless, BDDs suffer from some disadvantages. The first one is
that the number of nodes of the BDD corresponding to a formula φ is
exponential in the number of variables of φ in the worst case. Furthermore,
the order of the variables of a BDD can have a huge impact on its number
of nodes, and thus on the time needed to perform Boolean operations
on it. Furthermore, finding a good order is difficult, and finding the
optimal one is an NP-complete problem. Much effort has been made to
develop heuristics that find good orders (see [MT98] for a summary of
these techniques).

2.2.2 Encoding models with binary decision diagrams

To encode models with binary decision diagrams, we need to be able
to encode sets of elements—such as sets of states, sets of actions—and
relations—such as transition relations, equivalence relations.

Elements from a set Z are encoded by defining a bijection from
Boolean vectors of size m = ⌈log2(∣Z ∣)⌉ to elements of Z. Each element of
Z is encoded with m Boolean values. A subset Z ′ of Z is encoded as the
Boolean formula that is true for the Boolean assignments corresponding
to states of Z ′ and false for the others. For instance, let us consider
the Kripke structure depicted in Figure 2.5. This structure has four

2.2. Symbolic model checking 21

states Q = {q0, q1, q2, q3}. We can define the bijection f ∶ {0,1} → Q as
f(v1, v2) = q(v1+2∗v2). The subset Q′ = {q1, q3} is thus represented by the
BDD corresponding to the Boolean formula

(v1 ∧ ¬v2) ∨ (v1 ∧ v2) ≡ v1.

q0p q1 p

q2 q3

Figure 2.5: A Kripke structure. States are labelled with the atomic
proposition p.

Relations are represented as sets of tuples using the Boolean variables
corresponding to their elements. If a relation is defined over the same set
of elements, copies of the variables are used. For instance, to represent
the transition relation of the structure of Figure 2.5, we need one copy of
the Boolean variables for elements of Q, v′1 and v′2. Then, the transition
relation is encoded as the BDD corresponding to the formula

(¬v1 ∧ ¬v2 ∧ v′1 ∧ ¬v′2) ∨ (v1 ∧ ¬v2 ∧ v′1 ∧ v′2) ∨ (¬v1 ∧ ¬v2 ∧ ¬v′1 ∧ v′2).

Finally, the labeling is defined as ∣AP ∣ subsets of Q encoding, for each
atomic proposition of AP , the subset of states in which the proposition is
true [CGP99]. For instance, the BDD related to the atomic proposition
p in Figure 2.5 corresponds to the Boolean formula

(¬v1 ∧ ¬v2) ∨ (v1 ∧ ¬v2) ≡ ¬v2.

2.2.3 Model checking rich logics
with binary decision diagrams

This section describes how we can solve the model-checking problem of
the µ-calculus, CTL, FCTL and ATL, showing the basic techniques on
which many algorithms presented in this thesis are based.

Computing fixpoints

Before presenting the model-checking algorithms, let us describe how to
compute fixpoints of functions τ ∶ 2Z → 2Z , taking one subset of elements
of Z as input and returning another subset. First, if Z is finite, then τ

22 Chapter 2. Background

has least and greatest fixpoints if and only if τ is monotonic [CGP99].
All functions for which we compute fixpoints in this thesis are monotonic.

Given a function τ over sets of elements of Z and a subset Z ′ ⊆ Z,
Z ′ is a fixpoint of τ if τ(Z ′) = Z ′. Furthermore, let τ i(Z ′), i ≥ 0, be
defined as τ0(Z ′) = Z ′ and τ i+1(Z ′) = τ(τ i(Z ′)) for i ≥ 0. Given that τ
is a monotonic function, its least fixpoint is given by τ∞(∅) = τ j(∅) for
some j ≥ 0, and its greatest fixpoint by τ∞(Z) = τ j(Z) for some j ≥ 0.
This gives us a direct way to compute least and greatest fixpoints: by
iterating τ applications from one extreme (∅ and Z, respectively) and
spotting when a fixpoint is found. In the sequel, we use Lfp and Gfp for
the two algorithms that compute the least and greatest fixpoints (resp.)
of the function they receive as argument (see, for instance, [CGP99] for
more information).

As soon as subsets of Z can be represented with BDDs and τ can be
computed on these BDDs, Lfp(τ) and Gfp(τ) are easily implemented
with BDDs as they only need the ∅ BDD (a single 0 node), the Z BDD
(a single 1 node), and the possibility to check the equivalence of two
BDDs (available in any BDD package, at low cost). These two algo-
rithms are thus well suited to compute least and greatest fixpoints with
binary decision diagrams. In the sequel, we use Lfp(τ) and µZ ′.τ(Z ′)
interchangeably, as well as Gfp(τ) and νZ ′.τ(Z ′).

µ-calculus model checking

This section describes an algorithm to solve the model-checking problem
of the µ-calculus [CGP99]. First, let

Pre(S, i,Q′) = {q ∈ Q ∣ ∃q′ ∈ Q′ s.t. q →i q′}. (2.1)

It takes a Kripke structure S = ⟨Q,{Ri ∣ i ∈ Σ}, V ⟩, a transition relation
identifier i ∈ Σ from S and a subset Q′ of Q as arguments, and returns
the set of states of Q that have a successor in Q′ through the relation Ri.

We can define the model-checking algorithm evalµ(S,φ, e) that re-
turns the set of states S satisfying φ in environment e, that is, the set
JφKSe. This algorithm is described as a function defined for all possible
operators that φ can use, and the underlying semantics is that the al-
gorithm evaluates the function depending on the actual operator of φ.
evalµ(S,φ, e) is defined as

evalµ(S, true, e) = Q,
evalµ(S, p, e) = {q ∈ Q ∣ p ∈ V (q)},
evalµ(S, v, e) = e(v),
evalµ(S,¬φ, e) = Q/evalµ(S,φ, e),

2.2. Symbolic model checking 23

evalµ(S,φ1 ∨ φ2, e) = evalµ(S,φ1, e) ∪ evalµ(S,φ2, e),
evalµ(S,◇i φ, e) = Pre(S, i, evalµ(S,φ, e)),
evalµ(S,µv. φ, e) = Lfp(λQ′.eval(S,φ, e[Q′/v])).

CTL model checking

Like the algorithm for the µ-calculus, the algorithm for solving the model-
checking problem for CTL is based on a simple Pre function, standard set
manipulations, and least and greatest fixpoint computations [BCM+90].
Let

Pre(S,Q′) = {q ∈ Q ∣ ∃q′ ∈ Q′ s.t. q → q′}.
It takes a Kripke structure S = ⟨Q,Q0,R, V ⟩ and a subset of states
Q′ ⊆ Q as arguments, and returns the set of states that have a successor
in Q′ through the transition relation of S.

With Pre, we can define the function

Reach(S,Q1,Q2) = µQ′. Q2 ∪ (Q1 ∩ Pre(S,Q′))
taking a Kripke structure S = ⟨Q,Q0,R, V ⟩ and two subsets of states
Q1,Q2 ⊆ Q as arguments, and returning the states of S from which there
exists a finite path to a state of Q2 through states of Q1.

Based on the two functions above, we can define the model-checking
algorithm evalCTL(S,φ) that returns the set of states S satisfying φ,
that is, the set {q ∈ Q ∣ S, q ⊧CTL φ}. With this algorithm, it is easy to
solve the model-checking problem for CTL: S, q ⊧CTL φ if and only if
q ∈ evalCTL(S,φ). This algorithm is defined as

evalCTL(S, true) = Q,
evalCTL(S, p) = {q ∈ Q ∣ p ∈ V (q)},
evalCTL(S,¬φ) = Q/Q′,

evalCTL(S,φ1 ∨ φ2) = Q1 ∪Q2,

evalCTL(S,EX φ) = Pre(S,Q′),
evalCTL(S,E[φ1 U φ2]) = Reach(S,Q1,Q2),
evalCTL(S,E[φ1 W φ2]) = νQ′. Q2 ∪ (Q1 ∩ Pre(S,Q′)),

where

Q′ = evalCTL(S,φ),
Q1 = evalCTL(S,φ1),
Q2 = evalCTL(S,φ2).

24 Chapter 2. Background

Fair CTL model checking

The model-checking algorithm for FCTL is a variant of the one for
CTL. More precisely, it is based on the same Pre function, lifted to
take Kripke structures S = ⟨Q,Q0,R, V,FC⟩ with fairness constraints
into account. Let Reach be the same function as before, also lifted for
the same structures. Then we can define the function Fair(S) as

Fair(S) = νQ′. ⋂
fc∈FC

Pre (Reach (S,Q, (Q′ ∩ fc))) .

This function takes a Kripke structure as argument and returns the states
of this structure from which there exists a fair path, that is, a path such
that all fairness constraints of FC are met infinitely often.

Based on the Pre, Reach and Fair functions, we can define the
model-checking algorithm evalFCTL(S,φ) returning the set of states of
S satisfying φ:

evalFCTL(S,EX φ) = Pre(S,QF),
evalFCTL(S,E[φ1 U φ2]) = Reach(S,Q1,Q2,F),

and

evalFCTL(S,E[φ1 W φ2]) =

νQ′. Q2,F ∪
⎛
⎝
Q1 ∩ ⋂

fc∈FC
Pre (Reach (S,Q1,Q2,F ∪ (Q′ ∩ fc)))

⎞
⎠
,

where

QF = evalFCTL(S,φ) ∩ Fair(S),
Q1 = evalFCTL(S,φ1),
Q2 = evalFCTL(S,φ2),
Q2,F = Q2 ∩ Fair(S).

Intuitively, evalFCTL(S,EX φ) returns the states that have a fair
successor satisfying φ. Similarly, evalFCTL(S,E[φ1 U φ2]) returns the
states that can reach a fair state satisfying φ2 through states satisfying
φ1. Finally, evalFCTL(S,E[φ1 W φ2]) returns the states that either
satisfy φ2 and are fair (states of Q2,F), or that can repeatedly reach any
fairness constraint fc or another state of Q2,F through states satisfying
φ1. Some state q thus belongs to evalFCTL(S,E[φ1 W φ2]) iff either
there exists, from q, a finite path through Q1 to a fair state satisfying
φ2, or there exists, from q, an infinite path through Q1 that meets every
fairness constraint infinitely often.

2.3. Tools 25

ATL model checking

As ATL is an extension of CTL, the model-checking algorithm for ATL
extends the one for CTL [AHK02]. Let

PreJΓK(S,Q′) = {q ∈ Q ∣ ∀aΓ ∈ EΓ(q),∃a ∈ EAg(q)
s.t. aΓ ⊑ a ∧ δ(q, a) ∈ Q′ } . (2.2)

It takes a CGS S = ⟨Ag,Q,Q0,Act, e, δ, V ⟩ and a set Q′ ⊆ Q as arguments
and returns the set of states q in which, for each action of Γ enabled in q,
there exists a choice for the other agents such that the reached state is
in Q′. In other words, PreJΓK(S,Q′) computes the set of states in which
Γ cannot avoid to reach Q′ in one step.

With this Pre function, we can define

ReachJΓK(S,Q1,Q2) = µQ′. Q2 ∪ (Q1 ∩ PreJΓK(S,Q′)) (2.3)

that returns the set of states of S from which Γ cannot avoid to reach a
state of Q2 through states of Q1.

Based on these two functions, we can define a model-checking algo-
rithm evalATL(S,φ) returning the set of states of the CGS S satisfying
the ATL formula φ:

evalATL(S, true) = Q,
evalATL(S, p) = {q ∈ Q ∣ p ∈ V (q)},
evalATL(S,¬φ) = Q/Q′,

evalATL(S,φ1 ∨ φ2) = Q1 ∪Q2,

evalATL(S, JΓKX φ) = PreJΓK(S,Q′),
evalATL(S, JΓK[φ1 U φ2]) = ReachJΓK(S,Q1,Q2),
evalATL(S, JΓK[φ1 W φ2]) = νQ′. Q2 ∪ (Q1 ∩ PreJΓK(S,Q′)),

where

Q′ = evalATL(S,φ),
Q1 = evalATL(S,φ1),
Q2 = evalATL(S,φ2).

This algorithm is expressed in terms of the JK operator. To compute
the states satisfying a ⟪⟫ operator, we can simply rely on the equivalence
JΓK ψ ≡ ¬⟪Γ⟫ ¬ψ.

The time complexity of this algorithm is in O(m ∗ l) where m is the
number of transitions of the CGS S = ⟨Ag,Q,Q0,Act, e, δ, V ⟩, that is,
m = ∣{⟨q, a, q′⟩ ∈ Q × ActAg × Q ∣ δ(q, a) = q′}∣, and l is the number of
sub-formulas of the formula φ [AHK02].

26 Chapter 2. Background

2.3 Tools

This section presents the tools used in this thesis to implement and test
the presented approaches: NuSMV, a state-of-the-art symbolic model
checker, and PyNuSMV, a Python library based on NuSMV.

2.3.1 NuSMV

NuSMV is a state-of-the-art symbolic model checker [CCG+02]. It sup-
ports the modeling of synchronous finite-state reactive systems through
a high-level modeling language. The tool can perform model checking
for several kinds of temporal logics including CTL, FCTL and LTL. It
also includes the functionalities to extract trace-based counter-examples,
to replay these execution traces and to simulate the model step by step.

The model-checking algorithms it implements are based on binary
decision diagrams as well as on SAT solvers. More precisely, NuSMV
supports BDD-based model checking for CTL, Fair CTL and LTL, and
SAT-based model checking for LTL [BCCZ99].

The modeling language of NuSMV is based on the concepts of typed
state (VAR) and input (IVAR) variables that take a value among a finite
range. The available types are Boolean, finite-range integers, enumera-
tions, bit vectors, and arrays. Furthermore, the evolution of the system,
as well as the initial states and fairness constraints, are described with
expressions over the declared variables, and their next counterparts when
defining transition relations. Finally, these variables and expressions are
gathered in modules that can be instantiated.

For instance, the Kripke structure of the card game presented in
Figure 2.1 (page 11) can be modeled with the NuSMV modeling language
as in Figure 2.6. The NuSMV model is composed of three modules Player,
Dealer and main—the first two being instantiated in the third one—,
several state and input variables—step, pcard, dcard, player.action,
dealer.to player, dealer.to dealer—, and INIT and TRANS clauses
to define initial states and transition relations, respectively. The DEFINE

clause defines a macro for the given expression instead of declaring a
new variable.

2.3.2 PyNuSMV

NuSMV is a well-optimized tool, with several functionalities. Never-
theless, its hundreds of thousands lines of C code makes it difficult to
implement new logics or model-checking algorithms and approaches that
are not supported yet. On the other hand, this is the primary goal of
PyNuSMV [BP13].

2.3. Tools 27

MODULE Player(step)

IVAR action : {none, keep, swap};

TRANS action in (step = 1 ? {keep, swap} : {none})

MODULE Dealer(step)

IVAR to_player : {none, Ac, K, Q};

IVAR to_dealer : {none, Ac, K, Q};

TRANS step = 0 -> (to_player != to_dealer &

to_player != none &

to_dealer != none)

TRANS step != 0 -> (to_player = none &

to_dealer = none)

MODULE main

VAR step : 0..2;

pcard : {none, Ac, K, Q};

dcard : {none, Ac, K, Q};

dealer : Dealer(step);

player : Player(step);

INIT step = 0 & pcard = none & dcard = none

TRANS next(step) = (step < 2 ? (step + 1) : 2)

TRANS step = 0 -> next(pcard) = dealer.to_player

TRANS step = 1 -> case player.action = keep :

next(pcard) = pcard;

TRUE :

next(pcard) != pcard &

next(pcard) != dcard &

next(pcard) != none;

esac

TRANS step = 2 -> next(pcard) = pcard

TRANS step = 0 -> next(dcard) = dealer.to_dealer

TRANS step != 0 -> next(dcard) = dcard

DEFINE

win := step = 2 & ((pcard = Ac & dcard = K) |

(pcard = K & dcard = Q) |

(pcard = Q & dcard = Ac));

Figure 2.6: A NuSMV model of the structure of Figure 2.1.

28 Chapter 2. Background

PyNuSMV is a Python framework for prototyping and experimenting
with BDD-based model-checking algorithms based on NuSMV. It gives
access to NuSMV’s functionalities, such as source model parsing and BDD
manipulation, while hiding NuSMV’s implementation details by providing
wrappers to NuSMV functions and data structures. In particular, NuSMV
models can be read, parsed, compiled and constructed, giving full access
to SMV’s rich modeling language and vast collection of existing models.

PyNuSMV uses SWIG [Bea96], a wrapper generator for C code,
to expose the API of NuSMV in Python. On top of this wrapper,
PyNuSMV provides a library of classes and modules reflecting NuSMV’s
main data structures (BDDs, expressions) at the Python level. Thanks
to these classes and modules, it is easy to use NuSMV functionalities in
Python, without struggling with implementation details such as memory
management.

The main functionalities of PyNuSMV give access to:

• BDDs, states and inputs (i.e. actions) of the model and standard
operations on BDDs provided as built-in operators: & (conjunction),
| (disjunction), ~ (negation);

• the model itself, encoded with BDDs, and basic functionalities such
as computing the pre- or post-image of a set of states through the
transition relation of the model;

• CTL formulas expressing properties of the model;

• functions acting on the global environment of NuSMV: initializing
and finalizing NuSMV, reading the model and encoding it into
BDDs;

• the parser of NuSMV to get, for instance, the AST of a simple
expression;

• the CTL and FCTL model-checking algorithms implemented in
NuSMV.

The abstraction level of the Python language and the performances
of NuSMV make PyNuSMV the right tool for prototyping and exper-
imenting with BDD-based model-checking algorithms. For instance,
the following Python code loads the model of Figure 2.6 (stored in the
cardgame.smv file), builds the corresponding BDD-based finite-state
machine, and prints the number of reachable states and whether the
model satisfies the formula EF win.

2.3. Tools 29

import pynusmv as pn

with pn.init.init_nusmv ():

pn.glob.load("cardgame.smv")

pn.glob.compute_model ()

fsm = pn.glob.prop_database (). master.bddFsm

print(fsm.count_states(fsm.reachable_states))

formula = pn.prop.ef(pn.prop.atom("win"))

print(pn.mc.check_ctl_spec(fsm , formula))

Part I

Symbolic model checking
of uniform strategies

under fairness constraints

Chapter 3

Logics and algorithms
for model checking strategies

Since the introduction of ATL at the end of the 90’s, a lot of research
has been conducted on logics reasoning about the strategies of the agents
of a system. This chapter presents work in the domain of model-checking
logics that consider the uniform strategies of these agents. It starts by
presenting the main logics that have been proposed since the introduction
of ATL. Then it discusses their extensions with knowledge operators
and uniform strategies, and with fairness constraints. Finally, it presents
the existing approaches for solving the model-checking problem of logics
dealing with memoryless uniform strategies.

This summary shows that, while a lot of logics for strategic reasoning
exist, only few can deal with uniform strategies and fairness constraints
together. Furthermore, none of them focus on the particular problem
of reasoning about uniform memoryless strategies under unconditional
fairness constraints.

3.1 Reasoning about strategies

The introduction of ATL led to a large body of research and literature.
A lot of research was conducted to correctly understand the logic and
the associated problems such as the satisfiability and the model-checking
problems (see for instance [LMO08] and [BJ10]). Furthermore, many
other logics related to ATL appeared since the seminal work. This
section presents the main ones.

34 Chapter 3. Logics and algorithms for model checking strategies

3.1.1 Alternating µ-calculus

Alur et al. proposed the Alternating µ-calculus (AMC), in addition to the
Alternating-time Temporal Logic [AHK98, AHK02]. This logic extends
the Propositional µ-calculus presented in Section 2.1.5 by replacing the
possibility operators ◇iφ with strategic operators ⟪Γ⟫X φ, where Γ is a
subset of agents. With this logic, it is possible to express properties such
as agent ag has a strategy to ensure that, on all paths, the proposition p
holds in all the even positions, written νZ. p ∧ ⟪ag⟫X ⟪ag⟫X Z.

AMC subsumes ATL∗, that is, there exists a translation for ATL∗

formulas into AMC such that a given ATL∗ formula is satisfied by a
state of a given model if and only if the corresponding translated AMC
formula is satisfied by the same state of the given model. Furthermore,
the alternation-free fragment of AMC (written af -AMC in the sequel)
subsumes ATL.

In terms of complexity, model checking the alternation-free AMC
is not more difficult than model checking ATL. Both problems can be
solved in time O(m ∗ l), where m is the number of transitions of the
model and l is the number of sub-formulas of the formula. On the other
hand, the model-checking problem for the full AMC can be solved in
time O((m ∗ l)d+1), where d is the alternation depth of the checked
formula.

A model-checking algorithm for AMC can be obtained by applying
a small modification to the algorithm for the µ-calculus presented in
Section 2.2.3. Instead of using the Pre function of Equation 2.1, we can
use the complement of the PreJΓK function of Equation 2.2.

3.1.2 Strategy logic

Another logic reasoning about the strategies of the agents of a system is
the Strategy Logic (SL). It has been first proposed by Chatterjee et al.
in [CHP10] for the case of two-player games, and has been later extended
to multi-agent concurrent systems by Mogavero et al. [MMV10].

While ATL and its extensions such as ATL∗ and AMC quantify over
the strategies implicitly through the strategic operators, the Strategy
Logic includes an explicit quantification over strategies. This explicit
quantification allows to express properties of nonzero-sum games—that
is, games in which the objectives of a coalition and its complement
are not complement objectives—such as strategy domination and Nash
equilibria. For instance, SL allows us to express the fact that there exists
a strategy for the dealer such that there exists a strategy for the player to
win, and there exists another one for the player to lose, written—using

3.1. Reasoning about strategies 35

the notations of Mogavero et al.—as

⟪x⟫ (dealer, x)(⟪y⟫ (player, y)F wins ∧ ⟪z⟫ (player, z)F loses).
The ⟪x⟫ φ operator means that there exists a strategy x such that φ is
true. Furthermore, (ag, x)φ means that if agent ag plays the strategy x,
then φ is true.

In terms of expressiveness, Strategy Logic subsumes ATL and ATL∗:
the ATL∗ strategic quantifier ⟪Γ⟫ ψ can be translated into SL as

⟪x⟫ (Γ, x)JyK (Ag/Γ, y)ψ.
Finally, the model-checking problem for SL is PTIME with regard

to the size of the model, but 2EXPTIME w.r.t. the size of the for-

mula [MMV10]. This means that it needs time in O(p(m) ∗ 22p(l)) to
solve the problem, where p(x) is a polynomial depending on x, m is
the size of the model, and l the number of sub-formulas of the checked
formula. On the other hand, the satisfiability problem is undecidable.

3.1.3 Alternating-time temporal logic
with strategy contexts

ATL∗sc extends ATL∗ with strategy contexts [BCLM09]. The main con-
cern this logic addresses is the fact that, in ATL, when some agents Γ
choose to play a particular strategy, the other agents do not use the fact
that this particular strategy is played to inspect their own strategies. For
instance, given a system composed of one server and several clients, it is
not possible to express in ATL∗ the fact that the server has a strategy
such that each client, knowing that this strategy is played, can eventually
access the service served by the server.

ATL∗sc replaces the ⟪⟫ operator with two new operators: ⟨⋅Γ⋅⟩φ means
that Γ have a collective strategy such that φ is true in the context of
this strategy, and ⋅⟩Γ⟨⋅φ means that φ is true if Γ forget their strategies
and consider the whole system executions as possible. For instance, the
property that the server has a strategy such that all the n clients can,
individually, access the resource, can be written as

⟨⋅server⋅⟩G ⋀
i∈1..n

⟨⋅clienti⋅⟩F access.

In terms of expressiveness, ATL∗sc subsumes ATL∗ because the ⟪Γ⟫ φ
operator can be translated into ⋅⟩Ag⟨⋅⟨⋅Γ⋅⟩φ. Furthermore, the model-
checking problem for the full logic is decidable but non-elementary, that

is, it does not belong to the class of problems solvable in 22...
2n

time. By
considering only memoryless strategies, the problem becomes PSPACE-
complete (we call this variant ATLsc,0 in the sequel).

36 Chapter 3. Logics and algorithms for model checking strategies

3.1.4 Coalition logic

While the logics presented above subsume ATL, are more expressive
but have more complex model-checking problems, Coalition Logic (CL)
is simpler and has a more attractive model-checking complexity. CL
combines the propositional operators with a single operator [Γ] to reason
about the effectivity of agents of Γ, that is, what the agents can enforce
in one step [Pau02]. For instance, in CL, we can express the fact that the
dealer is effective to bring a state in which the player can win, written as

[dealer][player]win.

CL is subsumed by ATL [GJ04]. Indeed, [Γ]φ corresponds to ⟪Γ⟫X φ
and the logic can be viewed as the fragment of ATL in which only the
⟪Γ⟫X operator is used.

3.1.5 Expressiveness comparison

Most of the logics presented above are incomparable in terms of expres-
siveness. Indeed, there exist AMC formulas that cannot be translated
into SL, and vice versa. For instance, the formula

⟪x⟫ (a1, x)(⟪y1⟫ (a2, y1)(G p) ∧ ⟪y2⟫ (a2, y2)(G q)),

interpreted over a two-agent concurrent system, means that there exists
a strategy x for agent a1 and two strategies y1 and y2 for a2, such that,
when x is combined with y1 (resp. y2), p is maintained (resp. q). This
SL formula cannot be expressed in AMC [CHP10]. Furthermore, the
formula

νZ. p ∧ ⟪∅⟫X ⟪∅⟫X Z

represents the set of states s such that in all paths from s, all even
positions satisfy p. This formula cannot be translated into SL [CHP10].

AMC is incomparable to ATL∗sc, and SL is conjectured to be incom-
parable with ATL∗sc either [BCLM09].

On the other hand, as ATL subsumes CL and the three logics above
subsume ATL, they also all subsume CL, and every CL formula can be
translated into an equivalent formula in the three logics above.

3.2 Strategies and knowledge

All the logics described in the previous section agree on the notion of
coalition abilities: a coalition of agents can enforce some objective if they

3.2. Strategies and knowledge 37

have a collective strategy such that all resulting outcomes satisfy the
objective. The Alternating µ-calculus and the Coalition Logic embed
this in their single-step operators ⟪Γ⟫X and [Γ], respectively, and the
Strategy Logic and ATL∗sc embed this notion in the strategies they
consider. All these logics reason about agents with perfect information,
that is, about agents that know everything about the current state of
the system. In this setting, they can use the complete information of
the current state to perform their choices, and they have no uncertainty
about where they are.

A lot of research has been conducted on the relation between the
knowledge of the agents and their abilities. Nevertheless, the proposed
logics do not agree with the notion of abilities of the agents, and the
relation between what they know and observe, and what they can do. For
instance, the Alternating Temporal Epistemic Logic (ATEL) mixes ATL
operators with ATL semantics and knowledge operators, interpreted over
states of multi-agent concurrent systems in which the agents have imper-
fect information about the states [vdHW02, vdHW03]. The semantics of
ATEL leads to counterintuitive properties of the systems, in which an
agent has a strategy to win, knows he has one, but cannot play it because
he lacks some information about the states of the system [JvdH04].

ATLir is a logic that tries to solve this problem by considering the
uniform strategies of the agents, that is, the strategies they can play
based on the observations they make [Sch04]. But all the researchers do
not agree on the most intuitive semantics, and many have been proposed,
such as considering that the agents can communicate during the execution
of the strategy, or only when they choose it.

This section first describes and discusses ATEL and its extensions.
Then it speaks about ATLir and the related logics that consider strategies
that the agents can effectively play. Finally, it presents extensions of the
Alternating µ-calculus and the Strategy Logic with imperfect information,
and discusses other related logics.

3.2.1 Alternating temporal epistemic logic

The Alternating Temporal Epistemic Logic extends ATL by introducing
knowledge operators [vdHW02, vdHW03]. For instance, one can express
in ATEL the fact that, in a variant of the card game in which the player
never sees the card of the dealer, the player has a strategy to eventually
know the card of the dealer, written as

⟪player⟫F (Kplayer dc = A ∨Kplayer dc =K ∨Kplayer dc = Q),

38 Chapter 3. Logics and algorithms for model checking strategies

where dc = X is true in states in which the dealer has card X. ATEL
works with a memoryless notion of knowledge in which the agents only
base their knowledge on their observations of the current state.

Model checking ATEL formulas can be made in polynomial time in
terms of the size of the model and of the formula. The model-checking
algorithm presented in Section 2.2.3 can be easily extended to handle
knowledge operators [vdHW02]. As the logic extends ATL with knowl-
edge operators, it subsumes ATL. Furthermore, ATEL formulas and
models can be re-encoded back into ATL formulas and (more complex)
models [GJ04].

Another semantics for ATEL was proposed by van Otterloo and
Jonker in [vOJ05]. Their idea is that agents do not have to know a
specific strategy for a certain objective to have a capability; they propose
instead to quantify over undominated strategies. Intuitively, a strategy
is undominated if there is no other strategy that strictly does better
for achieving a certain goal. Then, ⟪Γ⟫ ψ is true if all undominated
strategies are successful for the objective ψ. This means that Γ can
enforce ψ if, by playing any of their best strategies, the objective is
fulfilled.

3.2.2 Alternating-time temporal logic
with imperfect information

To address the problem of ATEL that quantifies over strategies that the
agent cannot play because they do not have the necessary knowledge, the
notion of uniform strategies have been proposed. In [Sch04], Schobbens
considers different semantics for strategies along two axes: imperfect and
perfect information—identified with i and I subscripts, respectively—,
and imperfect and perfect recall—with r and R subscripts, respectively.
This leads to four logics, ATLir, ATLiR, ATLIr, and ATLIR, the two
last ones being equivalent and corresponding to standard ATL.

ATLir: Memoryless uniform strategies

ATLir and can be seen as the core logic to reason about uniform mem-
oryless strategies [JD06]. The logic quantifies on uniform memoryless
strategies. More precisely, a formula ⟪Γ⟫ ψ is true in a state q of a given
model if there exists a memoryless uniform strategy fΓ for Γ such that,
for all states q′ indistinguishable from q by some agent of Γ, all outcomes
of fΓ from q′ satisfy ψ. Its semantics considers that a uniform strategy
for a group of agents Γ is a tuple of uniform strategies, one for each agent,
as opposed to, for instance, a single strategy for whole group, viewing

3.2. Strategies and knowledge 39

them as a single agent. Furthermore, when looking at strategies in q, the
states that at least one agent cannot distinguish from q are considered
as possible, that is, the group knowledge relation is used.

ATLiR: Memory-full strategies

ATLiR has a semantics similar to ATLir but considers memory-full
strategies, that is, strategies that use the entire history of observations
to choose the next action. For instance, let us consider a variant of the
repeated card game in which the dealer has to always give the cards in the
same order but can choose the order at the very beginning—for example,
he can choose to loop through A, K and Q when giving the cards, or
through Q, K and A. In this variant, the formula ⟪player⟫F wins is
true in the initial state under ATLiR because the player can play a first
game to discover the chosen order and play accordingly the second game.
On the other hand, the formula is false under ATLir because he lacks
the memory to do so.

ATLiR considers more powerful agents than ATLir and the latter
is subsumed by the former. Furthermore, while the model-checking
problem for ATLir is ∆P

2 -complete [JD06, JD08], the ATLiR model-
checking problem is undecidable [DT11]. The two logics, as well as their
relation to ATL, have been compared in [JB11].

Bulling et al. proposed a variant of ATL∗iR, the extension of ATLiR
in which any LTL formula can be used under the scope of a coalition
modality. Their variant tackles the problem that ATL∗iR does not use
the events that occurred before choosing the strategy when playing
it [BJP14a, BJP14b]. An example given in [BJP14a] is the following:
the formula ⟪Bob,Charles⟫F ⟪Alice,Bob⟫X married means that Bob
and Charles have a strategy to ensure that Alice and Bob will be able to
get married. In the context of ATL∗iR, the agents use their knowledge of
the past events to choose their actions. Nevertheless, by the semantics of
the logic, Bob forgets everything he learned from the execution of the top-
level strategy when executing his strategy for the ⟪Bob,Alice⟫X married
sub-formula.

Bulling et al. propose to modify the semantics of ATL∗iR to use
the full history of past events since the initial state when playing a
chosen strategy, giving new powers to the agents. Nevertheless, the
expressiveness of the new variant is incomparable to the expressiveness
of the original ATL∗iR semantics, and the authors did not study the
complexity of the model-checking problem.

40 Chapter 3. Logics and algorithms for model checking strategies

Distributed knowledge

Dima et al. proposed another logic, called ATLDiR, that considers that a
(memory-full) collective strategy for a group of agents is a single function
that chooses the joint action of these agents for a given sequence of
past observations [DEG10]. These past observations are based on the
distributed knowledge of the agents. Furthermore, to distinguish the
considered histories, the logic also uses the distributed knowledge.

Intuitively, these choices can be interpreted as the group of agents
being under the supervision of a virtual supervisor. This supervisor can
ask them about their knowledge of the current history and can point
them the action to play based on the knowledge of all agents [DEG10].
Another interpretation of this approach is that it sees a coalition of
agents as a single (though composite) agent [KÅJ14].

For instance, in a variant of the simple card game with two players
player1 and player2, in which the dealer gives the third card to player2

(who does nothing during the game), the coalition composed of the two
players has no strategy to make player1 win the game under ATLir.
Indeed, they have no way to pass the knowledge of the third card from
player2 to player1. On the other hand, under ATLDiR, the agents in
the coalition can share their knowledge, and player1 can distinguish the
states in which the dealer has the A from the states in which he has the
Q. Thus player1, thanks to the shared knowledge of player2, can win
the game. This difference comes from the shared knowledge, and the
perfect recall of past observations has no impact in this particular case.

In opposition to ATLiR, the ATLDiR model-checking problem is de-
cidable [DEG10]. Also, any ATLDiR model and formula can be translated
into equivalent ATLiR model and formula, respectively [KÅJ14]. This
translation transforms the formula into the fragment of ATLiR in which
coalition modalities contain only one agent, instead of a group of agents.

Jiang et al. proposed another variant based on the distributed knowl-
edge relation [JZP15]. This logic quantifies on collective strategies that
are tuples of memory-full uniform strategies for individual agents. When
selecting the strategies to play, the agents share their knowledge of the
current state, that is, the considered states are the ones indistinguishable
from the current state through the distributed knowledge of the group.
Under this semantics, the agents have the memory of the past composed
of observations as well as their own actions, instead of the observations
alone, as in the standard semantics.

Finally, Huang proposed a third variant based on a bounded semantics
and distributed knowledge [Hua15]. In this logic, we can express the fact
that an agent ag can enforce φ within k steps—written ⟪ag⟫ Fk φ—,

3.2. Strategies and knowledge 41

or that a group of agents Γ can maintain φ′ for at least k′ steps—
written ⟪Γ⟫ Gk′ φ′. As for ATLDiR, the strategies are single functions
for the whole group, and their distributed knowledge relation is used to
distinguish the whole history of observations and actions, and to choose
the actions to play. Thanks to the bounded aspect, the model-checking
problem is in PSPACE.

3.2.3 Alternating epistemic µ-calculus

The Alternating µ-calculus has been extended to take the knowledge of
the agents into account. Bulling and Jamroga proposed AMCi, a variant
of AMC where the ⟪Γ⟫X φ operator is restricted to the observations of
the agents [BJ11]. More precisely, ⟪Γ⟫X φ is true in all states q in which
there exists a tuple of uniform memoryless strategies for agents in Γ that
enforce φ in the successors of all states indistinguishable from q by some
agent of Γ. That is, the ⟪Γ⟫X φ operator of AMC is replaced by the
⟪Γ⟫X φ of ATLir. They limit their logic to the alternation-free fragment
of AMCi—called af -AMCi—and show that, while the alternation-free
fragment of AMC subsumes ATL, af -AMCi does not subsume ATLir.

The particularity of AMCi is the capability to express the fact that
the agents of Γ have a strategy that they know how to play along all the
game. The semantics of ATLir implies that the agents have a strategy to
achieve their objective if they can write it down—or memorize it when
choosing it—and then follow it blindly. On the other hand, the fixpoints
of AMCi imply that the agents have a strategy to achieve their objective
if they can recompute this winning strategy in every step of the game
that they play. They do not have to memorize the strategy when they
choose it since they can, at each step, look at what they observe and
infer the correct way to play the next step. For instance, the formula
µZ. p∨⟪Γ⟫X Z is true in a state if the agents of Γ know a strategy that
they can play and recompute at every step, to eventually make p true.
This formula also implies that Γ must be certain that the goal p is really
approaching [BJ11].

While ATLir and af -AMCi have incomparable expressive power,
they seem to share similar model-checking complexities: the af -AMCi
model-checking problem is NP-hard and in ∆P

2 , while ATLir model
checking is ∆P

2 -complete.

3.2.4 Epistemic strategy logic

Huang and van der Meyden proposed an extension of Strategy Logic
to reason about knowledge and strategies [HvdM14a]. They started

42 Chapter 3. Logics and algorithms for model checking strategies

from Epistemic Temporal Logic (ETLK), that reasons about time and
knowledge, to which they add two new operators: ∃x.φ is true in a state
q if there exists another global state q′ such that φ (that depends on x)
holds at q when q′ is linked to x. Furthermore, eag(x) is true if agent ag
cannot distinguish the current state from the state linked to variable x.

The semantics of this extension is based on interpreted systems.
Such a system is composed of a set of agents Ag, each agent ag hav-
ing a set of local states Lag and a set of actions Actag. These ac-
tions are chosen according to a protocol Pag ∶ Lag → 2Actag . The
environment of the agents is modelled with a special agent E. A
global state of an interpreted system is a tuple g ∈ ∏ag∈Ag Lag × LE
and the evolution of the local state of the agent ag is defined by the
function tag ∶ Lag × LE × ∏ag∈Ag Actag × ActE → Lag. The
evolution of the local states is synchronous, and the evolution of the
whole system can be described by a function t ∶ G × Act → G where
G ⊆ ∏ag∈Ag Lag ×LE is the set of states reachable from a subset of states
I, and Act = ∏ag∈AgActag × ActE is the set of joint actions. Finally,
global states are labelled with atomic propositions of AP through a
valuation function V ∶ AP → 2G giving, for a proposition p ∈ AP , the set
of global states in which p is true.

Huang and van der Meyden propose to use ETLK for reasoning
about the strategies of agents in strategic environments. These structures
are similar to imperfect information concurrent game structures, but
every action is enabled in every state of the system. The authors define
an interpreted system that encodes the behaviors of the agents that
stick to a strategy under a given strategic environment. This definition
introduces a new agent σ(ag) for each agent ag ∈ Ag that observes the
strategy ag is currently following.

In this context, ESL is the instance of ETLK that works with
the interpreted systems corresponding to strategic environments. The
language can be restricted to particular types of strategies, such as the
uniform strategies of the agents. With the restriction to the set of uniform
strategies, we can, for instance, express the fact that the player does not
have a uniform strategy to win the game as

¬∃x.Dag(eσ(ag)(x) Ô⇒ wins).

Finally, supposing that the set of considered strategies is a PTIME
presented class of strategies, the complexity of the model-checking prob-
lem for ESL is EXPSPACE-complete [HvdM14a].

Belardinelli also proposed an extension of Strategy Logic with knowl-
edge operators also called Epistemic Strategy Logic (noted ESLBel in
the sequel) [Bel14]. In this logic, we can express facts such as the player

3.2. Strategies and knowledge 43

knows that he has a strategy to win the game, whatever the dealer does,
written as

Kplayer ∃xplayer.∀ydealer.F wins,

or that there exist two strategies for the player and the dealer such that
the player eventually knows that dealer has the A, written as

∃xplayer.∃ydealer.F Kplayer dealer = A.

Similarly to ATEL, ESL considers perfect information strategies for
the agents, even if they do not have full information about the system.
So, adding knowledge operators does not increase the complexity of the
model checking problem.

3.2.5 Strategy contexts and imperfect information

Laroussinie et al. studied extensions of ATLsc with imperfect informa-
tion [LMS15]. Instead of assuming that the strategy contexts are based
on general strategies, they assume that the strategies are memory-full and
uniform. As plain ATLsc subsumes ATL, ATLsc with uniform strategies
(called ATLsc,iR in the sequel) subsumes ATLiR. The model-checking
problem is thus undecidable.

Nevertheless, if we consider the subset of iCGS that are so-called
uniform, the model-checking problem becomes decidable. An iCGS is
uniform if all the agents observe the same things, that is, the relations ∼ag
are the same for all the agents. In the case of uniform iCGS, the model
checking is Tower-complete, that is, solving the problem for a formula
with k nested strategic operators is k-EXPTIME-complete [LMS15].
Furthermore, if we consider only memoryless uniform strategies in a (not
necessarily uniform) iCGS, the logic subsumes ATLir and the model-
checking problem is PSPACE-complete.

3.2.6 Epistemic coalition logic

Ågotnes and Alechina proposed an extension of Coalition Logic with
epistemic operators [ÅA12]. In this logic, it is possible to express the
fact that the dealer knows he can give the A to the player, written
Kdealer[dealer]player = A. The semantics of the strategic operator is
not modified and still reasons about what agents can do with perfect
information. Furthermore, the authors do not discuss the model-checking
problem and its complexity, but show that the satisfiability stay decidable.

44 Chapter 3. Logics and algorithms for model checking strategies

3.2.7 Other logics

Other logics have been proposed to deal with imperfect information and
strategic abilities. This section present the main ones.

ATOL and ATEL-R∗

Jamroga and van der Hoek proposed the Alternating-time Temporal Ob-
servational Logic (ATOL) and the Alternating-time Temporal Epistemic
Logic with Recall (ATEL-R∗) [JvdH04]. The first one is a logic of strate-
gic abilities and knowledge based on the observations of the agents, with
no recall of the past events. The second one removes the restriction to
memoryless semantics and gives the agents the ability to recall the past
events. Instead of giving a particular semantics to the ATL operators like
ATLir or ATLDiR, the two logics introduce many operators for reasoning
about the different knowledge and strategic modalities of the agents. The
syntax of ATOL includes

• the standard propositional operators,

• the memoryless knowledge operator Obsag to reason about what
agent ag observes in the current state,

• the standard memoryless operators COΓ, EOΓ and DOΓ to reason
about common observations, group observations and distributed
observations of groups of agents Γ,

• the operators ⟪Γ⟫●Obs(ag)X, ⟪Γ⟫●Obs(ag)G and ⟪Γ⟫●Obs(ag)U to rea-
son about the strategies of Γ to enforce objectives that agent ag
sees,

• the operators ⟪Γ⟫●Θ(Γ′)X, ⟪Γ⟫●Θ(Γ′)G and ⟪Γ⟫●Θ(Γ′)U, where Θ(Γ′)
is an element of {CO(Γ′),DO(Γ′),EO(Γ′)}, to reason about the
strategies of Γ to enforce objectives that the agents of Γ′ commonly,
distributively, or together see.

ATOL formulas are interpreted over states of iCGS and quantify
over collective uniform memoryless strategies of groups of agents. For
instance, we can express in ATOL that, when the dealer gave the cards,
the player has a strategy to win the game that the dealer sees, written
⟪player⟫●Obs(dealer)X wins. Nevertheless, in the same states, the player

has no strategy to win that he sees, written ¬⟪player⟫●Obs(player)X wins.

ATOL subsumes ATLir: the ATLir operators ⟪Γ⟫ ψ can be written
as ⟪Γ⟫●EO(Γ)ψ. Furthermore, the model-checking problem for ATOL is

NP-hard and ∆P
2 -easy.

3.2. Strategies and knowledge 45

The logic ATEL-R∗ removes the restriction of ATOL to memoryless
agents, and the restriction of coalition modalities being directly followed
by a path operator. Its syntax shares the strategic operators of ATOL
⟪Γ⟫●Obs(ag) and ⟪Γ⟫●Θ(Γ′), that can be followed by any ATEL-R∗ formula.
Furthermore, the following operators are added:

• CΓ, DΓ and EΓ to reason about the common, distributed and group
knowledge of the group of agents Γ, given that they remember their
observations of the past events;

• ⟪Γ⟫K(Γ′) for K(Γ′) being an element of {CΓ′ ,DΓ′ ,EΓ′}, to reason
about the memory-full uniform strategies of Γ that Γ′ know they
have, given their observations of the past events;

• ⟪Γ⟫Θ(Γ′), for Θ(Γ′) ∈ {CO(Γ′),DO(Γ′),EO(Γ′)}, to reason about
the memory-full uniform strategies of Γ that Γ′ see they have, given
their observations of the current state;

• the past LTL operators X−1 and S.

The logic is very expressive and it subsumes ATL∗ and ATEL, ATL∗ir
and ATL∗iR. So its model-checking problem is undecidable.

Constructive strategic logic

Another logic proposed by Jamroga and Ågotnes is the Constructive
Strategic Logic (CSL) [JÅ07]. CSL formulas are composed of the stan-
dard propositional operators, the strategic operators ⟪Γ⟫X φ, ⟪Γ⟫G φ
and ⟪Γ⟫[φ1 U φ2], the standard knowledge operators CΓ φ, EΓ φ and
DΓ φ, and three new constructive knowledge operators CΓ φ, EΓ φ and
DΓ φ.

These formulas are interpreted over sets of states of an iCGS. Let
img(Q′,R) = {q ∣ ∃q′ ∈ Q′ s.t. qRq′}. The relation S,Q′ ⊧ φ, meaning
that the set of states Q′ of the iCGS S satisfies φ, is defined as

S,Q′ ⊧ p ⇔ ∀q ∈ Q′, p ∈ V (q),
S,Q′ ⊧ ¬φ ⇔ S,Q′ /⊧ φ,
S,Q′ ⊧ φ1 ∨ φ2 ⇔ S,Q′ ⊧ φ1 or S,Q′ ⊧ φ2,

S,Q′ ⊧ ⟪Γ⟫ ψ ⇔ { there exists a uniform memoryless strategy fΓ

s.t. ∀q ∈ Q′,∀π ∈ out(fΓ, q), S, π ⊧ ψ,
S,Q′ ⊧ KΓ φ ⇔ ∀q ∈ img(Q′,∼KΓ), S,{q} ⊧ φ,where K ∈ {C,E,D},

S,Q′ ⊧ K̂Γ φ ⇔ { S, img(Q′,∼KΓ) ⊧ φ,
where ⟨K̂,K⟩ ∈ {⟨C,C⟩, ⟨E,E⟩, ⟨D,D⟩}

46 Chapter 3. Logics and algorithms for model checking strategies

The semantics of path operators is the standard LTL one. Combined
with the ⟪Γ⟫ operator, the K and K̂ operators can express that there
exists a winning strategy for all indistinguishable states (KΓ⟪Γ′⟫ ψ), or
that there exists a strategy that is winning for all indistinguishable states
(K̂Γ⟪Γ′⟫ ψ). The difference is the same as between ATEL and ATLir.

This logic allows to express other modalities such as the ones of
ATOL. More precisely, there exists a linear translation of ATOL and
ATLir formulas into CSL, thus the latter subsumes the former. Finally,
the model-checking problem for CSL is ∆P

2 -complete.

uATEL

Van Ditmarsch and Knight proposed the logic uATEL to reason about
uniform strategies with perfect recall [vDK14]. Its particularity is that it
includes different strategic operators: (1) ⟪Γ⟫a ψ has an active strategy
semantics in which all the agents are active, (2) ⟪Γ⟫p ψ has a passive
strategy semantics in which some agents do nothing, and (3) ⟪Γ⟫c ψ
has a communication strategy semantics in which the agents share their
knowledge to choose the strategy to play.

The considered individual strategies are perfect-recall uniform strate-
gies in the sense that they use the history of all the observations of the
agent, as well as the actions he played. A collective strategy is then
a tuple of individual strategies. So, the semantics of the three classes
of strategic operators differ only by the set of states they consider as
possible when they have to choose their strategies: the active seman-
tics uses the common knowledge of all agents, the passive one uses the
common knowledge and strategies of a subset of the agents, the other
remaining passive, and the communication semantics uses the distributed
knowledge of all the agents.

3.3 Strategies and fairness

Reasoning about fairness in multi-agent systems can be useful. For in-
stance, Dastani and Jamroga showed that it is interesting to reason about
a fair scheduler in the context of multi-agent programs [DJ10]. These
programs define the actions, beliefs and goals of agents with imperfect
information about their environment. They are usually executed in an
asynchronous fashion, and need a scheduler to decide which program runs
at each step. Jamroga and Dastani stress the fact that it is necessary to
consider a fair scheduler, that is, a scheduler that will run all programs
infinitely often. Without such a fair scheduler, the programs could fail

3.3. Strategies and fairness 47

to achieve their goal simply because a necessary action of a particular
program is enabled, but the scheduler ignores it forever.

Such kind of fairness is easily expressed in logics such as ATL∗ and
ATL∗ir, in which the user has the full expressiveness of all combinations
of path and Boolean operators to describe the objectives. For instance,
in a multi-agent program with two programs pr1 and pr2, the fact that
the programs have a strategy to achieve the objective ψ under a fair
scheduler can be written in ATL∗ir as

⟪pr1, pr2⟫ ((⋀
i∈{1,2}

G F runi) Ô⇒ ψ), (3.1)

where runi is true whenever pri is chosen by the scheduler. Nevertheless,
the complexity of the model-checking problem for these logics is higher
than their non-starred counterpart: ATL model checking is PTIME-
complete while ATL∗ is 2EXPTIME-complete [AHK02]; ATLir model
checking is ∆P

2 -complete while ATL∗ir is in PSPACE [Sch04].
Another solution is to consider a logic that is more expressive than

ATLir and can express the assumption that the scheduler is fair, but
for which the model-checking problem is easier than the one for ATL∗ir.
Dastani and Jamroga propose to use EATL+p to express these properties.
It extends ATLir with operators to reason about beliefs and goals of
multi-agent programs, and allows, under a coalition modality ⟪Γ⟫, the
usage of Boolean combinations of the path operators G, X and U, and
the special path formula G F. The formula of Equation 3.1 clearly falls
in this logic. Furthermore, the logic has a ∆P

3 -complete model-checking
problem, thus easier than the full ATL∗ir problem. A third solution is to
include the fairness assumptions directly in the semantics, but this will
be discussed later in Chapter 4.

The problem of the fair scheduler for multi-agent programs raises
the need for unconditional fairness, that is, constraints saying that
something (here, that each program runs) happens infinitely often. Other
kinds of fairness exist and have been investigated in the framework of
strategic reasoning. For instance, Alur et al. proposed two types of
fairness [AHK02]. They consider that a fairness constraint is a couple
⟨ag, γ⟩ where ag is an agent of the system and γ is a function mapping
each state q to a (possibly empty) subset of actions enabled for ag in q.
We say that ⟨ag, γ⟩ is enabled at position d of a path π if γ(π(d)) ≠ ∅;
we say also that ⟨ag, γ⟩ is taken at position d if there exists a joint action
a such that there exists aag ∈ γ(π(d)) such that aag ⊑ a. Then, Alur et
al. define two interpretations for these constraints:

• a path is weakly ⟨ag, γ⟩-fair when, if ⟨ag, γ⟩ is eventually always
enabled, then the constraint is taken infinitely often;

48 Chapter 3. Logics and algorithms for model checking strategies

• a path is strongly ⟨ag, γ⟩-fair when, if ⟨ag, γ⟩ is enabled infinitely
often, then the constraint is taken infinitely often.

Given a set of fairness constraints FC, a strategy fag for agent ag is
strongly (resp. weakly) FC-fair for q if for every fairness constraint of
the form ⟨ag, γ⟩ in FC and every path π ∈ out(fag, q), π is strongly (resp.
weakly) ⟨ag, γ⟩-fair. So, the semantics of Fair ATL is:

S, q ⊧ ⟪Γ⟫ ψ ⇔ { there exists an FC-fair strategy fΓ for Γ s.t.
∀ FC-fair paths π ∈ out(fΓ, q), S, π ⊧ ψ.

These fairness constraints can be used to express the assumptions
of a fair scheduler (see [AHK02]), but can also express more complex
fairness assumptions. Alur et al. propose a model-checking algorithm
for the case of the fair scheduler, but simply reduce the problem to
ATL∗ model checking for the general case of weak and strong fairness.
Furthermore, they show that the model-checking problem for the weak
version of Fair ATL is PTIME-complete, while the one for the strong
version is PSPACE-complete.

Another logic that includes fairness constraints in its semantics is
the Alternating-time Stream Logic (ASL) proposed by Klüppelholz and
Baier [KB08]. This logic is an extension of ATL for reasoning about
the capabilities of the agents of multi-agent systems enriched with I/O-
operations, data dependencies and different kinds of channel-based com-
munications. The notion of fairness they consider is similar to the strong
fairness of Fair ATL: a path is fair if, whenever a channel can be written
infinitely often, it is effectively written infinitely often.

3.4 Complexities and expressiveness

This section summarizes the complexity of the model-checking problem
for the logics discussed in this Chapter. Table 3.1 gives the complexity
of the model-checking problems of the logics that reason about strategies
with perfect information. All these problems are decidable, but some
are far from solvable in practice, the worst case being ATL∗sc with its
NONELEMENTARY problem.

Table 3.2 presents the complexities for logics that mix strategies and
knowledge. When dealing with strategies and knowledge, the problems
stay easy as long as we do not consider uniform strategies. Indeed, ATEL,
ESLBel and ECL model-checking problems can be solved in polynomial
time because the strategies they consider still use perfect information.
Nevertheless, when considering memoryless uniform strategies, the prob-
lems become more complex, ranging from ∆P

2 to EXPSPACE. Finally,

3.5. Model checking uniform strategies 49

Logic Complexity

ATL PTIME
af -AMC PTIME

CL PTIME
ATL∗sc,0 PSPACE

AMC EXPTIME
SL 2EXPTIME
SL 2EXPTIME

ATL∗sc NONELEMENTARY

Table 3.1: Complexities of the model-checking problem for logics dealing
with perfect information strategies.

Logic Complexity

ATEL PTIME
ESLBel PTIME
ECL PTIME

ATLir ∆P
2

af -AMCi ∆P
2

ATOL ∆P
2

CSL ∆P
2

ESL EXPSPACE

ATLDiR decidable
ATLiR undecidable

ATEL-R∗ undecidable
ATL∗sc,iR undecidable

Table 3.2: Complexities of the model-checking problem for logics dealing
with strategies and knowledge.

when the strategies are memory-full and uniform, the problem becomes
undecidable: the only exception is the case of ATLDiR, because it sees
a group of agents as a single one, simplifying the problem to keep it
decidable.

Table 3.3 lists the complexity of the model-checking problems for
logics with fairness constraints. While Fair ATL with weak fairness
constraints remains an easy problem, EATL+p and Fair ATL with strong
fairness constraints become way more complex than standard ATL.

Finally, Figure 3.1 shows how the different logics compare to each
others in terms of expressiveness.

50 Chapter 3. Logics and algorithms for model checking strategies

Logic Complexity

Fair ATL (weak) PTIME

EATL+p ∆P
3

Fair ATL (strong) PSPACE

Table 3.3: Complexities of the model-checking problem for logics dealing
with fairness constraints.

ATLCL Fair ATL ATL∗ AMC

af -AMC SL

ATL∗sc

ATELECL ESLBel

ATLir ATLiR

ATLDiR

ATLsc,iR

ATOL ATEL-R∗

CSLESL

EATL+p ATL∗ir

af -AMCi

AMCi

Figure 3.1: Comparison of the expressiveness of the logics. An arrow
from logic L1 to L2 means that L2 is more expressive than L1. A crossed
double arrow means that the two logics have incomparable expressiveness.

3.5 Model checking uniform strategies

While many logics were proposed to reason about the strategies and
knowledge of the agents of a system, only few effort has been brought to
practically solve their model-checking problem. ATL and the like (such
as ATEL) already have a fixpoint-based model-checking algorithm (see
Section 2.2.3), but it has been shown that uniform strategies based logics
such as ATLir do not share the fixpoint characterization needed to be
able to use similar constructs [JB11].

This section first presents model-checking algorithms for ATLir, then

3.5. Model checking uniform strategies 51

it describes an algorithm proposed by Huang and van der Meyden for
their ESL logic. Finally, it discusses related algorithms from the game
theory field. The approaches of Pilecki et al. and Huang and van der
Meyden are explained in more detail because Chapter 6 adapts and
implements them in a BDD-based framework.

3.5.1 Model-checking algorithms
for alternating-time temporal logic
with imperfect information

Three algorithms have been proposed to solve the model-checking problem
for ATLir. This section presents them.

Lomuscio and Raimondi

Lomuscio and Raimondi proposed an algorithm to perform the model
checking of uniform strategies for interpreted systems [LR06b]. In this
context, a Γ-uniform interpreted system, for a subset of agents Γ ∈ Ag, is
an interpreted system in which the protocols of agents of Γ are restricted
to propose only one action to play in every local state. A Γ-uniform
interpreted system is compatible with another (not necessarily Γ-uniform)
interpreted system if they share the same agents, states and actions,
the same evolution and valuation functions, and the same initial states,
and the protocols of the first one are restrictions of the corresponding
protocols of the second one. From a given interpreted system and a subset
of agents Γ, we can build the set of compatible Γ-uniform interpreted
systems compatible with it. Lomuscio and Raimondi propose to check the
existence of uniform strategies that win the objectives in φ by checking
φ on the compatible Γ-uniform interpreted systems. The formula is
then true in the original interpreted system if there exists a compatible
Γ-uniform interpreted system in which φ is true.

This semantics is different from ATLir. In the case of Lomuscio and
Raimondi, strategic formulas are interpreted globally, in the sense that a
formula φ is true in an interpreted system if there exists a compatible
uniform interpreted system in which the formula is true. Thus, all
strategic sub-formulas of φ must share the same strategy. For instance,
let φ = ⟪Γ⟫F p ∧ ⟪Γ⟫G q; φ is true if and only if there exists a uniform
strategy such that all enforced paths satisfy F p and G q.

This characteristics is also applied to different states. Let us consider
that the model has two initial states; then the formula φ = ⟪Γ⟫F p is
true if there exists a compatible Γ-uniform interpreted system in which φ
is true. In terms of strategies, this means that the same uniform strategy

52 Chapter 3. Logics and algorithms for model checking strategies

must be winning for both states, even if the two can be distinguished by
Γ. This also means that, if Γ must play two different uniform strategies
in the two states to win their objective in both states, the formula is
false.

On the other hand, ATLir semantics is local to the sub-formula, that
is, the formula φ = ⟪Γ⟫F p ∧ ⟪Γ⟫G q is true if there exists a strategy
such that all paths satisfy F p, and there exists another strategy such
that all paths satisfy G q. Furthermore, for different states, different
strategies can be winning, as soon as the states are distinguishable by Γ.

Calta et al.

Another algorithm was proposed by Calta et al. [CSS10]. They propose
to solve the problem of model checking ATLu formulas, a new logic
corresponding to ATLir interpreted over sets of states of iCGS. Their
algorithm works by computing, for a formula ⟪Γ⟫ ψ, the union of all
strategies for Γ that are winning for ψ, represented as a set of moves,
that is, a set of pairs composed of a state and a joint action for Γ. Then,
from this set of moves, they extract the list of maximal uniform strategies
and remove the ones that are not winning for ψ. In particular, they use
a sub-algorithm to find all maximal cliques of a graph derived from the
set of moves to find all the maximal uniform strategies.

Pilecki et al.

A last algorithm was recently proposed by Pilecki et al. [PBJ14]. This
algorithm solves the model-checking problem for a variant of ATLir
that considers ⟪Γ⟫ ψ true in a state if there exists a collective uniform
strategy for Γ that wins for ψ in the current state only (instead of in
all indistinguishable states). Furthermore, the algorithm is limited to
formulas of the form ⟪Γ⟫ ψ where ψ contains no strategic operator.

Their algorithm for checking whether a state q satisfies a formula
⟪Γ⟫ ψ first guesses nondeterministically a collective strategy fΓ, then
performs CTL model checking of A ψ on q in the model restricted
to the behaviors allowed by fΓ. To reduce the number of strategies
to guess, they explore some equivalences between strategies and use
a representation that allows to try simple strategies first. They also
propose to explore so-called path-based strategies instead of standard
ones, but the technique is incomplete in the sense that the algorithm
could say that the formula is not satisfied while it actually is; this idea
is not discussed here.

An incomplete strategy fag is a strategy defined by a partial function
fag ∶ Q ↛ Act instead of a total one. The domain of fag, written

3.5. Model checking uniform strategies 53

dom(fag), is the set states in which the strategy is defined. Given an iCGS
S = ⟨Ag,Q,Q0,Act, e, δ,∼, V ⟩ and a (possibly incomplete) strategy fag,
the trimmed model is the model S†fag = ⟨Ag,Q,Q0,Act, e

′, δ,∼, V ⟩ where
e′(ag′) = e(ag′) for all ag′ ≠ ag and e′(ag)(q) = {fag(q)} if q ∈ dom(fag)
and e′(ag)(q) = e(ag)(q) otherwise. Given a collective strategy fΓ for
a group of agents Γ, S†fΓ is defined in the same way. Finally, we call
the proper domain QfΓ

of fΓ the set of states reachable from the initial
states in the model S†fΓ, and we say that an incomplete strategy fΓ is
proper if dom(fΓ) = QfΓ

. It is easy to see that the choices a strategy fΓ

makes for states in Q/QfΓ
has no incidence on the fact that the strategy

is winning for any objective since these states are never reached and
the choices are never actually used. Thus, it is not necessary to check
all strategies, but only one per class of strategies that make the same
choices on their proper domains.

A partial strategy for agent ag is a nondeterministic possibly incom-
plete strategy fag ∶ Q↛ 2Act such that for every state q ∈ dom(fag), we
have fag(q) = eag(q) or fag(q) is a singleton. That is, a partial strategy
either makes a choice in state q, or makes no restriction, meaning that
the choice in this particular state is not relevant. The implicit part of a
partial strategy is the set of states for which the strategy chooses one
action, the explicit part is the rest of its domain. A strategy is empty if
its implicit part is empty. We can easily lift the notion of partial strategy
to collective strategies for a group of agents.

The idea of the algorithm is to restrict the search for a winning
strategy to the proper ones, and to start the synthesis of these strategies
from the empty partial strategy. Algorithm 3.1 presents the algorithm
proposed by Pilecki et al. It works with a list of strategy tasks ⟨F,U, fΓ⟩
where F is the fixed set of states for which fΓ already defines an action
for all agents, U is the unfixed rest of the states of the domain of fΓ,
and fΓ is a partial strategy. Starting from the empty partial strategy,
the algorithm takes one strategy task at a time, tries to extend it by
making a choice in some unfixed state, and checks whether the resulting
strategy satisfies A ψ or not in the restricted model. If this is the case,
the algorithm found a winning strategy, otherwise another strategy task
is analyzed, until no strategy tasks remain. One of the advantages of
this algorithm is that it can produce—by returning the winning strategy
beside the answer yes—relatively small descriptions of winning strategies.
Indeed, when a strategy is found, it only describes what are the choices
of the agents in the first steps of the game while keeping the unimportant
further moves unspecified.

54 Chapter 3. Logics and algorithms for model checking strategies

Algorithm 3.1:

Data: S an iCGS, φ = ⟪Γ⟫ ψ an ATLir formula, q a state of S.
Result: Whether S, q ⊧ φ.

STL = ⟨⟨∅,{q}, emptyPartialStrategy⟩⟩
while STL ≠ ⟨⟩ do

pick and remove one ST = ⟨F,U, fΓ⟩ from STL
pick one state q′ ∈ U
F = F ∪ {q′}, U = U/{q′}
if there exists an agent ag ∈ Γ with no fixed action in q′ by fΓ

then
pick one agent ag ∈ Γ with no fixed action in q′ by fΓ

for all actions a enabled in q′ for ag compatible with fΓ do
fix a as the choice in q′ for ag in fΓ

add to U the successors of q′ that are not in F ∪U
STL = STL + ⟨F,U, fΓ⟩

set fΓ as the strategy of the first task added to STL

else
if U ≠ ∅ then

add to U the successors of q′ that are not in F ∪U
STL = STL + ⟨F,U, fΓ⟩

if S†fΓ, q
′ ⊧A ψ then

return yes

return no

3.5.2 Epistemic strategy logic

Huang and van der Meyden proposed a BDD-based algorithm to solve the
model-checking problem for ESL [HvdM14b]. While their description
of ESL does not integrate fairness constraints, their algorithm supports
them and can be tuned to work for ATLKirF , the logic described in this
thesis. Chapter 6 explains how this can be done.

The idea of the algorithm is to encode the strategies of the agents
into BDD variables and to solve the model-checking problem with BDD
manipulations and fixpoints computations. More precisely, given a set
of agents Ag and a strategic environment E = ⟨Q,Q0,Act,R,∼, V,FC⟩
with fairness constraints FC ⊆ 2Q, the interpreted system defined over
the uniform deterministic strategies for the agents of Ag can be encoded
with BDDs as follows:

• Each state q ∈ Q is represented as a Boolean assignment to the set

3.5. Model checking uniform strategies 55

AP of atomic propositions, that is, Q is represented as a Boolean
formula over AP . The initial states Q0 and fairness constraints
fc ∈ FC are represented similarly.

• The actions Actag of each agent are represented using a set of
Boolean variables BActag = {bag,1, ..., bag,mag} where mag is the
number of Boolean variables needed to encode all actions. A joint
action is represented as an assignment to BAct = ⋃ag∈AgBActag.

• The transition relation R is encoded using copies of the atomic
propositions AP ′ = {p′ ∣ p ∈ AP}. The relation is thus represented
as a Boolean formula over variables of AP ∪BAct ∪AP ′.

• The observation functions ∼ag can be represented by giving a subset
APag ⊆ AP of atomic propositions observed by agent ag. We use
the formula eqag ≡ ⋀p∈APag p ⇐⇒ p′ to represent the fact that
agent agent ag has the same observations in the assignments of
variables AP and AP ′ respectively.

Let χ be an assignment of Boolean values to variables of a set X. We
write χ[X → X ′] for the assignment that gives to variable x′ ∈ X ′ the
value of x ∈X from assignment χ.

Let Oag = {∼ (ag)(q) ∣ q ∈ Q} be the observations of agent ag. A
uniform deterministic strategy for agent ag can be seen as a function
fag ∶ Oag → Actag. To represent the strategies, we introduce, for each
agent ag, a set of variables Xag containing the variables xag,o,j for o ∈ Oag
and j = 1..mag. In this context, a strategy fag is an assignment χfag to
variables of Xag such that for o ∈ Oag and j = 1..mag, χfag(xag,o,j) = 1 if
fag(o)(bag,j) = 1. Let X = ⋃ag∈AgXag. Using these variables, the formula

fstrat ≡ ⋀
ag∈Ag

⋀
o∈Oag

⎛
⎝
ô Ô⇒ ⋀

j=1..mag

(xag,o,j ⇐⇒ bag,j)
⎞
⎠
,

where ô is the conjunction of the literals corresponding to the assignment
o, says that the agents select the action corresponding to their current
strategy. Finally, to encode a context C, we introduce a set of variables
Xy = {xy ∣ x ∈ AP ∪X} for each variable y ∈ V ar in the formula to be
checked.

The model-checking algorithm is defined as the Boolean formula
representing the set of states satisfying a given formula. It is defined as
follows:

evalESL(E,p) = p,
evalESL(E,¬φ) = ¬Φ,

56 Chapter 3. Logics and algorithms for model checking strategies

evalESL(E,φ1 ∨ φ2) = Φ1 ∨Φ2,

evalESL(E,EX φ) = ex(fair ∧Φ),
evalESL(E,EG φ) = νZ. Φ ∧ ⋀

fc∈FC
ex(eu(Φ, Z ∧ fc)),

evalESL(E,E[φ1 U φ2]) = µZ. (Φ2 ∧ fair) ∨ (Φ1 ∧ ex(Z)),
evalESL(E,∃y.φ) = ∃Xy s.t. ((fair ∧ reach)[X →Xy] ∧Φ),
evalESL(E, eΓ(y)) = ⋀

ag∈Γ
⋀

p∈APag
p ⇐⇒ py,

evalESL(E,DΓ φ) = ∀AP ′ ∪X ′, (⋀
ag∈Γ

eqag ∧ reach′ ∧ fair′ Ô⇒ Φ′),

evalESL(E,CΓ φ) =
νZ. ⋀

ag∈Γ
∀AP ′ ∪X ′, (eqag ∧ reach′ ∧ fair′ Ô⇒ (Φ ∧Z ′)),

where

ex(Z) = ∃AP ′ ∪X ′ s.t. (R ∧ fstrat ∧Z ′),
eu(Z1, Z2) = µZ. Z2 ∨ (Z1 ∧ ex(Z)),
reach = µZ. Q0 ∨ (∃AP ∪BAct s.t. Z ∧R ∧ fstrat)[AP ′ → AP],
fair = νZ. ⋀

fc∈FC
ex(eu(true,Z ∧ fc)),

Φ = evalESL(E,φ),
Φ1 = evalESL(E,φ1),
Φ2 = evalESL(E,φ2).

evalESL(E,φ) returns the Boolean formula representing the set of
states of E satisfying φ [HvdM14b].

3.5.3 Other algorithms

Algorithms for model checking other logics reasoning about imperfect
information strategies have also been proposed. For instance, Raskin et
al. proposed an algorithm to check the existence of observation-based
strategies for two-player turn-based games on graphs with ω-regular
objectives [RCDH07]. These games are composed of two players, each
state of the game being owned by one of them. The objectives they try
to achieve are specified as infinite plays, and they specifically consider
reachability, safety, Büchi and coBüchi, and parity objectives, that are all
ω-regular. They are interested in the existence of winning observation-
based strategies, that is, strategies with imperfect information and perfect

3.5. Model checking uniform strategies 57

recall. One limitation of their approach is the fact that the objective
must be expressed in terms of the observations of the agent that tries to
achieve them. They propose a fixpoint-based algorithm that computes
the set of states in which a player has a strategy to win his objective.
The fixpoint is computed in the lattice of antichains of state sets, that is,
the lattice of downward-closed subsets of states.

Another algorithm was recently proposed by Bozianu et al. [BDF14].
Their algorithm deals with the synthesis of a strategy with imperfect
information and perfect recall for a single agent. The objectives of the
agent are expressed in an extension of LTL with a knowledge operator
to reason about what the agent knows. As above, their algorithm works
with antichains.

Chapter 4

Reasoning
about uniform strategies

under fairness constraints

The example of the repeated card game presented in the Introduction
showed that, by assuming that the dealer will distribute all pairs of
cards infinitely often—that is, by assuming a fair dealer—, the player
has a strategy to win the game, even if he does not see the card of the
dealer. Reasoning about fairness assumptions can be useful in other
scenarios, too. For instance, in a system with agents communicating
through a lossy channel, it is reasonable to assume that the channel
will not lose messages forever. Finally, Section 3.3 showed that it is
interesting to reason about the strategies of multi-agent programs under
the assumption that the scheduler will not ignore a program forever. This
chapter presents the syntax and semantics of ATLKirF , an extension of
ATLir with unconditional fairness constraints on states. This logic is
adequate to reason about all the cases above. Section 4.1 presents the
syntax of the logic, Section 4.2 the models it is interpreted over, and
Section 4.3 describes its semantics. Section 4.4 discusses some choices
and properties of the logic, and Section 4.5 compares it with existing
logics presented in the previous chapter.

4.1 Syntax

ATLKirF formulas are composed of atomic propositions, the standard
Boolean operators, the CTL operators, the knowledge operators K, D,
E and C, and the ATL strategic operators. More precisely, ATLKirF

60 Chapter 4. Reasoning about uniform strategies with fairness

formulas follow this grammar:

φ ∶∶= true ∣ p ∣ ¬φ ∣ φ ∨ φ ∣ E ψ ∣ ⟪Γ⟫ ψ ∣ Kag φ ∣ EΓ φ ∣ DΓ φ ∣ CΓ φ

ψ ∶∶= X φ ∣ φ U φ ∣ φ W φ

where p is an atomic proposition of a set AP , Γ is a subset of a set of
agents Ag, ag is an agent of Ag.

As for CTL and ATL, the other standard Boolean, CTL and ATL
operators can be defined in terms of these ones. Nevertheless, unlike for
CTL, the path operator W is needed for expressing the dual operator for
⟪Γ⟫[φ1 U φ2] [LMO08]. Furthermore, the standard G φ path operator
can be expressed as φ W false. We can thus limit ourselves to the
minimal set of path operators composed of X, U and W.

4.2 Models

ATLKirF formulas are interpreted over the states of imperfect informa-
tion concurrent game structures with fairness constraints (iCGSf). These
structures extend imperfect information concurrent game structures with
unconditional fairness constraints on states. More precisely, an iCGSf is
a structure S = ⟨Ag,Q,Q0,Act, e, δ,∼, V,FC⟩ such that

• Ag is a finite set of agents;

• Q is a finite set of states;

• Q0 ⊆ Q is the set of initial states;

• Act is a finite set of actions; a joint action is a tuple a ∈ ActAg of
actions, one for each agent of Ag;

• e ∶ Ag → (Q→ (2Act/∅)) defines, for each agent ag and state q, the
set of actions ag can choose in q, that is, the actions enabled in
q; we write eag for the function e(ag) giving the non-empty set of
actions ag can choose in any state;

• δ ∶ Q × ActAg ↛ Q is a partial deterministic transition function
defined for each state q ∈ Q and each joint action enabled in q; we
write q

aÐ→ q′ for δ(q, a) = q′;

• ∼∶ Ag → 2Q×Q defines a set of equivalence classes representing the
observability of agents; we write ∼ag for ∼ (ag) (and call it the
epistemic relation of ag) and we assume that each agent can choose
his actions based on his own knowledge of the system, that is,

∀q, q′ ∈ Q, q ∼ag q′ Ô⇒ eag(q) = eag(q′)

4.2. Models 61

for any agent ag ∈ Ag;

• V ∶ Q→ 2AP is a function labeling states with atomic propositions
from a given set AP ;

• FC ⊆ 2Q is a set of fairness constraints.

An iCGSf is a standard iCGS to which we add some unconditional fairness
constraints on states, similarly to Fair CTL.

Given a set of agents Γ ∈ Ag, the relations ∼DΓ , ∼EΓ and ∼CΓ are defined
in the standard way, that is, ∼DΓ = ⋂ag∈Γ ∼ag defines the distributed
knowledge relation of group Γ, ∼EΓ= ⋃ag∈Γ ∼ag is the group knowledge
relation of Γ, and ∼CΓ , defined as the reflexive transitive closure of the
relation ∼EΓ , is the common knowledge relation of Γ. We write

[Q′]ag = {q′ ∈ Q ∣ ∃q ∈ Q′ s.t. q ∼ag q′}

for the set of states indistinguishable by agent ag from a state of Q′, and

[Q′]KΓ = {q′ ∈ Q ∣ ∃q ∈ Q′ s.t. q ∼KΓ q′}

for the set of states indistinguishable by group Γ through knowledge
relation ∼KΓ from a state of Q′, where K ∈ {E,D,C}.

The different notions of (i)CGS are lifted to iCGSf. More precisely, a
joint action a ∈ ActAg completes an action aΓ ∈ ActΓ for a set of agents Γ,
written aΓ ⊑ a, if the action for each agent of Γ in a corresponds to the
action of the same agent in aΓ. Given a joint action a ∈ ActAg and a set
of agents Γ ⊆ Ag, we write a(Γ) for the tuple of actions of agents of Γ in
a; when Γ = {ag} is a singleton, we write a(ag) instead of a({ag}). The

function E ∶ 2Ag → (Q → 2Act
Ag) is defined as E(Γ)(q) = ∏ag∈Γ eag(q)

and returns the set of actions for Γ enabled in q; we write EΓ for E(Γ).
Finally, we call a Γ-move (or a move if Γ is clear from the context) an
element ⟨q, aΓ⟩ ∈ Q×ActΓ such that aΓ ∈ EΓ(q), that is, a pair composed
of a state and an action for Γ enabled in the state.

A path in an iCGSf S is a sequence π = q0
a1Ð→ q1

a2Ð→ ... such that
δ(qd, ad+1) = qd+1 for all d ≥ 0. We write π(d) for qd, and ∣π∣ for the
number of states of π. A path in S is fair if it meets all fairness
constraints of S infinitely often, that is, π is fair if, for each fairness
constraint fc ∈ FC, there exist infinitely many indices d such that
π(d) ∈ fc. A state q is reachable in S if there exists a path π in S such
that π(0) ∈ Q0 and there exists d ≥ 0 such that π(d) = q. A state q is
fair if there exists a fair path starting at q. A fair reachable state is thus
a state belonging to a fair path starting at an initial state of S.

A memoryless strategy for agent ag is a function fag ∶ Q→ Act such
that ∀q ∈ Q,fag(q) ∈ eag(q). A (memoryless) uniform strategy for agent

62 Chapter 4. Reasoning about uniform strategies with fairness

ag is a strategy fag such that ∀q, q′ ∈ Q, q ∼ag q′ Ô⇒ fag(q) = fag(q′).
We call outcomes of a strategy the set of paths of the structure that are
coherent with the strategy; more precisely, the outcomes of a strategy
fag for agent ag from a state q are defined as

out(fag, q) = {π = q0
a1Ð→ q1

a2Ð→ ... ∣ q0 = q ∧ ∀d ∈ N, fag(qd) ⊑ ad+1}. (4.1)

Finally, a (uniform) strategy for a group of agents Γ ⊆ Ag is a tuple of
(uniform) strategies, one for each agent of Γ. The outcomes of a strategy
fΓ for a group of agents Γ from a state q are defined as

out(fΓ, q) = ⋂
fag∈fΓ

out(fag, q); (4.2)

these outcomes are the paths that are coherent with every strategy of
the set fΓ.

In the sequel, we mainly speak about uniform strategies and call
them strategies; when speaking about strategies that are not necessarily
uniform, we speak about general strategies. A strategy fΓ can be
represented as the set of Γ-moves

{⟨q, aΓ⟩ ∈ Q ×ActΓ ∣ aΓ = fΓ(q)}, (4.3)

that is, the set of moves such that the actions are the ones specified by
the strategy. In the sequel, the notation fΓ is interchangeably used for
a set of Γ-moves and the strategy they represent. Furthermore, we say
that a set of Γ-moves MΓ covers a set of states Q′ ⊆ Q if

∀q ∈ Q′,∃⟨q′, a′Γ⟩ ∈MΓ s.t. q′ = q;

in other words MΓ covers Q′ if MΓ proposes an action for all states of Q′.
We write MΓ∣Q for the set of states MΓ covers. We also interchangeably
write EΓ for the original function taking a state q and returning the set
of actions Γ can play in q, and for the set of Γ-moves it represents, that
is, the set {⟨q, aΓ⟩ ∈ Q ×ActΓ ∣ aΓ ∈ EΓ(q)}.

Finally, the outcomes function out is lifted for any subset of Γ-moves
MΓ as follows:

out(MΓ, q) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
π = q0

a1Ð→ q1
a2Ð→ ...

RRRRRRRRRRRRRR

q0 = q ∧ ∀i,0 ≤ i < ∣π∣ − 1,
∃⟨q′, a′Γ⟩ ∈MΓ s.t.
q′ = qi ∧ a′Γ ⊑ ai+1

⎫⎪⎪⎪⎬⎪⎪⎪⎭
,

that is, out(MΓ, q) is the set of (finite or infinite) paths that follow some
actions for Γ proposed by MΓ.

4.3. Semantics 63

4.3 Semantics

The semantics of ATLKirF formulas is defined over states of an iCGSf
S by the relation S, q ⊧ φ; S is omitted when clear from the context.
This relation meets the standard semantics for propositional, branching-
time and knowledge operators. For strategic operators, the semantics is
similar to ATLir semantics except that it considers only fair paths in the
outcomes of strategies. More precisely, the q ⊧ φ relation is defined as

q ⊧ true,
q ⊧ p ⇔ p ∈ V (q),
q ⊧ ¬φ ⇔ q /⊧ φ,
q ⊧ φ1 ∨ φ2 ⇔ q ⊧ φ1 or q ⊧ φ2,

q ⊧ E ψ ⇔ there exists a fair path π s.t. π(0) = q and π ⊧ ψ,

q ⊧Kag φ ⇔ { q′ ⊧ φ for all q′ ∈ Q s.t.
q ∼ag q′ and q′ is a fair reachable state,

q ⊧ KΓφ ⇔
⎧⎪⎪⎪⎨⎪⎪⎪⎩

q′ ⊧ φ for all q′ ∈ Q s.t.

q ∼KΓ q′ and q′ is a fair reachable state,
where K ∈ {D,E,C},

q ⊧ ⟪Γ⟫ ψ ⇔
⎧⎪⎪⎪⎨⎪⎪⎪⎩

there exists a uniform strategy fΓ for Γ s.t.
∀ag ∈ Γ,∀q′ ∼ag q, for all fair paths π ∈ out(fΓ, q

′),
π ⊧ ψ.

The relation π ⊧ ψ over paths π of the structure S is defined as

π ⊧X φ ⇔ π(1) ⊧ φ,
π ⊧ φ1 U φ2 ⇔ ∃d ≥ 0 s.t. π(d) ⊧ φ2 and ∀e < d, π(e) ⊧ φ1,

π ⊧ φ1 W φ2 ⇔ { ∃d ≥ 0 s.t. π(d) ⊧ φ2 and ∀e < d, π(e) ⊧ φ1,
or ∀d ≥ 0, π(d) ⊧ φ1.

As usual, we write S ⊧ φ if all initial states of S satisfy φ, that is, if

∀q ∈ Q0, S, q ⊧ φ.

Intuitively, this semantics say that q satisfies ⟪Γ⟫ ψ if agents in Γ
have a collective strategy such that, whatever the action of the other
agents is, the objective ψ will be satisfied by all the resulting fair paths
from all indistinguishable states. The main difference with the standard
ATLir semantics is the fact that only fair paths are considered: q satisfies
⟪Γ⟫ ψ if Γ have a strategy to enforce ψ, assuming all other agents will
act fairly, that is, the other agents only follow fair paths. For instance,

64 Chapter 4. Reasoning about uniform strategies with fairness

in the case of multi-agent programs, q satisfies ⟪Γ⟫ ψ if the programs in
Γ have a strategy to enforce ψ, assuming that the scheduler—modeled
as another agent of the system—is fair, that is, each program will run
infinitely often.

The restriction to memoryless strategies is strong. Nevertheless, it
is necessary in the case of imperfect information as the problem of the
existence of a memory-full uniform strategy under imperfect information
is undecidable [DT11].

We call ATLIrF the restriction of ATLKirF that only reasons about
iCGSf in which the epistemic relation of all agents are the identity
relation. This means that ATLIrF deals with structures in which all
agents observe everything, thus can base their strategies on the current
state instead of on their observations of this state. In this restricted logic,
knowledge operators are useless as all agents know every true fact. Some
properties of this sub-logic will be discussed in the next section.

There are redundancies between the temporal and the strategic
operators. The formula E ψ can be expressed in vanilla ATL as J∅K ψ:
there is a path satisfying ψ if the empty set of agents cannot avoid ψ,
that is, all the agents can cooperate to lead to at least one path satisfying
ψ [AHK02]. Similarly, A ψ can be expressed as ⟪∅⟫ ψ, that is, all paths
satisfy ψ if, whatever all agents do, ψ is enforced. The same equivalences
apply in ATLKirF . Nevertheless, both kinds of operators (temporal and
strategic) are kept in the logic to clearly separate operators about the
pure execution of the model and operators reasoning about strategies.
Furthermore, the model-checking algorithms for ATLKirF presented in
the next chapter are clearly more efficient when dealing with temporal
operators than with strategic ones.

Because we deal with models with fairness constraints, some equiva-
lences that exist in ATL are not kept: A ψ /≡ JAgK ψ and E ψ /≡ ⟪Ag⟫ ψ.
These equivalences are broken because of fairness constraints. Let us
illustrate this with an example, given in Figure 4.1. In this case, the
model contains no fair path since the right state can be visited at most
once. In the top state of this model, the formula EX p is trivially false
because there is no fair path (at all) satisfying X p; on the other hand,
the formula ⟪Ag⟫X p is vacuously true because Ag has a strategy such
that all fair paths (there are none) satisfy X p. Dually, the top state
satisfies AX p, but it does not satisfy JAgKX p. Note that this case is
due to an ill-defined model containing no fair path, and this should be
avoided in meaningful models. The problem of vacuous strategies will be
further discussed in Section 4.4.2.

Finally, ATLKirF subsumes ATLir, that is, for any iCGS S and
ATLir formula φ, there exist corresponding iCGSf T (S) and ATLKirF

4.4. Discussion 65

¬p p

⟨1⟩ ⟨2⟩

⟨1⟩
⟨1⟩

Figure 4.1: A model with one agent where the equivalences A ψ /≡ JAgK ψ
and E ψ /≡ ⟪Ag⟫ ψ are broken due to presence of fairness constraints.
Vertices are states, labelled with propositions true in this state; edges
are transitions, labelled with joint actions. The bold state belongs to the
(single) fairness constraint of the model. The agent observes everything
and his epistemic relation is the identity one.

formula T (φ) such that, for any state q of S, S, q ⊧ φ if and only if
T (S), T (q) ⊧ T (φ). Intuitively, any iCGS can be transformed into
an iCGSf with only one fairness constraint composed of the full state-
space; the corresponding iCGSf shares the same labeled graph and the
fairness constraint says that any path of the model is a fair path. The
translation of formulas is the identity function, that is, every Boolean and
strategic operator of ATLir is translated into its corresponding operator
of ATLKirF .

It is obvious that there exists a uniform strategy for a group of
agents Γ in an iCGS such that all enforced paths satisfy ψ if and only if
there exists a uniform strategy for the same group in the corresponding
iCGSf such that all enforced fair paths satisfy ψ, since every path of the
model is fair. This implies that the model-checking problem of ATLKirF

is ∆P
2 -hard since the problem is ∆P

2 -complete for ATLir [Sch04]. The
model-checking problem for ATLKirF is in fact ∆P

2 -complete, but this
will be discussed later in Chapter 5 after presenting model-checking
algorithms for the logic that are shown to be in ∆P

2 .

4.4 Discussion

This section discusses the choice of fairness constraints that have been
made when designing ATLKirF semantics. Furthermore, it discusses the
issue of vacuous strategies and presents possible solutions. Finally, it
discusses the unimportance of memory for the ATLIrF sub-logic.

66 Chapter 4. Reasoning about uniform strategies with fairness

4.4.1 Fairness constraints

This section compares the fairness constraints chosen for ATLKirF with
alternatives, and discusses the link between fairness and strategies.

ATLKirF considers only fair paths, that is, paths that meet each
fairness constraint fc ∈ FC infinitely often. This kind of fairness defi-
nition is called unconditional fairness; it is standard in the framework
of Fair CTL and is used in the family of SMV model checkers (e.g.
NuSMV) [CGP99]. There exist other kinds of fairness such as strong
and weak fairness, expressed on actions or on states, such as the ones
discussed in Section 3.3. While fairness constraints can be expressed on
actions or on states, fairness constraints on actions can be reduced to
fairness constraints on states, thus it is sufficient to limit ourselves to
the latter [BK08, Chapter 3].

The three kinds of fairness constraints can be useful to reason about
the strategies of agents. For instance, unconditional fairness constraints
can be used to reason about the strategies of multi-agent programs under
a fair scheduler, as previously discussed. In the same vein, weak and
strong fairness constraints can be used to reason about strategies of
agents under particular circumstances. For instance, suppose a multi-
agent program where one particular agent controls a mutex in the system.
If an agent needs to lock this mutex to achieve his task, he cannot win
his objective without the cooperation of the controlling agent. On the
other hand, by adding strong fairness constraints to ensure that if the
agent asks infinitely often for the mutex then the controlling one will
grant it, the agent has a strategy to win his objective.

One advantage of unconditional fairness, compared to strong and
weak fairness, is that ATLIrF does not differentiate between memoryless
and memory-full strategies [BPQR15]. Thus we can focus on memoryless
ones without losing any expressive power. On the other hand, for strong
and weak fairness with perfect information, memory is necessary to win
the objectives: two variants on ATL have been proposed, both needing
memory [AHK02]. Nevertheless, the amount of memory needed to win
the objectives under weak and strong fairness is finite. Furthermore,
strategies that are allowed to use a bounded amount of memory can be
reduced to memoryless strategies in a derived model where the memory
is encoded in the states [JvdH04, Sch04], allowing the reasoning to be
restricted to memoryless strategies.

In the full case of ATLKirF , memory has an impact on the capabilities
of the agents as ATLir and ATLiR have different expressiveness. We
propose to use unconditional fairness constraints on states to match the
framework of Fair CTL.

4.4. Discussion 67

Another concern about fairness is the set of agents that must enforce
fair paths. Under ATLKirF , Γ win if they have a strategy such that all
fair paths satisfy the objective; in this case, Γ have to produce fair paths
that violate the objective to prevent Γ to win. Let us call this semantics
the weak-strategy semantics. Another choice is: Γ win if they have a
strategy such that all enforced paths are fair and satisfy the objective. In
this case, Γ have to enforce only fair paths to win, and Γ can prevent
them to win by avoiding fair paths (regardless of the objective). Let us
call this new semantics the strong-strategy semantics.

While weak-strategy objectives do not need memory to be won in
the case of ATLIrF , strong-strategy ones need memory to be won. For
instance, let us consider the model presented in Figure 4.2 and the
property ⟪Ag⟫F p. The model contains only one agent that can play
two different actions in the top state. For a path to be fair, both the
left and right states must be visited infinitely often. Under the weak-
strategy semantics, the property is true: by playing action 0 in the top
state, the agent will enforce no fair path (the only enforced path never
meets the right state), and the property is vacuously true. If the agent
can use memory, the result is the same, the agent still has a strategy
to win. On the other hand, under the strong-strategy semantics, the
agent has a memory-full strategy to win the objective—play 0 and 1
alternatively—but no memoryless one. He has to stick to the same action
in the top state, and will never meet the third state. Thus, in the case
of the strong-strategy semantics, memory makes a difference.

p ¬p

⟨0⟩ ⟨1⟩

⟨1⟩ ⟨1⟩

Figure 4.2: A model with one agent where the agent needs memory to
win under the strong-strategy semantics. The bold state belongs to one
fairness constraint, the double-lined one to another. The agent observes
everything and his epistemic relation is the identity one.

When designing ATLKirF semantics, we kept the weak-strategy
semantics because it corresponds to the usual situation in which fairness
is an assumption about the environment. Furthermore, this semantics
is useful, for example, to reason about multi-agent programs [DJ10]. In
this case, the weak-strategy semantics allows the user to reason about
the strategies of the programs while assuming a fair scheduler.

68 Chapter 4. Reasoning about uniform strategies with fairness

4.4.2 Vacuous strategies

This section discusses the problem of vacuous strategies and presents
possible solutions. Let us illustrate this problem with the example of the
repeated card game presented in the Introduction. We already discussed
the case of the player who can eventually win the game, relying on the
fair behavior of the dealer: because he knows the dealer will eventually
give a winning hand, he can always keep his card and finally win the
game. On the other hand, the dealer can also always win the game: he
has a strategy such that the player never wins. This strategy is to avoid
any fair path: if he avoids fair paths, all enforced fair paths vacuously
satisfy any objective and, in particular, the objective consisting in never
letting the player win.

More generally, the problem of vacuous strategies is that if a group
of agents have a strategy to avoid fair paths, then they can win over any
objective, even an unsatisfiable one such as F false: all the fair paths
(there are none) trivially satisfy any temporal formula. This problem is
already present in CTL, where a state q satisfies any A ψ property if
q is not fair, that is, no fair path starts in q. In the case of CTL, the
usual approach is to inform the user whenever the model accepts no fair
paths. This solution can be used in the present case, and we can inform
the user whenever Γ can avoid fair paths.

In the setting of ATLIrF , either there exists a coalition that can
prevent fairness, or all paths are fair and fairness constraints are useless.
Indeed, the transition relation is deterministic, thus any strategy of the
grand coalition of agents Ag defines one single outcome. So, either all
paths are fair, or there exists a strategy for Ag that avoids fair paths, and
Ag can enforce any temporal formula by using this strategy. Nevertheless,
in some models, some smaller coalitions also have vacuous strategies. For
instance, in the case of the repeated card game, any coalition including
the dealer can enforce unfair paths only. In the case of the lossy channel,
the channel itself has a vacuous strategy as it can prevent the messages
to be transmitted forever.

This property is true in the perfect information setting, but not in the
general case of ATLKirF in which the agents have imperfect information
about the system. This is shown by the model of Figure 4.3, composed of
one agent that cannot distinguish the three upper states. This agent has
two different uniform strategies: either play action 0 in the upper states,
or play action 1. The grand coalition of all agents (there is only one)
does not have a uniform strategy to avoid fair paths as both strategies
will lead to the bottom left state. Nevertheless, the model contains unfair
paths as the paths that end up in the bottom right states are unfair.

4.4. Discussion 69

⟨0⟩ ⟨1⟩

⟨0⟩ ⟨1⟩⟨1⟩ ⟨0⟩

⟨1⟩ ⟨1⟩

Figure 4.3: A model with one agent where the grand coalition Ag cannot
avoid fair paths, even with the presence of unfair paths. The bold state
belongs to the single fairness constraint. Waved edges represent the
epistemic relation of the agent (self loops are not pictured).

It is possible to address the problem of vacuous strategies by changing
the semantics. For instance, we can change the semantics such that only
strategies enforcing at least one fair path are considered. This is different
from the strong-strategy semantics discussed above in the sense that, in
the present case, the agents still do not need to enforce only fair paths.
The only requirement is that their strategy enforce at least one fair path.
In the case of the card game, this would solve the concern above: if we
only consider strategies that contain at least one fair path, the dealer
has no strategy to prevent the player to win, since he will need to deal
each pair of cards infinitely often.

4.4.3 Memory and perfect information

In the case of strategies under imperfect information, the memory of
the agents has a huge impact on what they can perform and on the
related model-checking problems. Indeed, the model-checking problem
for ATLir—and thus for ATLKirF— is ∆P

2 -hard, while ATLiR has
an undecidable one [Sch04]. This difference is already visible for the
simple structure of Figure 4.4 and the reachability objective F p. In
this structure, the single agent has a memory-full uniform strategy to
reach the bottom state (play 0 then 1, for instance), but no memoryless
uniform one since he must play the same action in all three top states.

On the other hand, ATLIR and ATLIr are equivalent: when the
agents have perfect information about the states of the system, they do

70 Chapter 4. Reasoning about uniform strategies with fairness

p

⟨0⟩ ⟨1⟩

⟨0⟩ ⟨1⟩

⟨1⟩ ⟨0⟩

⟨∗⟩

Figure 4.4: A model with one agent where the grand coalition Ag has no
memoryless strategy to reach the bottom state, but has a memory-full
one.

not need memory to achieve their goals [AHK02]. In other words, agents
with perfect information and no memory are as powerful as agents with
perfect information and perfect recall, for the objectives considered by
ATL. Nevertheless, memory has an impact on ATL∗ objectives, that is,
there exist ATL∗ formulas for which memoryless agents have no winning
strategy while memory-full ones have a winning strategy [AHK02].

In the case of ATLIrF , the agents do not need memory to enforce
that all fair paths satisfy a given temporal objective. The complete proof
of this property is out of the scope of this thesis, but the remainder of
this section presents a proof sketch. The full proof uses results from the
work of E. Grädel [Grä04] and W. Thomas [Tho95], and gets inspiration
from results presented in [AG11]. It is based on the fact that, when all
the agents have perfect information, checking whether S, q ⊧ ⟪Γ⟫ ψ can
be reduced to finding a winning strategy in a two-player game.

First, given an iCGSf S = ⟨Ag,Q,Q0,Act, e, δ,∼, V,FC⟩ where

∀ag ∈ Ag,∼ag= {(q, q) ∣ q ∈ Q},

and a strategic ATLIrF formula ⟪Γ⟫ ψ, we can build a two-player turn-
based game such that a state of the structure satisfies the formula if
and only if the corresponding state of the game is winning for the player
corresponding to Γ. Intuitively, Γ is mapped to the first player 0 and Γ
is mapped to the second player 1. For each action aΓ of Γ enabled in
a state q, a new state qaΓ

for 1 is created, representing the fact that Γ
chose the corresponding action; in these states for 1, Γ can then choose
the next state.

4.5. Comparison with related work 71

Furthermore, the ATLKIrF formula is translated into an objective
for the corresponding two-player turn-based game, and we can show that,
to a strategy for 0 winning the objective on the game, there corresponds
a strategy for Γ in the original structure. Whenever the player 0 chooses
a successor in the game, there exists a corresponding action in the
original structure, and every path enforced in the game by the winning
strategy can be mapped to a path in the original model, enforced by the
corresponding strategy.

Finally, using standard results in game theory about memoryless
strategies of particular objectives, we can show that our objectives do
not need memory to be won in such games. For this, the proof proposes
custom algorithms to find all the winning states of the game. By the
way the algorithms compute these states, we can show that there exists a
winning memoryless strategy in these states, and so the player does not
need memory to win the game. Thus, since there exists a correspondence
between winning strategies in the game and winning strategies in the
original structure, agents do not need memory either in the case of
ATLIrF objectives on iCGSf. The full proof is given in [BPQR15].

4.5 Comparison with related work

This section briefly discusses the relation between ATLKirF and its
restriction ATLIrF , and different logics presented in Chapter 3.

First, it is clear that ATLKirF extends and subsumes Fair CTL. A
fair Kripke structure can be translated into an iCGSf with the same states,
one agent, and the same labeling and fairness constraints. Then, the Fair
CTL operators are the same as the ATLKirF temporal operators as they
have the same semantics. Nevertheless, while Fair CTL model-checking
problem is polynomial [CGP99], the ATLKirF one is more complex.
This is due to the strategic operators, not to temporal ones. ATLKirF

can be viewed as an extension of Fair CTL with knowledge and strategic
operators.

On the other hand, there is no direct comparison of ATLKirF with
Fair ATL. The former reasons about uniform memoryless strategies while
the latter reasons about general memory-full strategies. Furthermore,
the fairness constraints are not the same as ATLKirF uses unconditional
fairness constraints on states while Fair ATL works with weak and strong
fairness constraints on actions. Nevertheless, a version of Fair ATL with
state-based fairness constraints would subsume ATLIrF .

Second, the strategic fragment of ATLKirF—the logic from which
we remove the knowledge operators—is subsumed by ATL∗ir. Indeed,

72 Chapter 4. Reasoning about uniform strategies with fairness

given an iCGSf, we can translate it into an iCGS in which the fairness
constraints are replaced by fresh atomic propositions. More precisely,
given an iCGSf S = ⟨Ag,Q,Q0,Act, e, δ,∼, V,FC⟩, S can be translated
into an iCGS T (S) = ⟨Ag,Q,Q0,Act, e, δ,∼, V ′⟩ in which the labeling
function is updated as

V ′(q) = V (q) ⋃
fc∈FC

{fc ∈ AP ′ ∣ q ∈ fc},

where AP ′ = AP ∪ {fc ∣ fc ∈ FC}. Then, an ATLKirF strategic formula
φ = ⟪Γ⟫ ψ can be translated into an ATL∗ir formula

T (φ) = ⟪Γ⟫
⎛
⎝
⎛
⎝ ⋀
fc∈FC

G F fc
⎞
⎠
Ô⇒ ψ

⎞
⎠
.

It is easy to show that S, q ⊧ φ if and only if T (S), q ⊧ T (φ). Indeed,
T (φ) is true if there exists a uniform strategy for Γ such that all paths
satisfy ((⋀fc∈FC G F fc) Ô⇒ ψ), that is, all paths meeting all fc ∈ FC
infinitely often satisfy ψ, and that is exactly the semantics of φ. One
advantage of ATLKirF compared to ATL∗ir is the complexity of its
model-checking problem; the former is ∆P

2 -complete while the latter is
PSPACE.

Dastani and Jamroga proposed EATL+p to reason about goals, beliefs
and strategies of multi-agent programs [DJ10]. This logic also subsumes
the strategic fragment of ATLKirF as the translation above also applies
to EATL+p . But, again, the complexity of the model-checking problem is

lower for ATLKirF as the problem is ∆P
3 -complete for EATL+p .

Finally, Huang and van der Meyden proposed a variant of ESL with
unconditional fairness constraints. ATLKirF is subsumed by this logic as
ATLir is subsumed by their original proposal for ESL [HvdM14b]. As for
the previous logics, the gain of defining a less expressive logic is the gain
in complexity as ESL model-checking problem is PSPACE-complete.

Chapter 5

Model Checking
uniform strategies

under fairness constraints

In the previous chapter, we presented ATLKirF , a logic for reasoning
about the temporal evolution, the knowledge and the strategies of agents
with imperfect information in the context of a system with fairness
constraints. This chapter proposes BDD-based symbolic model-checking
algorithms to check whether a given iCGSf satisfies or not a given
ATLKirF formula.

In opposition to the algorithms presented in Chapter 2 based on
fixpoint computations, ATLir—and thus ATLKirF—does not have the
fixpoint characterization needed for such algorithms [JB11]. For instance,
the following CTL scheme is a valid scheme, that is, whatever φ is, the
resulting formula is satisfied by any state of any Kripke structure:

EF φ ⇐⇒ (φ ∨EX EF φ). (5.1)

This valid scheme gives us a way to compute the set of states satisfying
a formula EF φ: these states are the ones satisfying φ or from which
there exists a successor satisfying EF φ. From this, we can derive the
fixpoint-based algorithm of Section 2.2.3:

evalCTL(S,EF φ) = µQ′. evalCTL(S,φ) ∪ Pre(S,Q′).

On the other hand, ATLKirF does not have similar valid schemes;
in particular, the strategic scheme similar to the one of Equation 5.1,

⟪Γ⟫F φ ⇐⇒ (φ ∨ ⟪Γ⟫X ⟪Γ⟫F φ), (5.2)

74 Chapter 5. Model checking uniform strategies with fairness

is not valid under ATLKirF . Indeed, the top left state of the structure
in Figure 5.1 satifies ⟪ag⟫F p because choosing action 0 in all states will
eventually lead to the bottom left state. On the other hand, the middle
left state does not satisfy ⟪ag⟫F p because a winning strategy should
choose action 0 in the middle left state and action 1 in the middle right
one, and violate the constraint of uniformity. Thus, while the top left
state satisfies ⟪ag⟫F p, it does not satisfy p ∨ ⟪ag⟫X ⟪ag⟫F p, showing
that the scheme of Equation 5.2 is not valid.

p

⟨0⟩ ⟨0⟩

⟨0⟩ ⟨1⟩⟨1⟩ ⟨0⟩

⟨0⟩ ⟨0⟩

Figure 5.1: An iCGS with a single agent ag in which the formula
⟪ag⟫F p ⇐⇒ (p ∨ ⟪ag⟫X ⟪ag⟫F p) is not valid.

As model-checking algorithms for ATLKirF cannot use these kinds
of fixpoint characterization, it is necessary to find other ways to solve
the problem. This chapter presents several BDD-based model-checking
algorithms. The main idea used to compute the set of states of an
iCGSf S satisfying a given strategic formula ⟪Γ⟫ ψ is the following:
(1) enumerate all uniform strategies for Γ in S, represented with BDDs,
and (2) for each of them, check whether the strategy is winning for ψ or
not.

The remainder of this chapter is structured as follows: Section 5.1
presents the fixpoint computations used in the algorithms to check
if a strategy is winning; Section 5.2 explains how to enumerate the
uniform strategies of a group of agents and describes a naive algorithm
that checks all strategies to determine whether the formula is true.
Section 5.3 presents the notion of partial strategies and how to use them
to solve the model-checking problem; it also presents some optimizations
to this partial strategies-based algorithm. Section 5.4 discusses how
we can ignore some strategies that cannot be winning. Section 5.5
presents another approach that generates the winning strategies from

5.1. Checking individual strategies 75

the objective states. Finally Section 5.6 studies the complexity of the
presented approaches, and Section 5.7 presents their implementation
with PyNuSMV, as well as the modeling language designed for describing
iCGSf.

Most functions and algorithms described in this chapter assume the
existence of an iCGSf S = ⟨Ag,Q,Q0,Act, e, δ,∼, V,FC⟩ from which their
arguments come.

5.1 Checking individual strategies

This section presents a set of fixpoint-based algorithms, called the filter
algorithms, for computing the set of states for which there exists a
winning general strategy for a given objective. They can then be used to
check whether a given uniform strategy is winning. This section presents
the algorithms; their usage for checking strategies is presented in the
next sections.

This section mainly speaks about general strategies. Thus, when
speaking about strategies, we speak about general ones instead of uniform
ones. This change of terminology is only applicable to this section, and
the next ones will call strategies the uniform ones, and will speak about
general strategies when needed.

The filter algorithms are based on several functions. The first one is
a modified version of PreJΓK of Equation 2.2. This function is defined as

PreJΓK(Q′,MΓ) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
q′ ∈ Q

RRRRRRRRRRRRRR

∀⟨q, aΓ⟩ ∈MΓ,
q′ = q Ô⇒ ∃a ∈ EAg(q)
s.t. aΓ ⊑ a ∧ δ(q, a) ∈ Q′

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

Given a subset of states Q′ ⊆ Q and a set of Γ-moves MΓ, PreJΓK(Q′,MΓ)
returns the subset of states q′ such that for all actions proposed by MΓ

in q′, there exists a completing action leading to a state of Q′. In other
words, it returns the subset of states q′ such that Γ cannot prevent to
reach Q′ by choosing an action proposed for q′ in MΓ.

In the sequel, we say that a set MΓ of Γ-moves is closed if

∀⟨q, aΓ⟩ ∈MΓ,∀a ∈ EAg(q), aΓ ⊑ a Ô⇒ δ(q, a) ∈MΓ∣Q,

that is, if all states reachable from a move of MΓ also have a move in
MΓ. Furthermore, we say that a strategy fΓ for Γ is compatible with a
set of Γ-moves MΓ if

∀q ∈MΓ∣Q, ⟨q, fΓ(q)⟩ ∈MΓ,

76 Chapter 5. Model checking uniform strategies with fairness

that is, if all the decisions made by fΓ in states of MΓ correspond to some
moves in MΓ. If MΓ is closed, then all paths enforced by a compatible
strategy fΓ from a state of MΓ∣Q stay in states (and actions) of MΓ.
Indeed, for such a path to quit MΓ∣Q, it must reach a state successor
not in MΓ∣Q accessible through one of the actions of MΓ, but this is not
possible as MΓ is closed.

Finally, we say that fΓ cannot avoid a path from a state q ∈ Q
satisfying X, for a given path condition X, iff ∃π ∈ out(fΓ, q) such that
π satisfies X. For instance, a strategy fΓ cannot avoid a fair path from
q iff ∃π ∈ out(fΓ, q) such that π is fair.

From the new PreJΓK function, we can define a function derived from
the ReachJΓK one of Equation 2.3:

ReachJΓK(Q1,Q2,MΓ) = µQ′. Q2 ∪ (Q1 ∩ PreJΓK(Q′,MΓ)) .

Given two subsets of states Q1,Q2 ⊆ Q and a closed subset of Γ-moves
MΓ, ReachJΓK(Q1,Q2,MΓ)∩MΓ∣Q returns the states of MΓ∣Q from which
Γ cannot avoid to reach a state of Q2 through states of Q1, by exclusively
using actions in MΓ.

From the two functions above, we can define the function

FairJΓK(MΓ) = νQ′. ⋂
fc∈FC

PreJΓK (ReachJΓK(Q,Q′ ∩ fc,MΓ),MΓ) .

Given a closed set of Γ-moves MΓ, FairJΓK(MΓ) ∩MΓ∣Q returns the set
of states of MΓ∣Q from which Γ cannot avoid a fair path by using a
strategy compatible with MΓ.

Thanks to these functions, we can define three filter algorithms. The
first one is defined as

filterJΓKX(Q′,MΓ) = PreJΓK(Q′ ∩ FairJΓK(MΓ),MΓ).

Given a group of agents Γ, a subset of states Q′ and a closed set of
Γ-moves MΓ, filterJΓKX(Q′,MΓ) ∩MΓ∣Q returns the subset of states
q ∈MΓ∣Q such that all strategies compatible with MΓ cannot avoid a fair
path starting in q with its second state in Q′.

The second filter algorithm is defined as

filterJΓKU(Q1,Q2,MΓ) = ReachJΓK(Q1,Q2 ∩ FairJΓK(MΓ),MΓ).

Given a group of agents Γ, two subsets of states Q1 and Q2, and a closed
set of Γ-moves MΓ, filterJΓKU(Q1,Q2,MΓ) ∩MΓ∣Q returns the subset of
states q ∈MΓ∣Q such that all strategies compatible with MΓ cannot avoid
a fair path starting in q and reaching a state of Q2 through states of Q1.

5.1. Checking individual strategies 77

Finally, the third filter algorithm is defined as

filterJΓKW(Q1,Q2,MΓ) =
νQ′. Q2,F ∪ (Q1 ∩
⋂

fc∈FC
PreJΓK (ReachJΓK(Q1,Q2,F ∪ (Q′ ∩ fc),MΓ) ,MΓ)),

where

Q2,F = Q2 ∩ FairJΓK(MΓ).

Given a group of agents Γ, two subsets of states Q1 and Q2, and a closed
set of Γ-moves MΓ, filterJΓKW(Q1,Q2,MΓ) ∩MΓ∣Q returns the subset
of states q ∈MΓ∣Q such that all strategies compatible with MΓ cannot
avoid a fair path starting in q, that reaches a state of Q2 through states
of Q1, or that stays in states of Q1 forever.

Thanks to these filter algorithms, it is possible to compute the
states for which there exists a winning strategy compatible with a given
subset of Γ-moves MΓ. For instance, filterJΓKX(Q′,MΓ) ∩MΓ∣Q returns
the set of states q ∈MΓ∣Q such that all strategies compatible with MΓ

cannot avoid a fair path starting in q with second state in Q′. Thus,
MΓ∣Q/filterJΓKX(Q′,MΓ) is the set of states such that there exists a
strategy compatible with MΓ that can avoid a fair path starting in q
with second state in Q′.

It is possible to define the algorithms corresponding to

MΓ∣Q/filterJΓKX(Q′,MΓ),
MΓ∣Q/filterJΓKU(Q1,Q2,MΓ),
MΓ∣Q/filterJΓKW(Q1,Q2,MΓ),

by using the duality of the coalition modalities: ⟪Γ⟫ ψ = ¬JΓK ¬ψ. Indeed,
let

Pre⟪Γ⟫(Q′,MΓ) = PreJΓK(Q′,MΓ)

=
⎧⎪⎪⎪⎨⎪⎪⎪⎩
q′ ∈ Q

RRRRRRRRRRRRRR

∃⟨q, aΓ⟩ ∈MΓ s.t.
q′ = q ∧ ∀a ∈ EAg(q),
aΓ ⊑ a Ô⇒ δ(q, a) ∈ Q′

⎫⎪⎪⎪⎬⎪⎪⎪⎭
. (5.3)

Intuitively, Pre⟪Γ⟫(Q′,MΓ) returns the states q ∈MΓ∣Q such that there
exists an action for q in MΓ that surely leads to a state of Q′ in one step.

Also, let

Stay⟪Γ⟫(Q1,Q2,MΓ) = νQ′. Q2 ∪ (Q1 ∩ Pre⟪Γ⟫(Q′,MΓ)) .

78 Chapter 5. Model checking uniform strategies with fairness

Intuitively, Stay⟪Γ⟫(Q1,Q2,MΓ) ∩MΓ∣Q is the states q ∈MΓ∣Q such that
there exists a strategy compatible with fΓ that forces, from q, to reach
Q2 through Q1, or to stay in Q1 forever.

Finally, let

NFair⟪Γ⟫(MΓ) = FairJΓK(MΓ)
= µQ′. ⋃

fc∈FC
Pre⟪Γ⟫ (Stay⟪Γ⟫(Q′ ∪ fc,∅,MΓ),MΓ) .

Intuitively, NFair⟪Γ⟫(MΓ) is the set of states q ∈MΓ∣Q such that there
exists a strategy compatible with MΓ that forces unfair paths from q.

Thanks to these three functions, we can define the dual algorithms
of the previous filter ones. First, let

filter⟪Γ⟫X(Q′,MΓ) = Q/filterJΓKX(Q′,MΓ)
= Pre⟪Γ⟫(Q′ ∪NFair⟪Γ⟫(MΓ),MΓ).

filter⟪Γ⟫X(Q′,MΓ)∩MΓ∣Q computes the set of states q ∈MΓ∣Q such that
there exists a strategy fΓ compatible with MΓ such that all fair paths
enforced by fΓ from q have their second state in Q′.

Second, let

filter⟪Γ⟫U(Q1,Q2,MΓ) = Q/filterJΓKW(Q2,Q1 ∩Q2,MΓ)

=
µQ′. Q1,2,N∩

(Q2 ∪ ⋃
fc∈FC

Pre⟪Γ⟫(Stay⟪Γ⟫(
Q1,2,N ∩ (Q′ ∪ fc),
Q2 ∩ (Q′ ∪ fc),MΓ

),MΓ)),

where

Q1,2,N = Q1 ∪Q2 ∪NFair⟪Γ⟫(MΓ).

filter⟪Γ⟫U(Q1,Q2,MΓ)∩MΓ∣Q computes the set of states q ∈MΓ∣Q such
that there exists a strategy fΓ compatible with MΓ such that all fair
paths enforced by fΓ from q reach a state of Q2 through states of Q1.

Third, let

filter⟪Γ⟫W(Q1,Q2,MΓ) = Q/filterJΓKU(Q2,Q1 ∩Q2,MΓ)
= Stay⟪Γ⟫(Q1 ∪Q2 ∪NFair⟪Γ⟫(MΓ),Q2,MΓ).

filter⟪Γ⟫W(Q1,Q2,MΓ)∩MΓ∣Q computes the set of states q ∈MΓ∣Q such
that there exists a strategy fΓ compatible with MΓ such that all fair
paths from q enforced by fΓ from q reach Q2 through Q1, or stay in Q1

forever.

5.2. Enumerating all strategies 79

Finally, the fixpoint computations presented in this section can be
used to compute the states for which a given strategy is winning. If
MΓ represents a single strategy—that is, if there exists only one move
for each state in MΓ—then the last three filter algorithms compute
the states for which the strategy is winning. These algorithms will be
used to perform model checking of ATLKirF formulas, and this usage
is described in the following sections. The correctness of the filter⟪Γ⟫
algorithms is proved in Section A.1 of Appendix A.

5.2 Enumerating all strategies

Thanks to the fixpoint-based algorithms presented in the previous section,
it is possible to check whether a given strategy is winning for a given
objective. They can then be used to verify whether a given state satisfies
an ATLKirF strategic formula ⟪Γ⟫ ψ. The naive approach is to simply
enumerate all uniform strategies of the given structure, compute the
states for which each strategy is winning, and return the set of states for
which there exists a winning uniform strategy for all indistinguishable
states. This section presents the Split algorithm to generate all uniform
strategies of a given structure, and describes such a naive model-checking
algorithm for ATLKirF strategic formulas.

To generate all uniform strategies of a given structure, the Split
algorithm presented in Algorithm 5.1 can be used. It takes a subset of
agents Γ ⊆ Ag and a subset of Γ-moves MΓ as arguments and returns the
set of all the largest subsets of non-Γ-conflicting moves of MΓ. We say
that two Γ-moves ⟨q, aΓ⟩ and ⟨q′, a′Γ⟩ are Γ′-conflicting, where Γ′ ⊆ Γ, if

∃ag ∈ Γ′ s.t. q ∼ag q′ and aΓ(ag) ≠ a′Γ(ag).

In other words, ⟨q, aΓ⟩ and ⟨q′, a′Γ⟩ are Γ′-conflicting if the states are
indistinguishable for some agent ag ∈ Γ′ and the proposed actions for
ag are different. We write ag-conflicting instead of {ag}-conflicting.
Furthermore, we say that a set of Γ-moves MΓ is Γ′-conflicting if there
exist two Γ′-conflicting moves in MΓ.

If MΓ is non-Γ-conflicting, then it represents (a part of) a uniform
strategy. Indeed, MΓ proposes joint actions for Γ such that, for any agent
ag ∈ Γ, for two states indistinguishable by ag, MΓ gives the same action
for ag.

Algorithm 5.1 computes the set of largest subsets of non-Γ-conflicting
moves of MΓ by using Algorithm 5.2 to split subsets of moves into subsets
that are not conflicting for a given agent. By recursively splitting all
non-conflicting subsets for each agent, Split is able to compute non-Γ-
conflicting subsets of moves.

80 Chapter 5. Model checking uniform strategies with fairness

Algorithm 5.1: Split(Γ,MΓ)
Data: Γ ⊆ Ag a group of agents, MΓ ⊆ EΓ a set of moves.
Result: The set of largest subsets of non-Γ-conflicting moves of

MΓ.

subsets = {MΓ}
for ag ∈ Γ do

subsets′ = {}
for subset ∈ subsets do

subsets′ = subsets′ ∪ SplitAgent(ag,Γ, subset)
subsets = subsets′

return subsets

To split the set of moves MΓ into non-conflicting subsets for the agent
ag, Algorithm 5.2 first gets all the conflicting moves of MΓ. If there
are no such conflicts, MΓ is its own largest non-ag-conflicting subset.
Otherwise, SplitAgent picks one set of conflicting moves equivalent,
gets all the possible actions actions in this set and, for each of these
actions aag, creates a new non-conflicting subset by computing the cross
product of the moves playing aag in the conflicting set, and the subsets
subsubset for other conflicting sets recursively computed by SplitAgent.
In other words, Split iteratively splits conflicting equivalence classes
and computes the cross product of all the splittings to build all possible
non-ag-conflicting subset of MΓ.

Finally, Algorithm 5.3 uses the Split algorithm and the filter ones
to perform the model checking of ATLKirF strategic formulas. More
precisely, when handling a strategic formula, evalATLKirF iterates over
each uniform strategy fΓ generated by Split(Γ,EΓ), computes the set of
states for which the strategy is winning thanks to the filter algorithms,
and keeps only the ones such that the strategy is winning in all indistin-
guishable states. At the end, all strategies are checked, and all states for
which there exists a winning uniform strategy for all indistinguishable
states are returned. In the rest of the thesis, this approach is called the
naive approach.

Algorithm 5.3 only presents the strategic cases. The model checking
for the propositional cases (true, p, ¬ and ∨), the temporal ones (EX,
EU and EW) and the knowledge ones (K, E, D and C) is performed
in the standard way, as exposed in Section 2.2.3. The correctness of the
evalATLKirF algorithm is proved in Section A.2 of Appendix A.

5.3. Partial strategies 81

Algorithm 5.2: SplitAgent(ag,Γ,MΓ)
Data: ag ∈ Γ an agent of Γ, Γ ⊆ Ag a group of agents, MΓ ⊆ EΓ a

set of Γ-moves.
Result: The set of largest subsets of non-ag-conflicting moves of

MΓ.

conflicting = {⟨q, aΓ⟩ ∈MΓ∣
∃⟨q′, a′Γ⟩ ∈MΓ s.t.
q′ ∼ag q ∧ aΓ(ag) ≠ a′Γ(ag)

}

if conflicting = ∅ then return {MΓ}
else

⟨q, aΓ⟩ = pick one element in conflicting
equivalent = {⟨q′, a′Γ⟩ ∈MΓ ∣ q′ ∼ag q}
actions = {aag ∈ Act ∣ ∃⟨q′, a′Γ⟩ ∈ equivalent s.t. a′Γ(ag) = aag}
ncsubsets = SplitAgent(ag,Γ,MΓ/equivalent)
subsets = {}
for aag ∈ actions do

equivsubset = {⟨q′, a′Γ⟩ ∈ equivalent ∣ a′Γ(ag) = aag}

subsets = subsets ∪ { equivsubset ∪ ncsubset ∣
ncsubset ∈ ncsubsets }

return subsets

5.3 Partial strategies

The previous section described a naive algorithm to perform the model
checking of ATLKirF strategic formulas ⟪Γ⟫ ψ. It generates all possible
uniform strategies for Γ and computes, for each of them, the states for
which the strategy is winning. In many cases, this naive algorithm checks
more strategies than necessary. For instance, let us consider a variant of
the three-cards game. In this variant, the player can cheat and rearrange
the cards before the dealer gives them. If he cheats, he gets the K and
the dealer the Q, and the player just has to keep his card to win the
game. The corresponding iCGSf is given in Figure 5.2. In this structure,
a uniform strategy for the player chooses whether the player cheats or not
in the initial state, and whether he changes his card or not afterwards.
There are thus 25 = 32 uniform strategies:

1. two choices in the initial state: cheating or not;

2. two choices when he has cheated: swapping or not;

3. two choices when he has the A;

82 Chapter 5. Model checking uniform strategies with fairness

Algorithm 5.3: evalATLKirF (S,φ)
Data: S an iCGSf, φ an ATLKirF formula.
Result: The states of S satisfying φ.

case φ ∈ {⟪Γ⟫X φ′,⟪Γ⟫[φ1 U φ2],⟪Γ⟫[φ1 W φ2]}
sat = {}
for fΓ ∈ Split(Γ,EΓ) do

case φ = ⟪Γ⟫X φ′

Q′ = evalATLKirF (S,φ′)
winning = filter⟪Γ⟫X(Q′, fΓ)

case φ = ⟪Γ⟫[φ1 U φ2]
Q1 = evalATLKirF (S,φ1)
Q2 = evalATLKirF (S,φ2)
winning = filter⟪Γ⟫U(Q1,Q2, fΓ)

case φ = ⟪Γ⟫[φ1 W φ2]
Q1 = evalATLKirF (S,φ1)
Q2 = evalATLKirF (S,φ2)
winning = filter⟪Γ⟫W(Q1,Q2, fΓ)

sat = sat ∪ {q ∈ winning ∣ ∀ag ∈ Γ,∀q′ ∼ag q, q′ ∈ winning}
return sat

case φ = ... // Cases for the other operators are standard

4. two choices when he has the K;

5. two choices when he has the Q.

Furthermore, the formula ⟪player⟫[¬player loses U player wins]
is true in the initial state because the player can simply cheat and
automatically win the current game by keeping his card. But if the
player chooses to cheat in the initial state, his choices in the other case
are not relevant anymore for the outcomes of the strategy. Indeed, if his
strategy is to cheat, the executions will never reach a state in which he
has not cheated, and thus the choices he makes in these states do not
impact the outcomes of his strategy. In fact, there are only 10 relevant
uniform strategies:

1. two when he cheats: keeping his card or not;

2. eight when he does not cheat: whether keeping his card when he
has the A or not, when he has the K, and when he has the Q.

5.3. Partial strategies 83

−,−

K,Q

FC

K,Q

fc1

A,Q

fc2

A,K

fc3

Q,K

fc4

Q,A

fc5

K,A

fc6

K,Q A,Q A,K Q,K Q,A K,A

−,−

⟨che
at,
∗⟩

player player

player

Figure 5.2: The graph of the card game with a cheating player. The
⟨cheat,∗⟩ labelled transition means that the player cheats and the dealer
chooses any action. The bold arrows show a partial strategy.

The characteristics of these strategies are that they do not make a
choice in states that are not reachable through the strategy itself, while
being sufficient to decide whether the player has a strategy to win the
game in the initial state. In the sequel, we call these strategies partial
strategies because they do not propose an action for all states of the
structure.

This section describes an algorithm to perform the model checking of
ATLKirF strategic formulas that exploits the idea of partial strategies
and the fact that it is enough to check the existence of a winning partial
uniform strategy to conclude whether there exists a winning (complete)
uniform strategy. This section first formally defines partial strategies,
then shows how to generate them, describes a model-checking algorithm,
and presents some optimizations for increasing its performance in practice.

A partial strategy for agent ag is a partial function fag ∶ Q ↛ Act
such that ∀q ∈ dom(fag), fag(q) ∈ Eag(q). That is, a partial strategy is a
strategy that gives a choice for ag for some states of the model, instead
of for all states. A partial strategy fΓ for a group of agents Γ ⊆ Ag is a
tuple of partial strategies, one for each agent of the group, such that all
individual strategies share the same domain—that is, are defined for the

84 Chapter 5. Model checking uniform strategies with fairness

same subset of states—and

∀q ∈ dom(fΓ),∀a ∈ ActAg, fΓ(q) ⊑ a Ô⇒ δ(q, a) ∈ dom(fΓ).

That is, a partial strategy for Γ gives a choice for any state reachable
through a state it is defined for. A partial strategy fΓ for a group Γ can
thus be represented by a set of Γ-moves since in each state of the system,
either the strategy gives an action for all agents of Γ, or it gives no action
for anyone. The set of Γ-moves corresponding to a partial strategy fΓ is
closed, by definition of these strategies.

Furthermore, let Q′ ⊆ Q be a set of states, we say that a partial
strategy fΓ is adequate for Q′ if Q′ ⊆ dom(fΓ), that is, fΓ defines an
action for all states of Q′, and thus for all states reachable from Q′

through fΓ. A partial strategy fΓ is thus adequate for all states of
dom(fΓ). Also, a partial strategy fΓ is uniform if it gives the same
action for an agent ag ∈ Γ in states indistinguishable by ag, that is, if

∀ag ∈ Γ,∀q, q′ ∈ dom(fΓ), q ∼ag q′ Ô⇒ fΓ(q)(ag) = fΓ(q′)(ag).

Finally, we say that a partial strategy fΓ extends a set of Γ-moves
MΓ if

∀q′ ∈MΓ∣Q,∃⟨q, aΓ⟩ ∈MΓ s.t. , q′ = q and fΓ(q) = aΓ,

that is, for all states q for which MΓ proposes an action, fΓ proposes an
action from the possible actions defined by MΓ in q. The outcomes of a
partial strategy is only defined for the state it is adequate for. Given a
partial strategy fΓ and a state q ∈ dom(fΓ), the outcomes of fΓ from q
is defined as

out(fΓ, q) = {π = q0
a1Ð→ q1

a2Ð→ ... ∣ q0 = q ∧ ∀d ∈ N, fΓ(qd) ⊑ ad+1}.

This set of outcomes is well-defined as, if q ∈ dom(fΓ), fΓ is defined for
all states reachable from q through fΓ itself.

When determining whether a given state q ∈ Q satisfies a strategic
formula ⟪Γ⟫ ψ, it is enough to look for winning uniform partial strategies
instead of complete ones. Indeed, there exists a winning uniform strategy
for ψ in q if there exists a partial one. This property is captured by the
following theorem.

Theorem 5.1. Given an iCGSf S = ⟨Ag,Q,Q0,Act, e, δ,∼, V,FC⟩, a
state q ∈ Q, a set of agents Γ ⊆ Ag, and an ATLKirF path formula ψ,
there exists a uniform strategy fΓ such that

∀ag ∈ Γ,∀q′ ∼ag q,∀π ∈ out(fΓ, q
′), π ⊧ ψ,

5.3. Partial strategies 85

if and only if there exists a partial uniform strategy f ′Γ adequate for [q]EΓ
such that

∀ag ∈ Γ,∀q′ ∼ag q,∀π ∈ out(f ′Γ, q′), π ⊧ ψ.

Proof. Proving the left-to-right part is trivial: a uniform strategy fΓ is a
partial uniform strategy adequate for [q]EΓ as it is adequate for Q.

For the right-to-left part, let us assume the existence of a partial
uniform strategy f ′Γ adequate for [q]EΓ . Let fΓ be a (complete) uniform
strategy such that

∀q ∈ dom(f ′Γ), fΓ(q) = f ′Γ(q).

That is, fΓ makes the same choices as f ′Γ in states for which f ′Γ is defined,
and chooses any enabled action in the other states. The outcomes of fΓ

from q′ ∈ [q]EΓ are the same as the outcomes of f ′Γ from the same states.
Indeed, let assume that q′ ∈ [q]EΓ and out(fΓ, q

′) ≠ out(f ′Γ, q). Thus there

exists a path π = q0
a1Ð→ q1

a2Ð→ ... such that π ∈ out(fΓ, q
′)/out(f ′Γ, q′), or

such that π ∈ out(f ′Γ, q′)/out(fΓ, q
′).

Let us suppose that π ∈ out(fΓ, q
′)/out(f ′Γ, q′). In this case, there

exists a position d ∈ N such that fΓ(qd) ≠ f ′Γ(qd), otherwise π would be
in out(f ′Γ, q′), too. Let d be the first position such that fΓ(qd) ≠ f ′Γ(qd).
If fΓ(qd) ≠ f ′Γ(qd), then qd /∈ dom(f ′Γ); indeed, if qd ∈ dom(f ′Γ), then
f ′Γ(qd) = fΓ(qd), by definition of fΓ. But, as f ′Γ is a partial strategy,
if qd /∈ dom(f ′Γ), then qd−1 /∈ dom(f ′Γ). Thus d is not the first position
such that fΓ(qd) ≠ f ′Γ(qd), and we have a contradiction. So there is
no such d, and π belongs to out(f ′Γ, q′), too. The other case, where
π ∈ out(f ′Γ, q′)/out(fΓ, q

′) is similar, and the proof is done since there
cannot be any path π in the outcomes of f ′Γ but not in the ones of fΓ, or
vice versa.

Checking the existence of partial strategies instead of complete ones
is correct for determining whether some state satisfies a given ATLKirF

strategic formula. We can thus improve the algorithms of the previous
section to take partial strategies into account. Given a set of agents Γ,
and a set of non-Γ-conflicting Γ-moves MΓ, ReachSplit(Γ,MΓ), given
in Algorithm 5.4, returns the set of uniform partial strategies extending
MΓ. All these partial strategies are adequate for MΓ∣Q as they extend
MΓ.

Algorithm 5.4 depends on several functions. First, it depends on
the Split algorithm presented in the previous section. Furthermore, it
depends on the functions Post and Compatible. The first one takes a set
of states Q′ ⊆ Q and a set of Γ-moves MΓ as arguments and returns the

86 Chapter 5. Model checking uniform strategies with fairness

successor states of a state of Q′ through an action given in MΓ. More
formally,

Post(Q′,MΓ) = {q ∈ Q∣ ∃q
′ ∈ Q′,∃⟨q′, a′Γ⟩ ∈MΓ,∃a′ ∈ EAg(q′)

s.t. a′Γ ⊑ a′ ∧ δ(q′, a′) = q } .

Compatible takes a set of states Q′ ⊆ Q and a set of non-Γ-conflicting
Γ-moves MΓ ⊆ EΓ as arguments and returns the moves of EΓ such that
there exists no conflicting move in MΓ. More formally,

Compatible(Q′,MΓ) = {⟨q, aΓ⟩ ∈ EΓ∣
q ∈ Q′∧ /∃ ⟨q′, a′⟩ ∈MΓ, ag ∈ Γ
s.t. q ∼ag q′ ∧ aΓ(ag) ≠ a′Γ(ag)

} .

Based on these functions, Algorithm 5.4 computes the smallest uni-
form partial strategies extending a given set of non-Γ-conflicting Γ-moves.
First it computes the set new of states reachable, in one step, from MΓ

that are not in MΓ yet. If new is empty, this means that all states reach-
able from MΓ are already in MΓ, and thus MΓ is already a uniform partial
strategy. Otherwise, we can extend MΓ with different choices for states of
new. For this, ReachSplit computes the moves of new compatible with
MΓ and splits these moves to get uniform choices. Then, ReachSplit
extends MΓ with each largest non-Γ-conflicting subset of compatible
and recursively generates all uniform partial strategies extending the
extension.

Algorithm 5.4: ReachSplit(Γ,MΓ)
Data: Γ a subset of agents, MΓ ⊆ EΓ a set of non-Γ-conflicting

Γ-moves.
Result: The set of smallest uniform partial strategies extending

MΓ.

1 new = Post(Q,MΓ)/MΓ∣Q
if new = ∅ then return {MΓ}
else

4 compatible = Compatible(new,MΓ)
5 newstrats = Split(Γ, compatible)

strats = {}
7 for M ′

Γ ∈ newstrats do
strats = strats ∪ReachSplit(Γ,MΓ ∪M ′

Γ)
return strats

Thanks to this algorithm, we can generate all partial strategies
adequate for a set of states Q′. First, let

MovesΓ(Q′) = {⟨q′, a′Γ⟩ ∈ EΓ ∣ q′ ∈ Q′}

5.3. Partial strategies 87

be the set of Γ-moves enabled in states of Q′. The function

PartialStrats(Γ,Q′) = ⋃{ ReachSplit(Γ,MΓ) ∣
MΓ ∈ Split(Γ,MovesΓ(Q′)) }

returns the set of all smallest uniform partial strategies for Γ that are
adequate for Q′.

From the functions and algorithms above, we can design a model-
checking algorithm for ATLKirF strategic formulas. Precisely, Algo-
rithm 5.5 accumulates in sat the states of Q′ for which there exists a
winning uniform partial strategy by iterating over all these strategies and
computing the states for which the strategy is winning. First it computes
the set of uniform partial strategies adequate for [Q′]EΓ . Then, for each
such strategy fΓ, it computes the states winning for which fΓ wins the
strategic objective thanks to the corresponding filter algorithm. Finally,
it accumulates in sat the states of Q′ for which all indistinguishable
states are in winning. In the rest of the thesis, this approach is called
the partial approach.

As for evalATLKirF , Algorithm 5.5 only presents the strategic cases.
The model checking for the propositional cases (true, p, ¬ and ∨), the
temporal ones (EX, EU and EW) and the knowledge ones (K, E, D
and C) is performed in the standard way, as exposed in Section 2.2.3.

Algorithm 5.5 is correct, in the sense that it effectively returns the
states of Q′ satisfying φ. Its correctness is proved in Section A.3 of
Appendix A.

5.3.1 Optimizations

[BPQR14] showed through practical experiments that evalPartialATLKirF
can

increase the performance of model checking compared to the naive
approach. Nevertheless, it is still possible to increase the performances
of the former through other practical optimizations.

The first optimization is caching. Algorithm 5.5 needs to compute,
for each uniform partial strategy fΓ, the states that satisfy the sub-
formula(s) of φ. There can be a large number of such strategies, and
these strategies can share a lot of common states. Thus, the algorithm
potentially evaluates many times the same formula in the same states.
When the sub-formula is an atomic proposition, the effort is not high,
but when it is a strategic formula, the effort to evaluate the formula once
is already very high.

Caching can then be used to avoid re-evaluating the same formula in
the same states several times. More precisely, given a set of states Q′

88 Chapter 5. Model checking uniform strategies with fairness

Algorithm 5.5: evalPartialATLKirF
(S,Q′, φ)

Data: S an iCGSf, Q′ ⊆ Q a subset of states, φ an ATLKirF

formula.
Result: The states of Q′ satisfying φ.

case φ ∈ {⟪Γ⟫X φ′,⟪Γ⟫[φ1 U φ2],⟪Γ⟫[φ1 W φ2]}
sat = {}

3 for fΓ ∈ PartialStrats(Γ, [Q′]EΓ) do
4 case φ = ⟪Γ⟫X φ′

Q′′ = evalPartialATLKirF
(S,Post([Q′]EΓ , fΓ), φ′)

6 winning = filter⟪Γ⟫X(Q′′, fΓ)
case φ = ⟪Γ⟫[φ1 U φ2]

Q1 = evalPartialATLKirF
(S, dom(fΓ), φ1)

Q2 = evalPartialATLKirF
(S, dom(fΓ), φ2)

10 winning = filter⟪Γ⟫U(Q1,Q2, fΓ)
case φ = ⟪Γ⟫[φ1 W φ2]

Q1 = evalPartialATLKirF
(S, dom(fΓ), φ1)

Q2 = evalPartialATLKirF
(S, dom(fΓ), φ2)

14 winning = filter⟪Γ⟫W(Q1,Q2, fΓ)

15 sat = sat ∪ {q ∈ winning ∩Q′∣ ∀ag ∈ Γ,∀q′ ∼ag q,
q′ ∈ winning }

return sat

case φ = ... // Cases for the other operators are standard

and a formula φ, it is not necessary to evaluate φ in the states of Q′ for
which we already know whether φ is satisfied or not.

Algorithm 5.6 implements this idea. It assumes the existence of two
caches, cachesat and cacheunsat, that it can use to store and retrieve
data. It also assumes that, for each ⟨S,φ⟩ they cover, cachesat[⟨S,φ⟩]
is a subset of the states of S that satisfy φ, and cacheunsat[⟨S,φ⟩] is a
subset of the states of S that satisfy ¬φ.

First, Algorithm 5.6 gets in sat and unsat the set of states satisfying
(resp. violating) φ stored in the caches. Then, it computes the set
unknown of states of Q′ for which we do not know the truth value of
φ yet. Using the evalPartialATLKirF

algorithm, it computes the subset newsat
of states of unknown satisfying φ, and updates the two caches to add
newsat to the states satisfying φ (in cachesat), and the others to the
states violating φ (in cacheunsat). Finally, it returns the subset of Q′

5.3. Partial strategies 89

by which it knows the formula is satisfied. evalPartialATLKirF
must then call

evalCachedATLKirF
instead of itself when evaluating the sub-formula(s) of φ.

Algorithm 5.6: evalCachedATLKirF
(S,Q′, φ)

Data: S an iCGSf, Q′ ⊆ Q a subset of states, φ an ATLKirF

formula.
Result: The states of Q′ satisfying φ.

sat = cachesat[⟨S,φ⟩]
unsat = cacheunsat[⟨S,φ⟩]
unknown = Q′/(sat ∪ unsat)
newsat = evalPartialATLKirF

(S,unknown,φ)
cachesat[⟨S,φ⟩] = sat ∪ newsat
cacheunsat[⟨S,φ⟩] = unsat ∪ (unknown/newsat)
return (sat ∪ newsat) ∩Q′

A second optimization is called early termination. When evaluating
a strategic formula ⟪Γ⟫ ψ in a set of states Q′, we can stop looking for
winning strategies as soon as we found a winning one for each state of
Q′.

Algorithm 5.7 implements this idea. The only difference between this
algorithm and the evalPartialATLKirF

one is the if statement at Line 4. Before
a strategy fΓ is evaluated, this algorithm checks whether all states of
interest in Q′ already satisfy the formula. If it is the case, the algorithm
can safely stop and return that all states satisfy the formula. Otherwise
it has to check other strategies. Note that if some state in Q′ does not
satisfy φ, then the algorithm has to check all uniform partial strategies
returned by PartialStrats before concluding, and the early termination
is never triggered.

[BPQR14] proposed other optimizations related to early termination.
The technique above is quite simple: we stop searching for strategies when
we found a winning one for each state of interest. Following this idea,
we can reconsider smaller strategies when sat grows. Indeed, whenever
we find a strategy in PartialStrats(Γ, [Q′]EΓ) that is winning for some
states added in sat, we can recompute the smaller strategies reachable
from [Q′]EΓ /sat, ignoring the part of these strategies taking sat states
into account. This can be done by recomputing a new set of strategies
whenever sat grows. We can also perform fewer re-computations of the
strategies by recomputing them when the number of states of [Q′]EΓ that
are not in sat decreases under a certain threshold.

The main drawback of these two approaches is that parts of some

90 Chapter 5. Model checking uniform strategies with fairness

Algorithm 5.7: evalTermATLKirF
(S,Q′, φ)

Data: S an iCGSf, Q′ ⊆ Q a subset of states, φ an ATLKirF

formula.
Result: The states of Q′ satisfying φ.

case φ ∈ {⟪Γ⟫X φ′,⟪Γ⟫[φ1 U φ2],⟪Γ⟫[φ1 W φ2]}
sat = {}
for fΓ ∈ PartialStrats(Γ, [Q′]EΓ) do

4 if sat = Q′ then
return sat

case ψ =X φ′

Q′′ = evalPartialATLKirF
(S,Post([Q′]EΓ , fΓ), φ′)

winning = filter⟪Γ⟫X(Q′′, fΓ)
case ψ = φ1 U φ2

Q1 = evalPartialATLKirF
(S, dom(fΓ), φ1)

Q2 = evalPartialATLKirF
(S, dom(fΓ), φ2)

winning = filter⟪Γ⟫U(Q1,Q2, fΓ)
case ψ = φ1 W φ2

Q1 = evalPartialATLKirF
(S, dom(fΓ), φ1)

Q2 = evalPartialATLKirF
(S, dom(fΓ), φ2)

winning = filter⟪Γ⟫W(Q1,Q2, fΓ)

sat = sat ∪ {q ∈ winning ∩Q′∣ ∀ag ∈ Γ,∀q′ ∼ag q,
q′ ∈ winning }

return sat

case φ = ... // Cases for the other operators are standard

strategies will be checked again, while we know they are not winning
for the remaining states. [BPQR14] presents an implementation of these
three early termination optimizations, and experimentally shows that
they are equivalent in performance. The remainder of this thesis thus
considers only the first solution.

5.4 Pre-filtering

Compared to the naive approach, the partial approach improves the
performance of model checking strategic formulas by enumerating and
checking fewer strategies. We can still decrease the number of strategies
to check by removing, from the model, the states and moves that cannot

5.4. Pre-filtering 91

be part of a winning general strategy.
More precisely, it is costly to compute the states and the uniform

strategies that are winning for a given objective, but it is far less costly
to compute the states and the general strategies that are winning for the
same objective by using the fixpoint computations of Section 5.1. We
can thus use the result of the latter to ignore the states and actions that
cannot be part of a winning general strategy, and reduce the number of
uniform strategies to consider.

For instance, Figure 5.3 shows the variant of the card game with the
cheating player. The moves that do not belong to a general strategy for
the player to win the current game are dashed. Indeed, in A,Q at the
last step, the player loses the game; furthermore, in A,Q at the previous
step, keeping his card does not allow the player to win. On the other
hand, in K,Q at the last step, the player already wins. Furthermore, in
A,Q at the previous step, changing his card allows the player to win the
game.

−,−

K,Q

FC

K,Q

fc1

A,Q

fc2

A,K

fc3

Q,K

fc4

Q,A

fc5

K,A

fc6

K,Q A,Q A,K Q,K Q,A K,A

−,−

⟨che
at,
∗⟩

player player

player

Figure 5.3: The graph of the card game with a cheating player. The
dashed states and transitions do not belong to a strategy of the player
to win the current game, the bold ones are the remaining ones.

To compute the set of Γ-moves belonging to a general strategy for Γ
winning a given objective, we can use a modified version of the filter
algorithms that returns moves instead of states.

This section first describes how to modify the filter algorithms to

92 Chapter 5. Model checking uniform strategies with fairness

compute the winning moves instead of the winning states. Then it
presents an extension of the naive approach taking filtered moves into
account. Finally, it applies the same idea to the partial approach.

5.4.1 Computing the winning moves

Let PreM⟪Γ⟫ be a variant of the Pre⟪Γ⟫ function of Equation 5.3, defined
as

PreM⟪Γ⟫(M
′
Γ,MΓ) = {⟨q, aΓ⟩ ∈MΓ ∣ ∀a ∈ EAg(q),

aΓ ⊑ a Ô⇒ δ(q, a) ∈M ′
Γ∣Q

} .

This variant takes two sets of Γ-moves M ′
Γ and MΓ and returns the

set of Γ-moves of MΓ reaching only states of moves of M ′
Γ. From this

new PreM⟪Γ⟫ function, we can define variants of the Stay and NFair
algorithms as

StayM⟪Γ⟫(M1,M2,MΓ) = νM ′. M2 ∪ (M1 ∩ PreM⟪Γ⟫(M
′,MΓ)) ,

and

NFairM⟪Γ⟫(MΓ) =

µM ′. ⋃
fc∈FC

PreM⟪Γ⟫ (Stay
M
⟪Γ⟫(M

′ ∪ (MovesΓ(fc) ∩MΓ),∅,MΓ),MΓ) ,

From these functions, we can finally define variants of the filter
algorithms returning the moves instead of just the states belonging to a
general strategy winning a given objective. More precisely, let

filterM⟪Γ⟫X(Q′,MΓ) = PreM⟪Γ⟫(MovesΓ(Q′) ∪NFairM⟪Γ⟫(MΓ),MΓ).

Intuitively, filterM⟪Γ⟫X(Q′,MΓ) returns the moves of MΓ belonging to a
general strategy for which all enforced fair paths have their second state
in Q′.

Furthermore, let

filterM⟪Γ⟫U(Q1,Q2,MΓ) =
µM ′. MQ1,2,N ∩ (MQ2∪

⋃
fc∈FC

PreM⟪Γ⟫(Stay
M
⟪Γ⟫(

MQ1,2,N ∩M ′nfc,
MQ2 ∩M ′nfc,MΓ

),MΓ)),

where

MQ1,2,N = (MovesΓ(Q1) ∪MovesΓ(Q2) ∪NFairM⟪Γ⟫(MΓ)) ∩MΓ,

M ′nfc =M ′ ∪ (MovesΓ(fc) ∩MΓ),
MQ2 =MovesΓ(Q2) ∩MΓ.

5.4. Pre-filtering 93

Intuitively, filterM⟪Γ⟫U(Q1,Q2,MΓ) returns the moves of MΓ belonging
to a general strategy for which all enforced fair paths reach a state of Q2

through states of Q1.

Finally, let

filterM⟪Γ⟫W(Q1,Q2,MΓ) = StayM⟪Γ⟫(MQ1,2,N ,MQ2,MΓ),

where

MQ1,2,N = (MovesΓ(Q1) ∪MovesΓ(Q2) ∪NFairM⟪Γ⟫(MΓ)) ∩MΓ,

MQ2 =MovesΓ(Q2) ∩MΓ.

Intuitively, filterM⟪Γ⟫W(Q1,Q2,MΓ) returns the moves of MΓ belonging
to a general strategy for which all enforced fair paths reach a state of Q2

through states of Q1, or stay in Q1 forever.

In the sequel, we sometimes abbreviate the filterM ones with the
notation filterMop(Q1,Q2,MΓ) that corresponds to filterM⟪Γ⟫X(Q1,MΓ),
filterM⟪Γ⟫U(Q1,Q2,MΓ), or filterM⟪Γ⟫W(Q1,Q2,MΓ), depending on the
value of the strategic operator op.

5.4.2 The naive approach with pre-filtering

With the new filterM algorithms, we can modify evalATLKirF to pre-
filter out of the computation the moves that cannot be part of a winning
strategy. Algorithm 5.8 is a variant of evalALTKirF that uses pre-filtering.
The differences are:

1. Lines 3 to 13 compute the set filtered of moves belonging to general
strategies that are winning for the objective.

2. The if statement of Line 14 checks whether there are still some
states that could satisfy the formula. If no moves belong to winning
general strategies, there cannot be a winning uniform strategy.

3. Line 16 enumerates the uniform strategies that use the remaining
moves instead of the whole possible ones of EΓ, reducing the number
of strategies to check.

The proof of correctness of this approach is given in Section A.4.2 of
Appendix A.

94 Chapter 5. Model checking uniform strategies with fairness

Algorithm 5.8: evalPFATLKirF (S,φ)
Data: S an iCGSf, φ an ATLKirF formula.
Result: The set of states of S satisfying φ.

case φ ∈ {⟪Γ⟫X φ′,⟪Γ⟫[φ1 U φ2],⟪Γ⟫[φ1 W φ2]}
sat = {}

3 case φ = ⟪Γ⟫X φ′

Q′ = evalPFATLKirF (S,φ
′)

filtered = filterM⟪Γ⟫X(Q′,EΓ)
case φ = ⟪Γ⟫[φ1 U φ2]

Q1 = evalPFATLKirF (S,φ1)
Q2 = evalPFATLKirF (S,φ2)
filtered = filterM⟪Γ⟫U(Q1,Q2,EΓ)

case φ = ⟪Γ⟫[φ1 W φ2]
Q1 = evalPFATLKirF (S,φ1)
Q2 = evalPFATLKirF (S,φ2)

13 filtered = filterM⟪Γ⟫W(Q1,Q2,EΓ)
14 if filtered = ∅ then

return ∅
16 for MΓ ∈ Split(Γ, filtered) do

case φ = ⟪Γ⟫X φ′

winning = filter⟪Γ⟫X(Q′′,MΓ)
case φ = ⟪Γ⟫[φ1 U φ2]

winning = filter⟪Γ⟫U(Q1,Q2,MΓ)
case φ = ⟪Γ⟫[φ1 W φ2]

winning = filter⟪Γ⟫W(Q1,Q2,MΓ)
sat = sat ∪ {q ∈ winning ∣ ∀ag ∈ Γ,∀q′ ∼ag q, q′ ∈ winning}

return sat

case φ = ... // Cases for the other operators are standard

5.4.3 The partial approach with pre-filtering

We can also modify the evalPartialATLKirF
to take pre-filtered moves into

account. The modifications are more involved in this case because the
generation of uniform partial strategies is buried in the ReachSplit
algorithm and the functions it depends on. The modified ReachSplit
is given in Algorithm 5.9. It uses a modified version of the Compatible

5.4. Pre-filtering 95

function defined as

CompatibleM(M ′
Γ,MΓ) = {⟨q′, a′Γ⟩ ∈M ′

Γ∣
/∃ ⟨q, a⟩ ∈MΓ, ag ∈ Γ s.t.
q ∼ag q′ ∧ aΓ(ag) ≠ a′Γ(ag)

} .

Instead of taking a subset of states Q′ and a set of Γ-moves MΓ, it takes
two subsets of Γ-moves. It returns the moves of M ′

Γ that are compatible
with moves of MΓ. The difference between this version and the original
Compatible function is that only moves of M ′

Γ are returned, instead of
any compatible move of the whole system.

Algorithm 5.9 first computes the new states reachable from some
move of MΓ. Then, it gets the moves of these states in filtered. Finally,
it computes the subset of these new moves compatible with MΓ. If
there are no such compatible moves, this means that there are no new
moves of filtered reachable from MΓ. Otherwise, ReachSplitPF splits
these compatible moves into non-conflicting subsets M ′

Γ and recursively
extends MΓ ∪M ′

Γ with reachable moves of filtered.

Algorithm 5.9: ReachSplitPF (Γ,MΓ, filtered)
Data: Γ a subset of agents, MΓ ⊆ EΓ a set of non-Γ-conflicting

Γ-moves, filtered a set of Γ-moves.
Result: The set of largest non-Γ-conflicting extensions of MΓ with

moves of filtered reachable from MΓ.

new states = Post(Q,MΓ)/MΓ∣Q
new moves = {⟨q, aΓ⟩ ∈ filtered ∣ q ∈ new states}
compatible = CompatibleM(new moves,MΓ)
if compatible = ∅ then return {MΓ}
else

new strats = Split(Γ, compatible)
strats = {}
for M ′

Γ ∈ new strats do

strats = strats ∪ReachSplitPF (Γ,MΓ ∪M ′
Γ, filtered)

return strats

Thanks to this new ReachSplitPF algorithm, we can define the
PartialStratsPF function as

PartialStratsPF (Γ,Q′,MΓ) =
⋃{ReachSplitPF (Γ,M ′

Γ,MΓ) ∣M ′
Γ ∈ Split(Γ,MovesΓ(Q′) ∩MΓ)}.

It takes a group Γ of agents, a set Q′ of states, and a set MΓ of Γ-moves,
and returns the set of non-Γ-conflicting subsets of MΓ reachable from
states of Q′.

96 Chapter 5. Model checking uniform strategies with fairness

Finally, we can modify the evalPartialATLKirF
to take pre-filtered moves

into account. Algorithm 5.10 extends Algorithm 5.5 by computing the
set of moves filtered belonging to a winning general strategy thanks to
the new filterM algorithms (Lines 3 to 13). If filtered covers no states
of Q′, there cannot be a winning uniform strategy and the algorithm is
done (Line 14). Otherwise, it generates all strategies to check thanks to
the new PartialStratsPF function (Line 17), and checks them one by
one (Lines 18 to 23), accumulating in sat the set of states for which the
strategy is winning (Line 24).

The correctness of this evalPartial,PFATLKirF
algorithm is proved in Sec-

tion A.4.3 of Appendix A.

5.5 Backward generation of strategies

The partial approaches are based on ReachSplit algorithms that perform
a forward exploration of the structure under investigation to generate
the partial strategies, and on filter algorithms that perform a backward
exploration of the same structure to evaluate a given strategy. Instead
of performing the former with a forward exploration, we can generate
the strategies with a backward exploration.

As an example, let us consider the simple card game of the Introduc-
tion. Because the player does not see the card on table nor the card of
the dealer before making a decision, he has no uniform strategy to win
the game.

In this example, to check whether there exists a strategy to win
the game with the A, the naive and partial approaches test all possible
strategies, that is, they make a choice for the player in all states of the
structure and check whether one of them is winning in the initial state.

Another approach is to start by looking at the states in which the
player already wins the game with the A, and look at the non-conflicting
moves that can reach these states. By iterating this procedure, we can
explore the parts of the uniform strategies that surely reach the winning
states.

Figure 5.4 shows the graph of the simple card game with the winning
parts of a uniform strategy in bold. This strategy chooses to swap the
card when the player has Q. Note that this set of non-conflicting moves
cannot be extended with non-conflicting moves that would surely reach
the set. Thus no uniform strategy that makes these choices is winning for
the initial state, because the initial state has no move in the set. There
exists another subset of moves that make the player surely reach the
state in which she wins with the A: keeping her card when she has the A.

5.5. Backward generation of strategies 97

Algorithm 5.10: evalPartial,PFATLKirF
(S,Q′, φ)

Data: S an iCGSf, Q′ ⊆ Q a subset of states, φ an ATLKirF

formula.
Result: The set of states of Q′ satisfying φ.

case φ ∈ {⟪Γ⟫X φ′,⟪Γ⟫[φ1 U φ2],⟪Γ⟫[φ1 W φ2]}
sat = {}

3 case φ = ⟪Γ⟫X φ′

Q′′ = evalPartial,PFATLKirF
(S,Post([Q′]EΓ ,EΓ), φ′)

filtered = filterM⟪Γ⟫X(Q′′,EΓ)
case φ = ⟪Γ⟫[φ1 U φ2]

Q1 = evalPartial,PFATLKirF
(S,Q,φ1)

Q2 = evalPartial,PFATLKirF
(S,Q,φ2)

filtered = filterM⟪Γ⟫U(Q1,Q2,EΓ)
case φ = ⟪Γ⟫[φ1 W φ2]

Q1 = evalPartial,PFATLKirF
(S,Q,φ1)

Q2 = evalPartial,PFATLKirF
(S,Q,φ2)

13 filtered = filterM⟪Γ⟫W(Q1,Q2,EΓ)
14 Q′ = Q′ ∩ filtered∣Q

if Q′ = ∅ then
return ∅

17 for fΓ ∈ PartialStratsPF (Γ, [Q′]EΓ , filtered) do
18 case φ = ⟪Γ⟫X φ′

19 winning = filter⟪Γ⟫X(Q′′, fΓ)
case φ = ⟪Γ⟫[φ1 U φ2]

21 winning = filter⟪Γ⟫U(Q1,Q2, fΓ)
case φ = ⟪Γ⟫[φ1 W φ2]

23 winning = filter⟪Γ⟫W(Q1,Q2, fΓ)

24 sat = sat ∪ {q ∈ winning ∩Q′∣ ∀ag ∈ Γ,∀q′ ∼ag q,
q′ ∈ winning }

return sat

case φ = ... // Cases for the other operators are standard

This cannot be winning in the initial state either. There are thus only
two strategies to check before concluding, while the naive and partial
approaches need to check 8 strategies.

98 Chapter 5. Model checking uniform strategies with fairness

−,−

K,Q A,Q A,K Q,K Q,A K,A

K,Q A,Q A,K Q,K Q,A K,A

player player

player

Figure 5.4: The graph of the simple card game. In bold, the winning
part of a strategy that chooses to swap when the player has the Q.

This section presents an approach based on this idea to generate
the winning parts of the uniform strategies from the target states. In
the sequel, it is called the backward approach because it generates the
strategies with a backward exploration of the structure.

This approach has some serious limitations: it cannot handle greatest
fixpoints-based objectives because, in this case, we cannot build the
winning strategies from the ground up. The approach thus cannot handle
⟪Γ⟫W and ⟪Γ⟫G objectives, nor fairness constraints. In the sequel,
the backward approach assumes that the iCGSf has only one fairness
constraint that covers the whole set of states of the structure—and thus
corresponds to an iCGS without fairness constraints—, and only ⟪Γ⟫X
and ⟪Γ⟫U formulas are considered; the other formulas can be evaluated
with any other approach of this thesis.

The approach, presented in Algorithm 5.12, uses the evalBackward⟪Γ⟫U
algorithm of Algorithm 5.11 to compute the states for which there exists
a strategy to win a ⟪Γ⟫U objective.

Let Q1,Q2 ⊆ Q be two subsets of states. We say that a non-Γ-
conflicting subset of Γ-moves MΓ enforces to reach Q2 through Q1 if
Q2 ⊆MΓ∣Q, and for all states q ∈MΓ∣Q, for all paths π ∈ out(MΓ, q), π is
finite and

π(∣π∣) ∈ Q2 ∧ ∀i,0 ≤ i ≤ ∣π∣ − 1, π(i) ∈ Q1/Q2.

In other words, MΓ enforces to reach Q2 through Q1 if all the paths
enforced by MΓ reach a state of Q2 through states of Q1/Q2.

5.5. Backward generation of strategies 99

Given two formulas φ1 and φ2, there exists a strategy fΓ such that
all outcomes from some state q satisfy φ1 U φ2 iff there exists a subset
of moves M ′

Γ containing a move for q that enforces to reach states
satisfying φ2 through states satisfying φ1. evalBackward⟪Γ⟫U uses this property
to compute the states for which there exists a winning strategy for a
⟪Γ⟫U objective.

More precisely, it takes as arguments a subset Q′ ⊆ Q such that
Q′ = [Q′]EΓ , MΓ ⊆ EΓ a non-conflicting set of moves, and two subsets of
states Q1,Q2 ⊆ Q such that MΓ enforces to reach Q2 through Q1. From
these arguments, it computes the set of states q such that there exists a
uniform strategy f ′Γ that shares the same choices as MΓ and such that
all outcomes of f ′Γ from all states indistinguishable from q reach a state
of Q2 through states of Q1.

To compute this set of states, evalBackward⟪Γ⟫U first computes the set of

states for which there surely cannot exist such a strategy (in lose) and for
which there surely exists such a strategy (in win). If lose and win cover
all states of interest Q′, then the job is done. Otherwise, it computes the
moves compatible from states of Q1 that can surely reach MΓ and are
compatible with it, and recursively calls itself with MΓ extended with the
non-conflicting subsets of compatible, accumulating in sat the results.

evalBackwardATLKirF
can handle ⟪Γ⟫X and ⟪Γ⟫U formulas. For ⟪Γ⟫X, it

recursively computes the states of S satisfying the sub-formula φ′ and then
computes the states for which there exists a move for all indistinguishable
states. More precisely, it splits the set of moves that Γ can use to enforce
to reach the states satisfying φ′ into non-conflicting greatest subsets.
There exists a strategy that wins the objective in q iff there exists an
action that enforces to reach states of Q′′′ in one step in all states
indistinguishable from q, and that is exactly what is computed by the
algorithm and accumulated in sat.

For ⟪Γ⟫U, it recursively computes the states of S satisfying the
sub-formulas φ1 and φ2. Then is uses the evalBackward⟪Γ⟫U algorithm with
the greatest non-conflicting subsets of the moves of the states satisfying
φ2 to accumulate in sat the states q such that there exists a strategy to
win the objective in all states indistinguishable from q.

The correctness of the evalBackwardATLKirF
algorithm is given in Section A.5

of Appendix A.

Section 5.3 proposed to use early termination and caching for the
partial approach. Early termination is already embedded in the algo-
rithms of this section. They keep track of the states of interest for which
no decision has been made yet, and stop whenever there are no such
remaining states. Caching is useless in the present case. It is useful for
the partial approach because the sub-formulas are evaluated again and

100 Chapter 5. Model checking uniform strategies with fairness

Algorithm 5.11: evalBackward⟪Γ⟫U (Q′,MΓ,Q1,Q2)

Data: Q′ ⊆ Q a subset of states such that Q′ = [Q′]EΓ , MΓ ⊆ EΓ a
non-Γ-conflicting set of Γ-moves, Q1,Q2 ⊆ Q two subsets of
states such that MΓ enforces to reach Q2 through Q1.

Result: The set of states q ∈ Q′ such that there exists a uniform
strategy f ′Γ ⊇MΓ such that all fair outcomes of f ′Γ from
all states indistinguishable from q reach a state of Q2

through states of Q1.

notlose = filter⟪Γ⟫U(Γ,Q1,MΓ∣Q,EΓ)
lose = {q ∈ Q′ ∣ ∃ag ∈ Γ s.t. ∃q′ ∈ Q s.t. q′ ∼ag q ∧ q′ /∈ notlose}

3 win = {q ∈ Q′ ∣ ∀ag ∈ Γ,∀q′ ∈ Q, q′ ∼ag q Ô⇒ q′ ∈MΓ∣Q}
if Q′/(lose ∪win) = ∅ then return win
else

6 Q′ = Q′/(lose ∪win)
new moves = (PreM⟪Γ⟫(MΓ,EΓ) ∩MovesΓ(Q1))/MΓ

compatible = CompatibleM(new moves,MΓ)
if compatible = ∅ then return win
else

for M ′
Γ ∈ Split(Γ, compatible) do

win = win ∪ evalBackward⟪Γ⟫U (Q′,MΓ ∪M ′
Γ,Q1,Q2)

Q′ = Q′/win
if Q′ = ∅ then return win

return win

again, on different subsets of states. On the other hand, the backward
approach evaluates the sub-formulas only once, and builds the winning
strategies from them. It is thus not necessary to cache the results as
they would never be reused.

Finally, Section 5.4 proposed to apply pre-filtering for the naive and
partial approaches. The idea is to pre-compute the sub-part of the
structure that can be part of a winning strategy. The search for winning
strategies can then be restricted to this sub-part. Pre-filtering is not
useful for the backward approach. Indeed, by construction, the approach
explores the parts of the strategies that are winning, and ignores the parts
that are losing. Pre-filtering would thus bring no additional information.

5.6. Complexity analysis 101

Algorithm 5.12: evalBackwardATLKirF
(S,Q′, φ)

Data: S an iCGSf, Q′ ⊆ Q a subset of states, φ an ATLKirF

formula.
Result: The set of states of Q′ satisfying φ.

case φ ∈ {⟪Γ⟫X φ′,⟪Γ⟫[φ1 U φ2]}
Q′′ = [Q′]EΓ
sat = ∅
case φ = ⟪Γ⟫X φ′

Q′′′ = evalBackwardATLKirF
(S,Post([Q′′]EΓ ,EΓ), φ′)

for MΓ ∈ Split(Γ, P reM⟪Γ⟫(MovesΓ(Q′′′),EΓ)) do

sat = sat ∪ {q ∈ Q′′∣ ∀ag ∈ Γ,∀q′ ∈ Q,
q′ ∼ag q Ô⇒ q′ ∈MΓ∣Q

}

Q′′ = Q′′/sat
if Q′′ = ∅ then return sat ∩Q′

return sat ∩Q′

case φ = ⟪Γ⟫[φ1 U φ2]

Q1 = evalBackwardATLKirF
(S,Q,φ1)

Q2 = evalBackwardATLKirF
(S,Q,φ2)

14 sat = {q ∈ Q′′ ∣ ∀ag ∈ Γ,∀q′ ∈ Q, q′ ∼ag q Ô⇒ q′ ∈ Q2}
if sat = Q′′ then

return sat ∩Q′

Q′′ = Q′′/sat
for MΓ ∈ Split(Γ,MovesΓ(Q2)) do

sat = sat ∪ evalBackward⟪Γ⟫U (Q′′,MΓ,Q1,Q2)
Q′′ = Q′′/sat
if Q′′ = ∅ then return sat ∩Q′

return sat ∩Q′

case φ = ... // Cases for the other operators are standard
// ⟪Γ⟫[φ1 W φ2] is not supported

5.6 Complexity analysis

This section discusses the time complexity of the ATLKirF model-
checking problem. The end of Section 4.3 already showed that the
ATLKirF model checking problem is ∆P

2 -hard as the ATLir model
checking problem can be reduced to ATLKirF . This section shows that
the ATLKirF model-checking problem is in fact ∆P

2 -complete by showing

102 Chapter 5. Model checking uniform strategies with fairness

it is in ∆P
2 . First it shows that the filter algorithms run in polynomial

time in terms of the size of the model and of the formula. Then it
presents a non-deterministic polynomial algorithm for checking a single
strategic formula. Thanks to this algorithm, we can conclude that the
whole model-checking problem is in ∆P

2 as it needs a polynomial number
of calls to the non-deterministic polynomial algorithm.

Let us show that the filter algorithms are in PTIME, that is, they are
polynomial in terms of the size of their arguments. First, the computation
of the Pre⟪Γ⟫ function is polynomial: given any set of states Q′ and
Γ-moves MΓ, it is necessary to check each state and transition of the
system at most once to get all the states belonging to Pre⟪Γ⟫(Q′,MΓ).
Second, Stay⟪Γ⟫(Q1,Q2,MΓ) can be computed in polynomial time: the
function τ(Z) = Q2 ∪ (Q1 ∩ Pre⟪Γ⟫(Q′)) is monotonic, thus the least
fixpoint of τ(Z) is reached in at most ∣Q∣ steps. Each step uses the
Pre⟪Γ⟫ function, thus this function is evaluated at most ∣Q∣ times, hence
the polynomial time complexity of Stay⟪Γ⟫. Third, NFair⟪Γ⟫ can also
be computed in polynomial time: it is the greatest fixpoint of a τ function
evaluating Stay⟪Γ⟫ for each fairness constraint fc ∈ FC. The τ function
is monotonic, thus only a polynomial number of calls to Stay⟪Γ⟫ are
needed, hence a polynomial time complexity. Finally, the three filter⟪Γ⟫
algorithms are compositions of the above three functions, thus they have
a polynomial time complexity.

Let us now show that there is a ∆P
2 algorithm for model checking

ATLKirF strategic formulas, thus the problem is in ∆P
2 . The proposed

algorithm is a non-deterministic variant of the naive algorithm where
the uniform strategies are non-deterministically chosen. More precisely,
the algorithm uses Algorithm 5.13 to compute the states of the model
satisfying a given strategic formula.

Algorithm 5.13 is effectively non-deterministic: the choose operation
at Line 7 is a non-deterministic choice among the enabled actions of ag in
q. Furthermore, supposing that evalNDATLKirF is already computed for the
sub-formulas of φ, this algorithm is polynomial: the body of the while
loop that non-deterministically chooses a uniform strategy is repeated
at most ∣Q∣ times since the size of states is decreased by at least one
at each step. This loop is itself repeated ∣Γ∣ times. Furthermore, the
filter algorithms run in polynomial time. Thus, evalNDATLKirF must be
called for the polynomially many (indirect) sub-formulas of φ, leading to
a polynomial number of calls to an NP algorithm. We can then conclude
that Algorithm 5.13 is in ∆P

2 , and that the model-checking problem for
ATLKirF is ∆P

2 -complete.

5.7. Implementation 103

Algorithm 5.13: evalNDATLKirF (S,φ)
Data: S a given iCGSf, ⟪Γ⟫ ψ an ATLKirF strategic formula.
Result: The set of states of S satisfying ⟪Γ⟫ ψ.

fΓ = ⟨⟩
for ag ∈ Γ do

fag = ∅; states = Q
while states ≠ ∅ do

q = pick one element in states
states = states/[q]ag

7 aag = choose one action in Eag(q)
fag = fag ∪ {⟨q′, aag⟩ ∈ Eag ∣ q′ ∈ [q]ag}

fΓ = fΓ + ⟨fag⟩
case ψ =X φ′

Q′ = evalNDATLKirF (S,φ
′)

winning = filter⟪Γ⟫X(Q′, fΓ)
case ψ = φ1 U φ2

Q1 = evalNDATLKirF (S,φ1); Q2 = evalNDATLKirF (S,φ2)
winning = filter⟪Γ⟫U(Q1,Q2, fΓ)

case ψ = φ1 W φ2

Q1 = evalNDATLKirF (S,φ1); Q2 = evalNDATLKirF (S,φ2)
winning = filter⟪Γ⟫W(Q1,Q2, fΓ)

return {q ∈ Q ∣ ∀ag ∈ Γ,∀q′ ∼ag q, q′ ∈ winning}

5.7 Implementation

The five algorithms presented in this chapter have been implemented in
the BDD-based framework of PyNuSMV [BP13]. This section discusses
this implementation, focusing on parts that have been implemented
slightly differently to fit the BDD framework. Second, this section briefly
presents the modeling language supported by the implementation, and
how a given iCGSf can be modelled with it.

5.7.1 Implementing the algorithms
with binary decision diagrams

In the BDD-based model-checking framework, sets of moves and sets of
states are represented with BDDs. Furthermore, the whole transition
relation of the system, as well as the different knowledge relations for

104 Chapter 5. Model checking uniform strategies with fairness

each agent, are also represented with BDDs (see for instance [CGP99,
Chapter 6]). In this framework, any operation over sets of states or
moves is thus performed as an operation on BDDs.

While most of the algorithm parts can be directly implemented
through BDD operations and simple loops, such as unions, intersections
and fixpoint computations, some operations need more work to be imple-
mented. This section focuses on the Pre⟪Γ⟫ operator and its variations,
on the Split algorithm, and on the Compatible functions. In the sequel,
we sometimes write B[v] for the BDD B with support v, that is, the
BDD with v as the set of significant variables. For instance, MΓ[q, aΓ]
is a BDD MΓ defined on variables representing pairs of state q and joint
action aΓ for Γ.

Given a BDD representing the transition relation of the system, we
can easily define the operator PreM(Q′)[q, a] returning the BDD of the
moves leading to at least one state of the BDD of the set Q′[q], that is,
the function

PreM(Q′) = {⟨q, a⟩ ∈ EAg ∣ ∃q′ ∈ Q′ s.t. δ(q, a) = q′}.

This operator is present in BDD-based model checking tools such
as NuSMV because it is the basis operator for BDD-based CTL model
checking. The implementation of this operator relies on the BDD repre-
sentation of the transition relation and the existential quantification on
BDDs.

Given this PreM operator, a BDD representing a set of states Q′[q],
and a BDD representing a set of Γ-moves MΓ[q, aΓ], we can implement
the Pre⟪Γ⟫ function with BDD operations, as captured by the following
theorem.

Theorem 5.2. Given an iCGSf S = ⟨Ag,Q,Q0,Act, e, δ,∼, V,FC⟩, a
subset of agents Γ ⊆ Ag, a subset of states Q′ ⊆ Q, and a closed set of
Γ-moves MΓ,

Pre⟪Γ⟫(Q′,MΓ) = ∃a((∃aΓ.P re
M(Q′)) ∩ (∃aΓ.P re

M(Q′)) ∩MΓ),

where ∃ is the existential quantification over BDDs, ∩ is the conjunct of
BDDs, and is the negation of BDDs.

Proof. The result of (∃aΓ.P re
M(Q′))[q, aΓ] is the set of moves of Γ

such that there exists a completing action leading to Q′[q]. Thus,

∃aΓ.P re
M(Q′) is the set of Γ-moves such that all completing actions

surely lead to Q′. Then, (∃aΓ.P re
M(Q′)) ∩ (∃aΓ.P re

M(Q′)) is the set

of Γ-moves surely leading to Q′. ∃aΓ.P re
M(Q′) must be restricted to

5.7. Implementation 105

(∃aΓ.P re
M(Q′))[q, aΓ] to be sure to only keep actions that are actu-

ally enabled. Furthermore, (∃aΓ.P re
M(Q′)) ∩ (∃aΓ.P re

M(Q′)) ∩MΓ

is the set of moves of MΓ that surely lead to Q′. Thus, the whole
Pre⟪Γ⟫(Q′,MΓ)[q] BDD is effectively the set of states for which there
exists a move in MΓ surely leading to Q′.

The PreM⟪Γ⟫(M
′
Γ,MΓ)[q, aΓ] function is implemented in a similar way,

as captured by the following theorem.

Theorem 5.3. Given an iCGSf S = ⟨Ag,Q,Q0,Act, e, δ,∼, V,FC⟩, a
subset of agents Γ ⊆ Ag, a subset of Γ-moves M ′

Γ, and a closed set of
Γ-moves MΓ,

PreM⟪Γ⟫(M
′
Γ,MΓ) = (∃aΓ.P re

M(∃a.M ′
Γ)) ∩ (∃aΓ.P re

M(∃a.M ′
Γ)) ∩MΓ.

Proof. The proof is similar to Pre⟪Γ⟫. The differences are that PreM⟪Γ⟫
first gets the states of M ′

Γ with ∃a.M ′
Γ, and does not abstract away the

actions of Γ from the computed subset of moves of MΓ.

The SplitAgent algorithm is, on the other hand, not easily imple-
mented as described in Algorithm 5.2. More precisely, the computation
of the set conflicting of conflicting Γ-moves of MΓ needs some modifica-
tions to be implemented with BDDs. In fact, to directly compute this
set of conflicting moves, we need to quantify over a relation between two
moves, that is, we need to quantify over a BDD ranging over two copies
of state and action variables. Such a BDD can become really huge and
is not necessarily available in a BDD-based model-checking framework
such as NuSMV.

One way to implement the SplitAgent algorithm is to pick one move
in MΓ, get all equivalent states—by using a BDD ranging over two copies
of state variables, instead of two copies of state and action variables—
then all moves of MΓ restricted to these states, and finally check that
there is only one available action for these states in MΓ. If this is not the
case, this particular equivalence class of states is conflicting and needs
to be split. Otherwise, we can ignore this class and pick another move
from MΓ.

This implementation is less efficient than Algorithm 5.2 because it
has to enumerate all equivalence classes (through picking moves) before
concluding that MΓ is non-Γ-conflicting. On the other hand, it does not
need to build a large BDD representing the relation between two moves.

The Compatible functions suffer from the same problem as, to be able
to find compatible moves, we need to compare pairs of moves. The same
solution is applied: by picking states and isolating, for each equivalence
class, the compatible actions, we can compute the interesting moves.

106 Chapter 5. Model checking uniform strategies with fairness

5.7.2 Modeling language

The modeling language supported by the implementation is based on
the NuSMV language. To model an iCGSf, we first provide a standard
NuSMV model. This model describes the states and actions of the system,
the transition function, the labeling function and the fairness constraints.
In addition to this NuSMV model, we provide the set of agents of the
system, defined by their name, the set of state variables they observe and
the set of input variables representing their actions. These agents thus
define the actions that are enabled for them in each state—through the
transition function of the NuSMV model—and the equivalence classes
of indistinguishable states. Additional conditions must be met by the
NuSMV model to correctly represent an iCGSf:

• the sets of actions of agents must be disjoint, that is, they control
different actions of the model;

• for each agent and each state of the system, the enabled actions
are not constrained by the actions of another agent;

• for each agent and each equivalence class—defined by the state
variables he observes—the enabled actions are the same in all the
states of the equivalence class.

If these additional conditions are met by the NuSMV model, it correctly
represents an iCGSf.

The model of the repeated card game is given in Figures 5.6, 5.5 and
5.7. Figure 5.5 defines the main module. It is composed of

• a step variable to keep track of the steps of the game;

• the cards of the player (pcard) and the dealer (dcard);

• the dealer’s and the player’s protocols, implemented by dedicated
modules;

• a DEFINE clause for winning states, that is, final states (step = 2)
in which the player’s card wins over the dealer’s.

The rest of the module defines the initial state with the INIT clause, how
the value of step is incremented, and how the cards of both agents are
computed:

• the card of the player is the one chosen by the dealer at the first
step, and is the third one at second step if the player swaps it;

5.7. Implementation 107

MODULE main

VAR step : 0..2;

pcard : {none, Ac, K, Q};

dcard : {none, Ac, K, Q};

dealer : Dealer(step);

player : Player(step);

DEFINE

win := step = 2 & ((pcard = Ac & dcard = K) |

(pcard = K & dcard = Q) |

(pcard = Q & dcard = Ac));

INIT step = 0 & pcard = none & dcard = none

TRANS next(step) = (step + 1) mod 3

TRANS step = 0 -> next(pcard) = dealer.to_player

TRANS step = 1 -> case player.action = keep :

next(pcard) = pcard;

TRUE :

next(pcard) != pcard &

next(pcard) != dcard &

next(pcard) != none;

esac

TRANS step = 2 -> next(pcard) = none

TRANS step = 0 -> next(dcard) = dealer.to_dealer

TRANS step = 1 -> next(dcard) = dcard

TRANS step = 2 -> next(dcard) = none

Figure 5.5: The NuSMV model of the iCGSf of the repeated card game:
the main module.

• the card of the dealer is the one he chose at the first step, and stays
the same until the end of the game.

The Player and Dealer modules are presented in Figure 5.6. These
modules simply define the protocols of the agents, that is, what they can
do based on what they observe:

• the player can keep or swap his card when the game is at the
second step, otherwise he can do nothing (none);

108 Chapter 5. Model checking uniform strategies with fairness

• the dealer gives a card to the player (to player) and to himself
(to dealer) when the game starts, and he can do nothing otherwise.

Finally, the six fairness constraints of Figure 5.7 tell that the dealer
must give all pairs of cards infinitely often.

MODULE Player(step)

IVAR action : {none, keep, swap};

TRANS action in (step = 1 ? {keep, swap} : {none})

MODULE Dealer(step)

IVAR to_player : {none, Ac, K, Q};

to_dealer : {none, Ac, K, Q};

TRANS step = 0 -> (to_player != to_dealer &

to_player != none &

to_dealer != none)

TRANS step != 0 -> (to_player = none &

to_dealer = none)

Figure 5.6: The NuSMV model of the iCGSf of the repeated card game:
the definition of the agents’ modules.

FAIRNESS step = 1 & pcard = Ac & dcard = K

FAIRNESS step = 1 & pcard = Ac & dcard = Q

FAIRNESS step = 1 & pcard = K & dcard = Ac

FAIRNESS step = 1 & pcard = K & dcard = Q

FAIRNESS step = 1 & pcard = Q & dcard = Ac

FAIRNESS step = 1 & pcard = Q & dcard = K

Figure 5.7: The NuSMV model of the iCGSf of the repeated card game:
the fairness constraints.

This NuSMV model is not sufficient to define a complete iCGSf. It
only defines the temporal aspects of the system, but misses the definition
of the agents, what they can do and what they observe. In the case of
the card game, the agents and their actions are already defined in two
separated modules. More precisely,

• the player is defined as an agent named player, who controls the
input variable player.action, and who observes the value of the
step and pcard variables;

5.7. Implementation 109

• the dealer is defined as an agent named dealer, who controls the
input variables to player and to dealer, and who observes the
step, pcard, and dcard variables, too.

It is easy to check that this model and these agents satisfy the additional
conditions above, and correctly define an iCGSf.

Chapter 6

Existing symbolic approaches

Other solutions have been proposed for the ATLir model-checking prob-
lem. Some of them are well-suited for a BDD-based framework. This
chapter adapts the ideas presented by Pilecki et al. [PBJ14] and Huang
and van der Meyden [HvdM14b] to fit ATLKirF .

The approach of Pilecki et al. is limited to one initial state and to
one strategic operator, and does not support fairness constraints. This
chapter adapts and improves their idea to remove these limitations and
to go a bit further.

On the other hand, the logic supported by the approach of Huang
and van der Meyden already subsumes ATLKirF . So this chapter simply
restricts their algorithm to fit this logic. Also, none of these approaches
consider the idea of pre-filtering moves, so this chapter defines and
presents such variants.

6.1 Interleaving strategy generation
and verification

This approach is based on the work presented by Pilecki et al. [PBJ14].
The main idea of Pilecki et al. is that we do not need to build a complete
partial strategy before deciding whether it can be winning for some
states of interest. Indeed, if we can check that all extensions of an
incomplete partial strategy are winning, we do not need to build all these
extensions. Fortunately, it is easy to check whether all extensions of such
a strategy are winning or not. In the sequel, this approach is called the
early approach, because it tries to decide whether there exists a winning
extension of an incomplete strategy as soon as possible.

To give some intuition, let us go back to the card game with a cheating

112 Chapter 6. Existing symbolic approaches

player, but consider now that A wins over K and Q, K wins over Q,
and Q always loses. In this case, if the dealer has the Q, then he cannot
win, whatever the player does. Figure 6.1 illustrates the idea: if we
consider the strategy where the only specified move says that the player
cheats (in bold), any completion of this strategy will go through the
two bottom-left-most states, in which the player wins (the moves of all
possible extensions are in dashed lines). Thus, it is not necessary to
investigate any extension of this particular strategy since we know that
it will be surely winning.

−,−

K,Q

FC

K,Q

fc1

A,Q

fc2

A,K

fc3

Q,K

fc4

Q,A

fc5

K,A

fc6

K,Q A,Q A,K Q,K Q,A K,A

−,−

⟨ch
ea
t,∗

⟩

player player

player

Figure 6.1: The graph of the repeated card game with a cheating player.
The bold arrow shows an incomplete partial strategy, the dashed one its
extensions.

This section presents the approach and how to extend it with pre-
filtering. Section 6.1.1 presents algorithms to check that any extension
of a given strategy is winning. Section 6.1.2 describes the actual model-
checking algorithm that alternates between building and checking strate-
gies. Section 6.1.3 extends it to take pre-filtered moves into account.
Section 6.1.4 discusses some optimizations, and Section 6.1.5 describes
the implementation with PyNuSMV.

6.1. Interleaving strategy generation and verification 113

6.1.1 Checking all extensions of partial strategies

Given a closed set of Γ-moves MΓ, it is possible to compute the set of
states from which all outcomes through MΓ satisfy a given objective.
These new algorithms are similar to the filter ones of Section 5.1.

First, let

PreE(Q′,MΓ) = {q′ ∈ Q∣ ∃⟨q, aΓ⟩ ∈MΓ s.t. ∃a ∈ EAg(q) s.t.
q = q′ ∧ aΓ ⊑ a ∧ δ(q, a) ∈ Q′ } .

Intuitively, given a subset of states Q′ and a set of Γ-moves MΓ,
PreE(Q′,MΓ) returns the set of states q such that there exists a move in
MΓ for q that can reach a state of Q′ in one step. The difference between
PreE(Q′,MΓ) and Pre⟪Γ⟫(Q′,MΓ) is that a state q is in the former if
it has one successor in Q′ through some move of MΓ, while q is in the
latter if all its successors through some move of MΓ are in Q′.

From the PreE function, we can define the function

ReachE(Q1,Q2,MΓ) = µQ′. Q2 ∪ (Q1 ∩ PreE(Q′,MΓ)) .

Given two subsets of states Q1 and Q2, and a closed subset of Γ-moves
MΓ, ReachE(Q1,Q2,MΓ) ∩MΓ∣Q returns the states of MΓ∣Q from which
there is, in the outcomes of MΓ, a path that reaches a state of Q2 through
states of Q1.

From the two functions above, we can define the function

FairE(MΓ) = νQ′. ⋂
fc∈FC

PreE (ReachE(Q,Q′ ∩ fc,MΓ),MΓ) .

Given a closed set of Γ-moves MΓ, FairE(MΓ) ∩MΓ∣Q returns the set of
states of MΓ∣Q from which there is a fair path in the outcomes of MΓ.

Thanks to these functions, we can define three new filterE algorithms.
The first one is defined as

filterEX(Q′,MΓ) = PreE(Q′ ∩ FairE(MΓ),MΓ).

Given a group of agents Γ, a subset of states Q′ and a closed set of
Γ-moves MΓ, filterEX(Q′,MΓ) ∩MΓ∣Q returns the states q ∈MΓ∣Q such
that there is, in the outcomes of MΓ, a fair path starting in q with its
second state in Q′.

The second filterE algorithm is defined as

filterEU(Q1,Q2,MΓ) = ReachE(Q1,Q2,F ,MΓ),

114 Chapter 6. Existing symbolic approaches

where

Q2,F = Q2 ∩ FairE(MΓ).

Given a group of agents Γ, two subsets of states Q1 and Q2, and a closed
set of Γ-moves MΓ, filterEU(Q1,Q2,MΓ) ∩MΓ∣Q returns the subset of
states q ∈MΓ∣Q such that there is, in the outcomes of MΓ, a fair path
starting in q and reaching a state of Q2 through states of Q1.

Finally, the third filterE algorithm is defined as

filterEW(Q1,Q2,MΓ) =
νQ′. Q2,F ∪ (Q1∩
⋂

fc∈FC
PreE(ReachE (Q1,Q2,F ∪ (Q′ ∩ fc),MΓ) ,MΓ)),

where

Q2,F = Q2 ∩ FairE(MΓ).

Given a group of agents Γ, two subsets of states Q1 and Q2, and a closed
set of Γ-moves MΓ, filterEW(Q1,Q2,MΓ) ∩MΓ∣Q returns the subset of
states q ∈MΓ∣Q such that there is, in the outcomes of MΓ, a fair path
starting in q, that reaches a state of Q2 through states of Q1, or that
stays in states of Q1 forever. These algorithms directly derive from the
Fair CTL ones presented in Section 2.2.3, as PreE corresponds to Pre.
They are only slightly adapted to take MΓ into account instead of the
whole system.

Thanks to these filterE algorithms, we can compute the states for
which all paths in the outcomes of MΓ satisfy a given objective. Indeed,
let

PreA(Q′,MΓ) = PreE(Q′,MΓ)

= {q′ ∈ Q∣ ∀⟨q, aΓ⟩ ∈MΓ,∀a ∈ EAg(q),
q = q′ ∧ aΓ ⊑ a Ô⇒ δ(q, a) ∈ Q′ } .

(6.1)

Intuitively, PreA(Q′,MΓ) ∩MΓ∣Q are the states of MΓ∣Q such that all
successors through a move of MΓ are in Q′.

Also, let

StayA(Q1,Q2,MΓ) = νQ′. Q2 ∪ (Q1 ∩ PreA(Q′,MΓ)) .

StayA(Q1,Q2,MΓ) ∩MΓ∣Q are the states q of MΓ∣Q such that all paths
through MΓ from q stay in Q1 or reach Q2 through Q1.

6.1. Interleaving strategy generation and verification 115

Finally, let

NFairA(MΓ) = FairE(MΓ)
= µQ′. ⋃

fc∈FC
PreA (StayA(Q′ ∪ fc,∅,MΓ),MΓ) .

NFairA(MΓ) ∩MΓ∣Q is the set of states q of MΓ∣Q such that all paths
through MΓ from q are unfair.

With these three functions, we can define

filterAX(Q′,MΓ) = Q/filterEX(Q′,MΓ)
= PreA(Q′ ∪NFairA(MΓ),MΓ).

filterAX(Q′,MΓ) ∩MΓ∣Q computes the set of states q ∈MΓ∣Q such that
all fair paths in the outcomes of MΓ from q have their second state in Q′.

Second, let

filterAU(Q1,Q2,MΓ) = Q/filterEW(Q2,Q1 ∩Q2,MΓ)
= µQ′. Q1,2,N ∩ (Q2∪
⋃

fc∈FC
PreA(StayA (Q1,2,N ∩ (Q′ ∪ fc),Q2 ∩ (Q′ ∪ fc),MΓ) ,MΓ)),

where

Q1,2,N = Q1 ∪Q2 ∪NFairA(MΓ).

filterAU(Q1,Q2,MΓ) ∩MΓ∣Q computes the set of states q ∈MΓ∣Q such
that all fair paths in the outcomes of MΓ from q reach a state of Q2

through states of Q1.

Third, let

filterAW(Q1,Q2,MΓ) = Q/filterEU(Q2,Q1 ∩Q2,MΓ)
= StayA(Q1 ∪Q2 ∪NFairA(MΓ),Q2,MΓ).

filterAW(Q1,Q2,MΓ) ∩MΓ∣Q is the set of states q ∈MΓ∣Q such that all
fair paths from q in the outcomes of MΓ reach Q2 through Q1, or stay
in Q1 forever.

These three functions can be used to check whether all extensions of
one partial strategy are winning. Given a closed set of moves MΓ, these
three functions return the states for which all outcomes in MΓ satisfy
the corresponding objective.

116 Chapter 6. Existing symbolic approaches

6.1.2 The model-checking algorithm

To check that any extension of an incomplete partial strategy is winning
for a particular objective, we need to complete this strategy up to a closed
set of moves. This can be done with Algorithm 6.1. It computes the set
of moves reachable from MΓ that are compatible with it by accumulating
in M ′

Γ the moves reachable in one step from M ′
Γ, and compatible with

MΓ.

Algorithm 6.1: Complete(MΓ)
Data: MΓ a set of non-Γ-conflicting Γ-moves.
Result: The set of Γ-moves reachable from some move of MΓ and

compatible with MΓ.

M ′
Γ =MΓ

new states = Post(Q,M ′
Γ)/M ′

Γ∣Q
new moves = Compatible(new states,MΓ)
while new moves ≠ ∅ do

M ′
Γ =M ′

Γ ∪ new moves
new states = Post(Q,M ′

Γ)/M ′
Γ∣Q

new moves = Compatible(new states,MΓ)
return M ′

Γ

By completing a partial strategy fΓ and by using the three new
filterA functions, we can compute the set of states for which all the
extensions of fΓ are winning for the corresponding objective. Indeed,
any partial strategy defined from the completed moves would have as
outcomes a subset of the paths enforced by these completed moves. Thus,
if all paths of the completed moves satisfy the objective, all outcomes of
a particular partial strategy extending fΓ satisfy the objective and the
strategy is winning.

The evalaltATLKirF algorithm (divided into three parts, Algorithms 6.2,
6.3 and 6.4) uses filterA, filter, and Complete to compute the set of
states for which an incomplete partial strategy can be extended into
a winning partial strategy. More precisely, given a set of states Q′, a
strategic formula ⟪Γ⟫ ψ and a (not necessarily complete) partial strategy
fΓ, evalaltirF (Q′,⟪Γ⟫ ψ, fΓ) returns the set of states q ∈ Q′ such that
there exists an extension of fΓ that is winning for ⟪Γ⟫ ψ in all states
indistinguishable from q.

First, Algorithm 6.2 completes fΓ (Line 1). This results in a set of
moves cfΓ that does not represent a particular uniform partial strategy,
but that rather defines a part of the checked structure. Second, it

6.1. Interleaving strategy generation and verification 117

Algorithm 6.2: evalaltATLKirF (Q
′,⟪Γ⟫ ψ, fΓ) (part 1)

Data: Q′ ⊆ Q a subset of states such that [Q′]EΓ = Q′, ⟪Γ⟫ ψ an
ATLKirF formula, fΓ an incomplete partial strategy such
that Q′ ⊆ fΓ∣Q.

Result: The set of states q ∈ Q′ such that there exists an
extension of fΓ winning for ⟪Γ⟫ ψ in all states
indistinguishable from q.

1 cfΓ = Complete(fΓ)
2 case ψ =X φ′

Q′′ = evalEarlyATLKirF
(S,Post([Q′]EΓ , cfΓ), φ′)

notlose = Q′ ∩ filter⟪Γ⟫X(Γ,Q′′, cfΓ)
case ψ = φ1 U φ2

Q1 = evalEarlyATLKirF
(S, cfΓ∣Q, φ1)

Q2 = evalEarlyATLKirF
(S, cfΓ∣Q, φ2)

notlose = Q′ ∩ filter⟪Γ⟫U(Γ,Q1,Q2, cfΓ)
case ψ = φ1 W φ2

Q1 = evalEarlyATLKirF
(S, cfΓ∣Q, φ1)

Q2 = evalEarlyATLKirF
(S, cfΓ∣Q, φ2)

12 notlose = Q′ ∩ filter⟪Γ⟫W(Γ,Q1,Q2, cfΓ)
13 lose = Q′/{q ∈ notlose ∣ ∀ag ∈ Γ,∀q′ ∈ Q, q′ ∼ag q Ô⇒ q′ ∈ notlose}

Algorithm 6.3: evalaltATLKirF (Q
′,⟪Γ⟫ ψ, fΓ) (part 2)

12 case ψ =X φ′

win = Q′ ∩ filterAX(Q′′, cfΓ)
case ψ = φ1 U φ2

win = Q′ ∩ filterAU(Q1,Q2, cfΓ)
case ψ = φ1 W φ2

17 win = Q′ ∩ filterAW(Q1,Q2, cfΓ)
18 win = {q ∈ win ∣ ∀ag ∈ Γ,∀q′ ∈ Q, q′ ∼ag q Ô⇒ q′ ∈ win}

computes the set of states notlose for which there exists a general strategy
in the completion of fΓ to win the objective (Lines 2 to 12). This is
done by using the filter algorithms. So, the set of states lose is the set
of states for which there is no general strategy in the completion of fΓ

to win the objective from some equivalent state (Line 13); this implies
that, in these states, there exists no winning extension of fΓ for all their

118 Chapter 6. Existing symbolic approaches

Algorithm 6.4: evalaltATLKirF (Q
′,⟪Γ⟫ ψ, fΓ) (part 3)

22 if Q′/(lose ∪win) = ∅ then return win
23 else

new = Post(Q,fΓ)/fΓ∣Q
compatible = Compatible(new, fΓ)
newstrats = Split(Γ, compatible)
for f ′Γ ∈ newstrats do

win = win ∪ evalaltirF (Q′,⟪Γ⟫ ψ, fΓ ∪ f ′Γ)
29 return win

indistinguishable states.

Then, Algorithm 6.3 computes the set of states for which all the
outcomes in the completion of fΓ satisfy the objective (Lines 12 to
17), that is, the states for which any extension of fΓ would be winning.
After Line 18, win is thus the set of states for which all outcomes
from all indistinguishable states satisfy the objective. So the algorithm
computed at Line 18 the set of states that are surely losing (in lose),
or surely winning (in win), considering all compatible extensions of fΓ.
If these two sets cover the whole set Q′, the search is done and the
algorithm can return the set of winning states (Line 22 of Algorithm 6.4).
Otherwise, there are some states in Q′ for which cfΓ is not winning nor
losing. Thus fΓ cannot be closed (and cannot be a complete partial
strategy adequate for Q′). As fΓ is not closed, new states can be reached,
leading to extensions of fΓ that the algorithm can recursively check with
evalaltATLKirF (Lines 23 to 29).

Given a set of states Q′ and a formula φ, the evalaltATLKirF algorithm
can be used to compute the set of states of Q′ satisfying φ. We can start
with small incomplete partial strategies and check whether their exten-
sions can be winning with evalaltATLKirF . More precisely, Algorithm 6.5

uses evalaltATLKirF to compute the set of states of Q′ satisfying φ. It
splits the moves enabled in the states indistinguishable from Q′ and calls
evalaltATLKirF on these partial strategies (Lines 4 and 5). At the end, sat
contains the set of states of Q′ satisfying φ.

Algorithm 6.5 only presents the strategic cases. The model checking
for the propositional cases (true, p, ¬ and ∨), the temporal ones (EX,
EU and EW) and the knowledge ones (K, E, D and C) is performed
in the standard way, as exposed in Section 2.2.3. The correctness of this
approach is proved in Section A.6.1 of Appendix A.

6.1. Interleaving strategy generation and verification 119

Algorithm 6.5: evalEarlyATLKirF
(S,Q′, φ)

Data: S an iCGSf, Q′ ⊆ Q a subset of states, φ an ATLKirF

formula.
Result: The states of Q′ satisfying φ.

case φ ∈ {⟪Γ⟫X φ′,⟪Γ⟫[φ1 U φ2],⟪Γ⟫[φ1 W φ2]}
Q′′ = [Q′]EΓ
sat = {}

4 for fΓ ∈ Split(Γ,MovesΓ(Q′′)) do

5 win = evalaltATLKirF (Q
′′,⟪Γ⟫ ψ, fΓ)

sat = sat ∪ (win ∩Q′)
return sat

case φ = ... // Cases for the other operators are standard

6.1.3 Pre-filtering

As for the naive and partial approaches, we can pre-filter the original
structure to only consider the moves that can be part of a winning
strategy. The evalalt,PFATLKirF

algorithm—presented in Algorithms 6.6, 6.7
and 6.8—takes an additional filtered argument to limit its search to
filtered parts of partial strategies.

More precisely, the first two parts correspond to the first two parts
of evalaltATLKirF algorithm: first they complete the given strategy, then
compute the sets lose and win corresponding to states for which the
completion is either surely losing, or surely winning, respectively (in
Algorithms 6.6 and 6.7, respectively).

The third part of evalalt,PFATLKirF
differs from the evalaltATLKirF one:

instead of computing the moves reached in one step from fΓ, it limits them
to the ones of its filtered argument. This is similar to the ReachSplitPF

algorithm, and allows to consider filtered partial strategies only. The rest
of the algorithm behaves as evalaltATLKirF : it recursively calls itself with fΓ

extended with each newly reached subset of non-conflicting moves, and
accumulates in win the states for which there exists a winning extension.

The evalEarlyATLKirF
is also extended to take pre-filtered moves into

account. Algorithm 6.9 presents the extended version, evalEarly,PFATLKirF
. It

first computes the set of pre-filtered moves filtered (Lines 4 to 14),
then it checks if there are still some states for which there could be
some winning strategies. If there are some, then it explores, with the
evalalt,PFATLKirF

, the partial strategies in the remaining states, limited to
the pre-filtered moves.

120 Chapter 6. Existing symbolic approaches

Algorithm 6.6: evalalt,PFATLKirF
(Q′,⟪Γ⟫ ψ, fΓ, filtered) (part 1)

Data: Q′ ⊆ Q a subset of states such that [Q′]EΓ = Q′, ⟪Γ⟫ ψ an
ATLKirF formula with top-level operator op, filtered a
set of Γ-moves such that filtered = filterMop(Q1,Q2,EΓ),
with Qi the states satisfying the ith sub-formula of ψ, and
fΓ an incomplete partial strategy such that Q′ ⊆ fΓ∣Q and
fΓ ⊆ filtered.

Result: The set of states q ∈ Q′ for which there exists an
extension of fΓ winning for ⟪Γ⟫ ψ in all states
indistinguishable from q.

cfΓ = Complete(fΓ)
case ψ =X φ′

Q′′ = evalEarly,PFATLKirF
(S,Post([Q′]EΓ , cfΓ), φ′)

notlose = Q′ ∩ filter⟪Γ⟫X(Γ,Q′′, cfΓ)
case ψ = φ1 U φ2

Q1 = evalEarly,PFATLKirF
(S, cfΓ∣Q, φ1)

Q2 = evalEarly,PFATLKirF
(S, cfΓ∣Q, φ2)

notlose = Q′ ∩ filter⟪Γ⟫U(Γ,Q1,Q2, cfΓ)
case ψ = φ1 W φ2

Q1 = evalEarly,PFATLKirF
(S, cfΓ∣Q, φ1)

Q2 = evalEarly,PFATLKirF
(S, cfΓ∣Q, φ2)

notlose = Q′ ∩ filter⟪Γ⟫W(Γ,Q1,Q2, cfΓ)
lose = Q′/{q ∈ notlose ∣ ∀ag ∈ Γ,∀q′ ∈ Q, q′ ∼ag q Ô⇒ q′ ∈ notlose}

Algorithm 6.7: evalalt,PFATLKirF
(Q′,⟪Γ⟫ ψ, fΓ, filtered) (part 2)

case ψ =X φ′

win = Q′ ∩ filterAX(Q′′, cfΓ)
case ψ = φ1 U φ2

win = Q′ ∩ filterAU(Q1,Q2, cfΓ)
case ψ = φ1 W φ2

win = Q′ ∩ filterAW(Q1,Q2, cfΓ)
18 win = {q ∈ win ∣ ∀ag ∈ Γ,∀q′ ∈ Q, q′ ∼ag q Ô⇒ q′ ∈ win}

Algorithm 6.9 only presents the strategic cases. The model checking
for the propositional cases (true, p, ¬ and ∨), the temporal ones (EX,
EU and EW) and the knowledge ones (K, E, D and C) is performed

6.1. Interleaving strategy generation and verification 121

Algorithm 6.8: evalalt,PFATLKirF
(Q′,⟪Γ⟫ ψ, fΓ, filtered) (part 3)

if Q′/(lose ∪win) = ∅ then return win
else

new states = Post(Q,fΓ)/fΓ∣Q
new moves = {⟨q, aΓ⟩ ∈ filtered ∣ q ∈ new states}
compatible = CompatibleM(new moves, fΓ)
if compatible = ∅ then return Q′/lose
else

newstrats = Split(Γ, compatible)
for f ′Γ ∈ newstrats do

win = win ∪ evalalt,PFirF (Q′,⟪Γ⟫ ψ, fΓ ∪ f ′Γ, filtered)
return win

in the standard way, as exposed in Section 2.2.3. The correctness of this
approach is proved in Section A.6.2 of Appendix A.

6.1.4 Optimizations

Similarly to the partial approaches, the early approaches can be extended
to integrate early termination and caching. Early termination can be
embedded in the evalaltATLKirF and evalEarlyATLKirF

algorithms. There are
several places where we can check whether we already found a winning
strategy for all states of interest. The modifications are given in Algo-
rithms 6.10 and 6.11: Algorithm 6.10 shows the third part of evalaltATLKirF
that reduces the set of states of interest to the states for which no decision
can be made (Line 27), still reduces this set of states of interest when
extended strategies are found to be winning (Line 30), and stops as soon
as all states are covered (Line 31).

evalEarlyATLKirF
can also be extended to use early termination. Algo-

rithm 6.11 keeps track of states for which a winning strategy has been
found (Line 7), and stops as soon as all states are covered (Line 8).

evalEarlyATLKirF
can also be extended to cache already known results.

This is achieved with the same extension as for the evalPartialATLKirF
algo-

rithm, as shown in Algorithm 6.12. The evalaltATLKirF algorithm must

call the evalEarly,CachedATLKirF
algorithm on sub-formulas, instead of vanilla

evalEarlyATLKirF
.

122 Chapter 6. Existing symbolic approaches

Algorithm 6.9: evalEarly,PFATLKirF
(S,Q′, φ)

Data: S an iCGSf, Q′ ⊆ Q a subset of states, φ an ATLKirF

formula.
Result: The states of Q′ satisfying φ.

case φ ∈ {⟪Γ⟫X φ′,⟪Γ⟫[φ1 U φ2],⟪Γ⟫[φ1 W φ2]}
Q′′ = [Q′]EΓ
sat = {}

4 case φ = ⟪Γ⟫X φ′

Q′′′ = evalEarly,PFATLKirF
(S,Post(Q′′,EΓ), φ′)

filtered = filterM⟪Γ⟫X(Γ,Q′′′,EΓ)
case φ = ⟪Γ⟫[φ1 U φ2]

Q1 = evalEarly,PFATLKirF
(S,Q,φ1)

Q2 = evalEarly,PFATLKirF
(S,Q,φ2)

filtered = filterM⟪Γ⟫U(Γ,Q1,Q2,EΓ)
case φ = ⟪Γ⟫[φ1 W φ2]

Q1 = evalEarly,PFATLKirF
(S,Q,φ1)

Q2 = evalEarly,PFATLKirF
(S,Q,φ2)

14 filtered = filterM⟪Γ⟫W(Γ,Q1,Q2,EΓ)
15 Q′′ = Q′′ ∩ filtered∣Q

if Q′′ = ∅ then
17 return ∅

for fΓ ∈ Split(Γ,MovesΓ(Q′′) ∩ filtered) do

win = evalalt,PFATLKirF
(Q′′,⟪Γ⟫ ψ, fΓ, filtered)

sat = sat ∪ (win ∩Q′)
return sat

case φ = ... // Cases for the other operators are standard

6.1.5 Implementation

The early approaches mostly reuse the basic algorithms that the partial
ones use. The implementation thus suffers from the same problem (see
Section 5.7). The only additional function that needs to be implemented
is the PreA function of Equation 6.1:

PreA(Q′,MΓ) = {q′ ∈ Q∣ ∀⟨q, aΓ⟩ ∈MΓ,∀a ∈ EAg(q),
q = q′ ∧ aΓ ⊑ a Ô⇒ δ(q, a) ∈ Q′ } .

6.2. A fully symbolic approach 123

Algorithm 6.10: evalalt,T ermATLKirF
(Q′,⟪Γ⟫ ψ, fΓ) (part 3)

if Q′/(lose ∪win) = ∅ then return win
else

new = Post(Q,fΓ)/fΓ∣Q
compatible = Compatible(new, fΓ)
newstrats = Split(Γ, compatible)

27 Q′ = Q′/(lose ∪win)
for f ′Γ ∈ newstrats do

win = win ∪ evalaltirF (Q′,⟪Γ⟫ ψ, fΓ ∪ f ′Γ)
30 Q′ = Q′/win
31 if Q′ = ∅ then break

return win

Algorithm 6.11: evalEarly,TermATLKirF
(S,Q′, φ)

Data: Q′ ⊆ Q a subset of states, φ an ATLKirF formula.
Result: The states of Q′ satisfying φ.

case φ ∈ {⟪Γ⟫X φ′,⟪Γ⟫[φ1 U φ2],⟪Γ⟫[φ1 W φ2]}
Q′′ = [Q′]EΓ
sat = {}
for fΓ ∈ Split(Γ,Moves(Q′′)) do

win = evalaltATLKirF (Q
′′,⟪Γ⟫ ψ, fΓ)

sat = sat ∪ (win ∩Q′)
7 Q′′ = Q′′/win
8 if Q′′ = ∅ then break

return sat

case φ = ... // Cases for the other operators are standard

It is implemented in the same way as the Pre⟪Γ⟫ function:

PreA(Q′,MΓ) = ∃a.(PreM(Q′) ∩MΓ).

P reM(Q′) is the set of moves that can reach a state of Q′ in one step;
PreM(Q′)∩MΓ is thus the set of moves of MΓ that can reach a state of Q′

in one step, and ∃a.(PreM(Q′) ∩MΓ) is the set of states for which there
exists a move in MΓ to reach a step of Q′ in one step. PreA(Q′,MΓ) is
the set of states for which all moves of MΓ reach only states of Q′ in one
step.

124 Chapter 6. Existing symbolic approaches

Algorithm 6.12: evalEarly,CachedATLKirF
(S,Q′, φ)

Data: S an iCGSf, Q′ ⊆ Q a subset of states, φ an ATLKirF

formula.
Result: The set of states of Q′ satisfying φ.

sat = cachesat[⟨S,φ⟩]
unsat = cacheunsat[⟨S,φ⟩]
unknown = Q′/(sat ∪ unsat)
newsat = evalEarlyATLKirF

(S,unknown,φ)
cachesat[⟨S,φ⟩] = sat ∪ newsat
cacheunsat[⟨S,φ⟩] = unsat ∪ (unknown/newsat)
return (sat ∪ newsat) ∩Q′

6.2 A fully symbolic approach

This approach is based on the work of Huang and van der Meyden
presented in [HvdM14b]. In the sequel, it is called the symbolic approach.
The main idea of Huang and van der Meyden is to design a fully symbolic
model checking algorithm by encoding the uniform strategies of the agents
of the system into a derived structure and to perform custom fixpoint
computations on it. More precisely, let S = ⟨Ag,Q,Q0,Act, e, δ, V,∼, FC⟩
be an iCGSf, we can build a derived structure

EncStrats(S) = ⟨Ag,QES ,QES0 ,Act, eES , δES , V ES ,∼ES , FCES⟩

such that

• QES = Q ×∏ag∈Ag F
u
ag, where F uag is the set of uniform strategies

of agent ag; given a state qES = ⟨q, fag1 , ..., fag∣Ag∣⟩ ∈ QES , we write

state(qES) for q, and strategy(ag, qES) for fag, for any agent ag
of Ag;

• QES0 = {qES ∈ QES ∣ state(qES) ∈ Q0};

• eESag (qES) = eag(state(qES));

• δES(qES , a) =
⟨δ(state(qES), a), strategy(ag1, q

ES), ..., strategy(ag∣Ag∣, qES)⟩;

• V ES(qES) = V (state(qES));

• qES1 ∼ESag qES2 iff state(qES1) ∼ag state(qES2);

6.2. A fully symbolic approach 125

• FCES = {{qES ∈ QES ∣ state(qES) ∈ fc} ∣ fc ∈ FC}.

Intuitively, we encode in the states of EncStrats(S) the uniform strate-
gies of all agents of S. More precisely, the states of the derived structure
are tuples composed of one original state and a strategy for each agent,
the transition function δ is defined such that strategies stay the same in
states and their successors, and the other elements of EncStrats(S) are
lifted for the derived states.

Given a set of states Q′ ⊆ Q and a set of strategies F ′
Γ for a group of

agents Γ, we write Q′ × F ′
Γ for the set of tuples composed of elements of

Q′, and elements of F ′
Γ, that is, the set

{⟨q, fag1 , ..., fag∣Γ∣⟩ ∣ q ∈ Q
′ ∧ ⟨fag1 , ..., fag∣Γ∣⟩ ∈ F

′
Γ}.

Furthermore, given a state qES ∈ QES , we write strategy(Γ, qES) for the
strategies for the group Γ stored in qES .

Thanks to the derived structure EncStrats(S), it is possible to
compute the set of states of S satisfying a given strategic formula. Let

Prestr(Γ,Q′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

q ∈ QES

RRRRRRRRRRRRRRRRRRRRRRRR

∀a ∈ EESAg (q),
(∀ag ∈ Γ,
q ∈ dom(strategy(ag, q)) Ô⇒
a(ag) = strategy(ag, q)(state(q)))
Ô⇒ δES(q, a) ∈ Q′

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Intuitively, given a set of agents Γ ⊆ Ag and a set of states Q′ ⊆ QES ,
Prestr(Γ,Q′) returns the set of states q of QES such that Γ can force
to reach states of Q′ by playing the action specified by their strategies
enclosed in q, if such an action is specified, or by playing any action
otherwise.

This general definition of the Prestr function will be useful to define
the extension of the approach with pre-filtering in the next section. But
if the strategies are defined for all states of the original structure, as it is
the case for EncStrats(S), then the Prestr function is equivalent to the
following:

Prestr(Γ,Q′) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
q ∈ QES

RRRRRRRRRRRRRR

∀a ∈ EESAg (q), (∀ag ∈ Γ,

a(ag) = strategy(ag, q)(state(q)))
Ô⇒ δES(q, a) ∈ Q′

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

Furthermore, let

EqQ(Q′) = {qES1 ∈ QES ∣ ∃qES2 ∈ Q′ s.t. state(qES1) = state(qES2)},

126 Chapter 6. Existing symbolic approaches

and

EquivQEqStr(Γ,Q′) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
qES1 ∈ QES

RRRRRRRRRRRRRR
∀qES2 ∈ QES ,

⎛
⎜
⎝

if ∃ag ∈ Γ, qES1 ∼ag qES2 ∧ ∀ag ∈ Ag,
strategy(ag, qES1) = strategy(ag, qES2)
then qES2 ∈ Q′

⎞
⎟
⎠

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

Intuitively, EqQ(Q′), Q′ being a subset of QES , returns the set of states
of QES for which there exists a state in Q′ sharing the same original state.
Furthermore, EquivQEqStr(Γ,Q′) returns the set of states for which
all derived states from which the original states are indistinguishable for
some agent in Γ, and in which the strategies are the same, are in Q′.

From these functions, we can define a new Staystr function as

Staystr(Γ,Q1,Q2) = νQ′. Q2 ∪ (Q1 ∩ Prestr(Γ,Q′)),

and a new NFairstr function as

NFairstr(Γ) = µQ′. ⋃
fc∈FC

Prestr(Γ, Staystr(Γ,Q′ ∪ fc,∅)).

Intuitively, NFairstr(Γ) returns the set of states from which Γ can
enforce only unfair paths by following the strategies encoded in these
states. Using these functions, we can define the following ones, given
ESS = EncStrats(S), and given two subsets of states QES1 ,QES2 ⊆ QES :

filterES⟪Γ⟫X(ESS,QES1) = Prestr(Γ,QES1 ∪NFairstr(Γ))
filterES⟪Γ⟫U(ESS,QES1 ,QES2) =
µQ′. Q1,2,N ∩ (QES2 ∪
⋃

fc∈FC
Prestr(Γ, Staystr(Γ,QES1,2,N ∩ (Q′ ∪ fc),QES2 ∩ (Q′ ∪ fc))))

filterES⟪Γ⟫W(ESS,QES1 ,QES2) = Staystr(QES1,2,N ,Q
ES
2)

where

Q1,2,N = QES1 ∪QES2 ∪NFairstr(Γ).

Assuming that, for i ∈ {1,2},

QESi = Qi × ∏
ag∈Ag

F uag,

then, intuitively, filterES⟪Γ⟫X(ESS,QES1) is the set of states in which Γ

can enforce that all fair paths have their second state in QES1 by following

6.2. A fully symbolic approach 127

the strategies in these states. The result of filterES⟪Γ⟫U(ESS,QES1 ,QES2)
is the set of states in which Γ can enforce that all fair paths reach a state
of QES2 through states of QES1 by following their strategies encoded in
the states. filterES⟪Γ⟫W(ESS,QES1 ,QES2) is the set of states in which Γ

can enforce that all fair paths reach a state of QES2 through states of
QES1 , or stay forever in QES1 , by following their strategies encoded in the
states.

Thanks to these new filterES algorithms, we can define evalSymbolicATLKirF
as Algorithm 6.13.

Algorithm 6.13: evalSymbolicATLKirF
(ESS,φ)

Data: ESS an iCGSf such that ESS = EncStrats(S) for some
iCGSf S, φ an ATLKirF formula.

Result: The states QES1 = Q1 ×∏ag∈Ag F
u
ag of ESS, where Q1 is

the set of states of S satisfying φ.

case φ ∈ {⟪Γ⟫X φ′,⟪Γ⟫[φ1 U φ2],⟪Γ⟫[φ1 W φ2]}
case φ = ⟪Γ⟫X φ1

QES1 = evalSymbolicATLKirF
(ESS,φ1)

winning = filterES⟪Γ⟫X(ESS,QES1)
case φ = ⟪Γ⟫[φ1 U φ2]

QES1 = evalSymbolicATLKirF
(ESS,φ1)

QES2 = evalSymbolicATLKirF
(ESS,φ2)

winning = filterES⟪Γ⟫U(ESS,QES1 ,QES2)
case φ = ⟪Γ⟫[φ1 W φ2]

QES1 = evalSymbolicATLKirF
(ESS,φ1)

QES2 = evalSymbolicATLKirF
(ESS,φ2)

winning = filterES⟪Γ⟫W(ESS,QES1 ,QES2)
13 return EqQ(EquivQEqStr(Γ,winning))

case φ = ... // Cases for the other operators are standard

evalSymbolicATLKirF
(ESS,⟪Γ⟫ ψ) returns the set of states for which there

exists a state with other strategies (EqQ), for which, in all equivalent
states sharing the same strategies (EquivQEqStr), Γ can enforce that
all fair paths satisfy ψ. In other words, it computes the set of states
satisfying ⟪Γ⟫ ψ.

Algorithm 6.13 only presents the strategic cases. The model checking
for the propositional cases (true, p, ¬ and ∨), the temporal ones (EX,
EU and EW) and the knowledge ones (K, E, D and C) is performed

128 Chapter 6. Existing symbolic approaches

in the standard way, as exposed in Section 2.2.3. The correctness of this
algorithm is proved in Section A.7 of Appendix A.

6.2.1 Pre-filtering

Pre-filtering can be applied in the context of the symbolic approach.
Before encoding the original structure S into EncStrats(S), we can rule
out the set of moves that cannot be part of a winning strategy—thanks
to the filterM algorithms—and only encode the sub-structure defined
by these moves.

By analyzing the evalSymbolicATLKirF
algorithm and the functions it uses, we

can see that, for a a given strategic formula ⟪Γ⟫ ψ, it is not necessary to
encode the strategies of agents outside Γ; these strategies are never used
and do not change the states q for which there exists a derived state in
evalSymbolicATLKirF

(⟪Γ⟫ ψ). On the other hand, keeping only pre-filtered moves
leads to different remaining strategies for different strategic formulas.

The solution we thus propose for extending the symbolic approach
with pre-filtering is, given a structure S and an ATLKirF formula φ, to
encode one new derived structure per strategic sub-formula φ′ of φ. The
derived structure encodes, in its states, the strategies that remain after
applying pre-filtering on the original structure for the formula φ′. This
solution needs a bottom-up procedure to evaluate the sub-formulas as
we need to know which states of the original structure satisfy a given
sub-formula to be able to perform the pre-filtering before encoding the
remaining strategies in a new derived structure.

More precisely, let S = ⟨Ag,Q,Q0,Act, e, δ, V,∼, FC⟩ be an iCGSf,
and ⟪Γ⟫ ψ an ATLKirF strategic formula with top-level operator op
such that all sub-formulas are atomic propositions. Let filtered ⊆ EΓ be
a set of Γ-moves. We can build a derived structure

EncStratsPF (S, filtered) =
⟨Ag,QES ,QES0 ,Act, eES , δES , V ES ,∼ES , FCES⟩

such that QES = Q × Split(Γ, filtered), and all other elements of the
structure EncStratsPF (S, filtered) are defined in the same way as for
EncStrats(S). In other words, EncStratsPF (S, filtered) is defined as
EncStrats(S), except that the strategies that are encoded in the derived
states are reduced to the ones defined by filtered.

Then, the evalSymbolic,PFATLKirF
algorithm is defined as the evalSymbolicATLKirF

one, but uses EncStratsPF (S, filtered) instead of EncStrats(S). The
algorithm is given in Algorithm 6.14. It uses the function States(QES1)

6.2. A fully symbolic approach 129

defined as

States(QES1) = {q ∈ Q ∣ ∃qES ∈ QES1 s.t. state(qES) = q},

and returning the set of original states stored by states of QES1 .
Algorithm 6.14 only presents the strategic cases. The model checking

for the propositional cases (true, p, ¬ and ∨), the temporal ones (EX,
EU and EW) and the knowledge ones (K, E, D and C) is performed
in the standard way, as exposed in Section 2.2.3. The correctness of this
algorithm is proved in Section A.7.1 of Appendix A.

Note that, for both symbolic approaches, early termination and
caching have no meaning. Indeed, the former is used in the other
approaches to stop looking for a strategy when it is not necessary anymore.
This idea is useful when strategies are analyzed one by one; on the other
hand, the symbolic approaches consider all the strategies at the same
time, thus there is no way to stop the process as soon as some winning
strategies are found for all states of interest.

Caching has no meaning either. Indeed, in the other approaches, the
sub-formulas are evaluated again and again, for each checked strategy.
On the other hand, the symbolic approaches do not enumerate the
strategies one by one, and thus need to evaluate the sub-formulas only
once. Caching is not necessary in this case.

6.2.2 Implementation

This section discusses how the symbolic approaches have been imple-
mented with PyNuSMV. PyNuSMV is able to dynamically declare new
variables in a model. This mechanism is used to encode, for each agent,
for each equivalence class of this agent, and each action, a new variable
defining the choice the agent should make in this class.

As the declaration can be performed at any time, this allows the tool
to lazily encode the strategies of the agents, depending on the checked
strategic formula. This avoids the need to encode the strategies of all
the agents of the model—leading to larger models—, and also allows to
implement the symbolic approach with pre-filtering, in which the formula
is important, too. Pre-filtering forces the tool to declare new variables,
for each equivalence class and action, for every strategic sub-formula
in which an agent is involved. So, while pre-filtering allows to reduce
the number of strategies to encode, it suffers from more BDD variable
declarations when dealing with nested strategic sub-formulas involving
the same agents.

The declaration of one variable per equivalence class encoding the
possible choices for the agent makes the approach with pre-filtering less

130 Chapter 6. Existing symbolic approaches

Algorithm 6.14: evalSymbolic,PFATLKirF
(S,φ)

Data: S an iCGSf, φ an ATLKirF formula.
Result: The states QES1 , where States(QES1) is the set of states

of S satisfying φ.

case φ ∈ {⟪Γ⟫X φ′,⟪Γ⟫[φ1 U φ2],⟪Γ⟫[φ1 W φ2]}
case φ = ⟪Γ⟫X φ1

Q1 = evalSymbolic,PFATLKirF
(S,φ1)

filtered = filterM⟪Γ⟫X(States(Q1),EΓ)
case φ = ⟪Γ⟫[φ1 U φ2]

Q1 = evalSymbolic,PFATLKirF
(S,φ1)

Q2 = evalSymbolic,PFATLKirF
(S,φ2)

filtered = filterM⟪Γ⟫U(States(Q1), States(Q2),EΓ)
case φ = ⟪Γ⟫[φ1 W φ2]

Q1 = evalSymbolic,PFATLKirF
(S,φ1)

Q2 = evalSymbolic,PFATLKirF
(S,φ2)

filtered = filterM⟪Γ⟫W(States(Q1), States(Q2),EΓ)
if filtered = ∅ then return ∅
ESS = EncStratsPF (S, filtered)
case φ = ⟪Γ⟫X φ1

QES1 = States(Q1) × Split(filtered)
winning = filterES⟪Γ⟫X(ESS,QES1)

case φ = ⟪Γ⟫[φ1 U φ2]
QES1 = States(Q1) × Split(filtered)
QES2 = States(Q2) × Split(filtered)
winning = filterES⟪Γ⟫U(ESS,QES1 ,QES2)

case φ = ⟪Γ⟫[φ1 W φ2]
QES1 = States(Q1) × Split(filtered)
QES2 = States(Q2) × Split(filtered)
winning = filterES⟪Γ⟫W(ESS,QES1 ,QES2)

return EqQ(EquivQEqStr(Γ,winning))
case φ = ... // Cases for the other operators are standard

powerful than the partial and early ones. In the latter, the strategies are
limited to the moves that really matter; in the former, even if pre-filtering
removes an action from a particular state, this action must be encoded

6.2. A fully symbolic approach 131

in the derived model if there exists another indistinguishable state in
which the action has been kept.

PyNuSMV is also able to dynamically declare several transition rela-
tions, encoded with BDDs. This mechanism is used to define the different
functions used by the two approaches. More precisely, several transi-
tion relations are defined per group of agents encountered in strategic
formulas:

• one transition relation is defined to implement the δES and Prestr
functions. This transition relation is defined as the original transi-
tion relation, constrained such that (1) the strategies of the group
are kept in the successor states, and (2) the agents of the group
follow the encoded strategies, that is, they play the action that the
encoded strategies prescribe. The Prestr function is the pre-image
of this transition relation.

• one transition relation is defined to implement the EqQ function.
This relation forces the state to stay the same—by forcing the
original state variables to keep the same value—and lets the other
variables encoding the strategies vary.

• one transition relation is defined to implement the EquivQEqStr
function. This relation forces the strategies to stay the same, and
allows the original state variables to vary, except the ones that are
observed by the agents.

Thanks to PyNuSMV, these transition relations can be built lazily,
when a new group or strategic formula is encountered. They are defined
either for each encountered group in the symbolic approach, or for each
strategic sub-formula in the case of the approach with pre-filtering.

Chapter 7

Experimental comparison

This chapter presents the experiments performed with the implementation
of the nine approaches presented in thesis. First, the section describes the
models and properties used for the tests. Then it analyses and compares
the results for each approach. As the implementation is based on a
BDD framework, it also compares the different BDD variable reordering
techniques offered by PyNuSMV. Finally, it draws some conclusions
based on the experiments.

7.1 Models and properties

To compare the relative performances of the different approaches, we
used three models with strategic formulas. This section describes the
three models, how they are encoded as iCGSf, and the formulas we
verified.

7.1.1 Tian Ji and the king

The first model is based on the ancient Chinese tale of Tian Ji [LQR15].
The model contains two agents, the king and his general Tian Ji, playing
a horse racing game. Each agent has N horses h1, ..., hN such that if
the king plays with horse hi against Tian Ji with horse hj , the winner
is the one with the highest index; if i = j, then the winner is chosen
non-deterministically. The game is composed of N races and one horse
can play only once. The winner of the game is the player with the most
won races. The game is replayed infinitely.

The formal iCGSf of the game counts two agents king and Tian Ji.
The states of the model are composed of the remaining horses for Tian
Ji, the remaining ones for the king, and the score of both players. In the

134 Chapter 7. Experimental comparison

initial state, all horses are available for both players and both scores are
null. There is one action per horse, and each player can play any action
corresponding to the remaining horses. Furthermore, each player observes
only his remaining horses, not the other’s, that is, the equivalence classes
for a player are such that two states are indistinguishable if they share
the same remaining horses for the player. Finally, fairness constraints
are specified such that the king chooses his horses in any order, infinitely
many times each. This is achieved by asking the king to choose the
order of his horses before starting the game, and specifying one fairness
constraint per such an initial order. The number of reachable states
evolves exponentially in terms of the number of horses.

The number of strategies of Tian Ji, depending on the number of
horses N , is given by the equation

∏
i=1..N

iC
i
N ,

where CiN is the number of combinations of i elements among N . Indeed,
in each state where Tian Ji has i remaining horses, he can choose one
of them. Furthermore, there are CiN different sets of i remaining horses
that Tian Ji can have, giving the equation above. For example, Tian
Ji has 24 strategies with 3 horses and 20736 ones with 4 horses. The
naive and symbolic approaches have to consider all these strategies, while
the others can reduce their number by restricting the search for partial
strategies and by pre-filtering out losing moves.

The first formula checked on this model is

φT1 = ⟪Tian Ji⟫F Tian Ji wins,

where Tian Ji wins is true in all states where there are no remaining
horses and Tian Ji has a higher score than the king. This formula says
that Tian Ji can eventually win a game. It is true in the initial state of
the model. Indeed, since the king is fair and will choose any possible
order infinitely often, Tian Ji can play the same combination over and
over again, and this combination will be winning at some point. In fact,
any memoryless uniform strategy for Tian Ji is winning.

Two other formulas have been checked on this model to highlight the
differences of behaviors of the tested approaches. The second formula is

φT2 = ⟪Tian Ji⟫F ⟪Tian Ji⟫[¬King wins U Tian Ji wins];

similarly to Tian Ji wins, King wins is true in all states where there
are no remaining horses and the king has a higher score than Tian Ji.
This formula says that Tian Ji has a strategy to reach states in which

7.1. Models and properties 135

he can surely win the current game, that is, a state in which he can
win before the king wins. The formula is not true in the model because
there exists no state in which Tian Ji is sure to win the current game.
Indeed, he does not observe the current score, so even in states in which
he wins the current game, he does not see it. Furthermore, he does not
see the current order of the king’s horses, and cannot adapt his choices
accordingly.

The last formula checked on the model of Tian Ji is

φT3 = ⟪Tian Ji⟫X Tian Ji null score,

where Tian Ji null score is true in all states where the score of Tian Ji
is 0. This formula is not true in the initial state of the model because
Tian Ji has no horse that he is sure will lose the race. Indeed, even the
slowest horse h1 could possibly win the race if the king also plays with
h1.

7.1.2 The three castles

The second model is the one described in [PBJ14]. It is composed of
three castles with their corresponding health points ranging from 0 to
3, 0 health points meaning that the castle is defeated. Each castle is
defended by a set of workers. At each turn, a worker can attack another
castle, defend his own castle or do nothing, but a worker cannot defend
her castle twice in a row. The number of damages a castle receives is the
number of attackers against this castle minus the number of defenders
of this castle, if this number is greater than 0. The health points of the
castles are not reset at each turn, thus the game is played in several
turns. Finally, the workers only observe whether they can defend their
castle or not, and, for each castle, whether it is defeated or not. The
model is parametrized with the number of workers of each castle.

The formal model contains one agent per worker. The states are
composed of the health points of each castle and whether or not each
worker can defend her castle at the next turn. In the initial state, all
castles have 3 health points and all workers can defend their castle. The
actions of each worker are (1) doing nothing—the only one enabled when
her castle is defeated—(2) defending her castle—only possible when she
did not defend it in the previous turn—(3) for each other castle, one
action to attack it. The equivalence classes are such that for a given
worker, she can only observe whether she can defend her castle and,
for each castle, whether it is defeated or not. Finally, a unique fairness
constraint is defined, containing all states of the model. This ensures
that all paths of the model are fair. The initial state is specially marked

136 Chapter 7. Experimental comparison

such that all workers can distinguish it from any other state. This is
necessary to be able to specify that some workers have a strategy in the
initial state for a given objective. As for Tian Ji’s model, the number
of reachable states of the model evolves exponentially in terms of the
number of workers.

Each worker has 82944 possible strategies. These strategies can be
decomposed as her choices in

• the initial state, in which she can choose one action among four:
doing nothing, defending her castle or attacking one of the two
others. This amounts to 4 possible combinations of choices.

• the non-initial states in which her castle is not defeated and she
did not defend it in the previous turn. There are four equivalence
classes matching this case, depending on whether the other castles
are defeated or not. In these cases, the worker can choose between
the four actions. This amounts to 44 = 256 possible combinations
of choices.

• the non-initial states in which her castle is not defeated but she
defended it in the previous turn. There are four equivalence classes
matching this case. The worker can choose between three actions
as she cannot defend her castle. This amounts to 34 = 81 possible
combinations of choices.

• the non-initial states in which her castle is defeated. There are 8
equivalence classes matching this case, depending on whether the
other castles are defeated and whether she defended her castle just
before or not. The worker can choose only one action, giving 18 = 1
possible choice.

All these choices can be combined in any way since they are exclusive
in the equivalence classes they consider, giving 4 ∗ 256 ∗ 81 ∗ 1 = 82944
possible uniform strategies for one worker.

The depth of the model—that is, the number of steps needed to reach
all the reachable states from the initial one—does not change with the
number of workers since it depends only on the health points of the
castles. An exception is when there are few workers, that is, with one
worker in each castle. In this case, the depth is a bit higher because
there are too few workers to ensure to quickly reach a final state. The
partial, backward and early approaches really depend on this depth since
it dictates how far the partial strategies are.

We are interested in two formulas. The first one is

φC1 = ⟪Castle1,Castle2⟫F Castle3 defeated , (7.1)

7.1. Models and properties 137

where Castlei groups the workers of the ith castle and Castle3 defeated
is true in all states in which the third castle has 0 health points. This
formula is true in all tested models, but is not true in general. Indeed, if
the third castle has enough workers, they are able to defend the castle
and prevent the other workers to damage it. More precisely, if the third
castle has more workers than the addition of the two others, the formula
is false, even if the workers have perfect information. The tested models
always have enough workers in the first two castles to make the formula
satisfied.

The second formula is

φC2 = ⟪Worker1,Worker2⟫F all defeated , (7.2)

where Worker1 (resp. Worker2) is a worker of the first castle (resp.
second castle), and all defeated is true in the states where all castles
have 0 health points. This formula is false in all tested models because,
even if they can defeat the third castle, the workers have not enough
information to ensure that the other two castles will be defeated at the
same time.

7.1.3 The prisoners and the light bulb

The third model is based on the problem of the 100 prisoners and the
light bulb [vDK15]:

”A group of 100 prisoners, all together in the prison dining
area, are told that they will be all put in isolation cells and
then will be interrogated one by one in a room containing a
light with an on/off switch. The prisoners may communicate
with one another by toggling the light switch (and that is
the only way in which they can communicate). The light is
initially switched off. There is no fixed order of interrogation,
or interval between interrogations, and the same prisoner
may be interrogated again at any stage. When interrogated,
a prisoner can either do nothing or toggle the light switch,
or announce that all the prisoners have been interrogated.
If that announcement is true, the prisoners will (all) be set
free, but if it is false, they will be executed. While still in the
dining room, and before the prisoners go to their isolation
cells (forever), can the prisoners agree on a protocol that will
set them free?”

One strategy to guarantee their freedom is to designate a counter
among the prisoners. This counting prisoner starts at 0 and each time he

138 Chapter 7. Experimental comparison

enters the room and the light bulb is switched on, he switches it off and
increments his counter. Every time another prisoner enters the room, if
the light bulb is switched off and he has never switched it on, he switches
it on before leaving the room. When the prisoner with counter enters the
room and his counter is at 99, he is sure that all prisoners have entered
the room at least once and he can safely announce that all prisoners have
visited the room. This strategy is winning if the warden fairly chooses
the prisoners each day because the counter will enter infinitely often,
thus will be able to switch the light off as many times as he wants, and
the other prisoners will also enter the room infinitely often and be able
to switch the light on once.

The formal model encodes this problem of the prisoners and the light
bulb, designates a special prisoner that can keep track of a counter and
gives the ability to the other prisoners to remember whether they already
switched the light on or not. The idea behind the model is to verify that
the prisoners effectively have a strategy to be released with these limited
capabilities.

More precisely, the formal model is composed of the warden and
N prisoners; one of them is the counting one. The warden keeps track
of which prisoners have been interrogated at least once—to be able to
release or execute them when the counting prisoner makes an announce—
and chooses the next prisoner to interrogate. Furthermore, he keeps
track of whether the prisoners should be released (if the counting prisoner
correctly announces that all prisoners have been interrogated) or executed
(if the counting prisoner makes an incorrect announce). The counting
prisoner keeps track of his counter and each prisoner keeps track of
whether he has already switched the light bulb or not. The states of
the model are thus composed of the state of the light bulb (on or off),
who has already been interrogated, should the prisoners be released or
not, and executed or not, the counter of the counting prisoner, whether
each prisoner has already switched the light bulb or not, and finally the
prisoner that is being currently interrogated. In the initial state, the
light bulb is off, nobody has been interrogated, the prisoners should not
be released or executed, the counter is at 0, no prisoner has already
switched the light bulb, and nobody is currently interrogated. When
nobody is interrogated, the warden can choose any prisoner, and when
a prisoner is interrogated, he can choose to switch the light bulb or do
nothing, and the counting prisoner can additionally choose to make the
announcement, as well as to increment his counter. Each prisoner sees the
light bulb when he is currently interrogated, knows whether he already
switched the light or not, and knows whether he is currently interrogated.
In addition, the counting prisoner knows the value of his counter. All

7.2. Measures and comparisons 139

prisoners (including the counting one) can distinguish the initial state
from the others. Finally, fairness constraints are specified such that each
prisoner is interrogated infinitely often. Again, the number of reachable
states of the model evolves exponentially in terms of the number of
prisoners.

In this model, the counting prisoner has 62N uniform strategies,
where N is the number of prisoners (including himself). Indeed, he
can do nothing when he is not interrogated, so only his choices when
he is interrogated can lead to different strategies. The model contains
2N equivalence classes for the counting prisoner when he is currently
interrogated. Indeed, he observes the value of his counter (from 0 to
N − 1) and the state of the light bulb. In each class, he can perform
3 ∗ 2 = 6 different actions: doing nothing, switching the light bulb, or
making an announcement, and furthermore incrementing his counter or
not. This gives us 62N possible strategies for the counting prisoner: 1296
strategies with two prisoners, 46656 ones with three prisoners. The other
prisoners have 16 different strategies. A prisoner can only do something
when he is interrogated. In this case, the model contains 4 equivalence
classes as he observes the state of the light bulb and whether or not
he already switched it on. In each of these classes, the prisoner can
switch the bulb or not, giving us 24 possible strategies. So there are
at most 16N−1 ∗ 62N strategies to consider when checking whether the
coalition of the N prisoners (including the counting one) can enforce a
given objective.

We are interested in the following formula

φP = ⟪prisoners⟫[¬executed U released], (7.3)

saying that the prisoners have a collective strategy to be released before
being executed. This formula is true in the model, showing that the
prisoners effectively have a counting strategy to be free.

7.2 Measures and comparisons

The formulas of the previous section have been checked using the ap-
proaches on models of increasing size. This section presents and compares
the results. All the experiments have been performed on a MacBook Pro
with a 2.6GHz processor and 16GB RAM, and under a time limit of 1800
seconds. This time limit is indicated by a horizontal line in the graphs,
and data points reaching this time limit are depicted above the line.
Each data point is the average of 20 runs; the observed variability was
very low for all measurements. Furthermore, these experiments usually

140 Chapter 7. Experimental comparison

consumed less than 1GB of memory, but some consumed up to several
GBs. They nevertheless never consumed all the available memory.

In all the figures, short names are used to refer to the tested ap-
proaches:

• Naive refers to the naive approach without pre-filtering;

• Naive/filt refers to the naive approach with pre-filtering;

• Partial refers to the partial approach with caching and early ter-
mination, but without pre-filtering;

• Partial/filt refers to the partial approach with caching, early ter-
mination, and pre-filtering;

• Backward refers to the backward approach;

• Early refers to the early approach with caching and early termina-
tion, but without pre-filtering;

• Early/filt refers to the early approach with caching, early termina-
tion, and pre-filtering;

• Symbolic refers to the symbolic approach without pre-filtering;

• Symbolic/filt refers to the symbolic approach with pre-filtering.

The partial and early approaches use caching and early termination.
For the former, [BPQR14] showed that using both always increases
performances, and early experiments not provided in this thesis showed
same results for the latter.

For each approach, observations are given, then the differences of
performances are explained based on these observations. As the backward
approach does not handle fairness constraints and ⟪Γ⟫W formulas, it is
only tested on the model of the castles.

The Python implementation used for the following experiments is
a prototype showing the applicability of the approaches. It would not
compete with dedicated tools performing the same kind of tasks. These
experiments are not meant to show the absolute performances of the
implementation but the relative gain of the different approaches.

7.2.1 Tian Ji and the king

This section presents the results for the properties of Tian Ji’s model.

7.2. Measures and comparisons 141

φT1 = ⟪Tian Ji⟫F Tian Ji wins

Figure 7.1 shows the evolution of the verification time in terms of the
number of horses, for the eight approaches checking the formula φT1
on the model of Tian Ji. As explained before, any strategy of Tian Ji
is winning for this objective because the fair king will ensure that all
configurations will eventually happen.

3 4 5 6 7
10−1

100

101

102

103

Number of horses

V
er

ifi
ca

ti
on

ti
m

e
(s

ec
)

Naive

Naive/filt
Partial

Partial/filt
Early

Early/filt
Symbolic

Symbolic/filt

Figure 7.1: Evolution of the verification time of the approaches for the
formula φT1 = ⟪Tian Ji⟫F Tian Ji wins.

Pre-filtering Pre-filtering removes no move because any general strat-
egy is winning.

Naive approaches The Naive approach checks all possible strategies.
Furthermore, as pre-filtering removes no move, the Naive/filt approach
has to check the same strategies as the Naive one. The time needed for
pre-filtering is negligible compared to the time needed for checking all
strategies.

Partial The Partial approach checks only one strategy. Since all of
them are winning, early termination allows the approach to stop its
processing after one strategy.

Partial/filt The Partial/filt approach only checks one strategy. Pre-
filtering removes no move, so the extra effort is useless. Nevertheless,
the time needed for pre-filtering is not negligible anymore. But dynamic
reordering of BDD variables accelerates the process of checking the

142 Chapter 7. Experimental comparison

single strategy, thanks to the better variable order computed during
pre-filtering.

Early The Early approach extends the first strategy to ⌊N2 ⌋ + 1 steps
before concluding it is a winning strategy. At smaller steps, the approach
cannot decide whether any extension is winning because Tian Ji did not
win enough races to be sure to win the game.

Early/filt The Early/filt approach also extends the first strategy to
⌊N2 ⌋ + 1 steps before concluding it is a winning strategy, as pre-filtering
is useless. Pre-filtering is not negligible, but the dynamic reordering of
variables accelerates the rest of the process.

Symbolic approaches The Symbolic approach encodes and tests all
strategies at once. The Symbolic/filt approach behaves exactly like the
Symbolic one since pre-filtering removes no move. In this case, the time
needed for pre-filtering is negligible.

Comparison First, pre-filtering removes no moves, thus is useless in
reducing the number of strategies to consider. The time needed to
perform pre-filtering in the Naive and Symbolic approaches is negligible
compared to the time needed for checking the strategies. This explains
why the version with pre-filtering is the same as the other one for these
approaches.

On the other hand, pre-filtering takes a significant amount of time in
the partial and early cases, as the number of checked strategies is very
small. Nevertheless, the time needed by both versions (with and without
pre-filtering) are very similar. This is explained, for both approaches,
by the fact that pre-filtering, while removing no moves, triggers the
dynamic reordering of the BDD variables; the new order computed after
pre-filtering is way better than the initial one and allows the verification
of strategies to be performed faster. This can be shown by disabling
dynamic reordering. In this case, the approaches with pre-filtering take
more time to check the formula, and the difference is the time needed to
perform the useless pre-filtering. The fact that the approaches with and
without pre-filtering perform similarly is thus purely coincidental.

Second, the Partial approach is better than the Early approach
because the Partial one checks only one adequate partial strategy while
the Early one needs to check ⌊N2 ⌋ + 1 sub-models before concluding that
there is a winning strategy.

Finally, the symbolic approaches have worse performances than the
others (except the naive ones). This is explained by the fact that, as

7.2. Measures and comparisons 143

all strategies are winning and the other approaches stop as soon as a
winning strategy is found, symbolic approaches have to perform more
work to check all strategies at the same time. The symbolic approaches
are, however, better than the naive ones because the former check all
strategies symbolically, while the latter have to check them individually.

φT2 = ⟪Tian Ji⟫F ⟪Tian Ji⟫[¬King wins U Tian Ji wins]

Figure 7.2 shows the evolution of verification time for the eight approaches
on the formula φT2 checked on the model of Tian Ji. As said before, this
formula is not satisfied by the initial state of the model because the inner
strategic formula ⟪Tian Ji⟫[¬King wins U Tian Ji wins] is false in
all states. On the other hand, Tian Ji has a winning strategy if he can
observe the whole system because he knows which order the king will
play for the current game.

3 4 5

100

101

102

103

Number of horses

V
er

ifi
ca

ti
on

ti
m

e
(s

ec
)

Naive

Naive/filt
Partial

Partial/filt
Early

Early/filt
Symbolic

Symbolic/filt

Figure 7.2: Evolution of the verification time of the approaches for the
formula φT2 = ⟪Tian Ji⟫F ⟪Tian Ji⟫[¬King wins U Tian Ji wins].

Pre-filtering Empirically, we can observe that pre-filtering removes
about 50% of the moves for the strategic sub-formula. Tian Ji has
a winning general strategy in many states, but not all actions lead to
winning the game. Furthermore, pre-filtering really helps for the top-level
strategic formula because no state satisfies the sub-formula, making the
top-level one trivially unsatisfiable, even with perfect information.

Naive The Naive approach checks all strategies, for both strategic
operators. The number of strategies quickly becomes too large to handle

144 Chapter 7. Experimental comparison

in 30 minutes: there are more than 20000 strategies to check for 4 horses.

Naive/filt The Naive/filt approach checks all strategies for the inner
strategic operator, but can directly conclude that the top formula is not
satisfied when the pre-filtering is done.

This approach still has to check the same number of strategies for the
sub-formula as the Naive one: after pre-filtering, all equivalence classes
are still present, and all actions are still possible in some states in each
of them. Indeed, for any set of remaining horses for Tian Ji, he could
be currently winning the game, and any choice for the next horse could
still win the next race, as the king could run with any horse (since Tian
Ji does not know the king’s remaining horses). This leads to the same
number of strategies as for the Naive approach, but the strategies contain
fewer moves.

Partial The Partial approach checks all adequate partial strategies for
the sub-formula

⟪Tian Ji⟫[¬King wins U Tian Ji wins]

in all reachable states as the adequate partial strategies for the initial
states lead to all reachable states. Furthermore, since the top formula
is false in the initial state, the approach checks all adequate partial
strategies for the initial state for the top formula. Thus, it has to check
all adequate strategies, for both strategic sub-formulas, to conclude that
the formula is false.

Nevertheless, this approach has to check the sub-formula for relatively
small subsets of the reachable states each time, since partial strategies
reach relatively small subsets of the reachable states. Indeed, as the
top-level strategies do not cover the complete set of reachable states—
for instance, if Tian Ji chooses his best horse, he will not consider the
states in which he still can play this horse—, the number of strategies to
consider for the sub-formula (for this particular top-level strategy) is not
large.

Partial/filt Pre-filtering in the Partial/filt approach triggers the eval-
uation of the sub-formula in all the reachable states at once. This
represents a large number of adequate partial strategies, compared to
computing strategies for different separate subsets of states as for the
Partial approach. More precisely, as all reachable states are considered
at the same time, the number of strategies to consider is the same as for

7.2. Measures and comparisons 145

the Naive approach: in any equivalence class, all choices remain, thus
the number of strategies is not reduced.

Nevertheless, when the evaluation of sub-formula is done, the ap-
proach detects that there are no general winning strategies in the initial
states, thus it can directly conclude that the formula is violated.

Early The Early approach evaluates N strategies for the top formula
because there are N possible initial moves for Tian Ji. It needs to check
this small amount of strategies (for the top formula) because, for each of
them, it evaluates the sub-formula in the reached states and immediately
determines that there is no extending winning strategy. On the other
hand, it checks the sub-formula on a large subset of the reachable states
because the top formula-related strategies reach a lot of states.

The sub-formula is evaluated on many states at once. This means
that a large partial strategy is already reached when splitting the moves
in these states. This large partial strategy is sufficient to determine that
the formula is false in these states. Thus, the Early approach has to
check several strategies, but these strategies are determined as losing
without extending them.

Early/filt The Early/filt approach triggers pre-filtering for the top
formula, that evaluates the sub-formula on all the reachable states. This
means that the approach has to check the sub-formula for all these states
at once. Evaluating the sub-formula on all the reachable states also
triggers pre-filtering for the sub-formula removing about half the moves.

Furthermore, the number of strategies (splitting the other half of the
moves) in the whole set of reachable states is large. Nevertheless, the
Early/filt approach can directly determine that each strategy is losing,
avoiding to extend them to adequate ones.

The number of strategies to check in the whole set of reachable
states is way larger than the strategies checked by the Early approach.
Nevertheless, when the sub-formula has been evaluated on all the reach-
able states, pre-filtering for the top formula determines that no state is
winning and no strategy must be checked for the top formula.

Symbolic The Symbolic approach checks all the strategies at once.
First, it computes the set of states satisfying the sub-formula, then the
set of states satisfying the top formula. It encodes strategies for Tian Ji
once, even if there are two strategic formulas, because it can reuse the
encoded strategies for both formulas.

146 Chapter 7. Experimental comparison

Symbolic/filt The Symbolic/filt approach first triggers pre-filtering.
This leads to checking the sub-formula. This sub-formula is first pre-
filtered, but nothing is gained because any action that is ruled out in a
state can be winning in another indistinguishable state. Nevertheless,
the approach does not have to encode the strategies for the top formula
because pre-filtering evaluates that there are no possibly winning moves,
directly determining that the top formula cannot be true.

Comparison The Naive approach takes more time that the Naive/filt
one for 3 horses because the former has to check the 24 strategies for
both strategic sub-formulas, while the latter checks these 24 strategies
for the inner strategic operator only. Furthermore, they both cannot
check the formula for 4 horses because the number of strategies to check
is too large: there are more than 20000 strategies to consider.

Second, pre-filtering in the Partial/filt approach evaluates the sub-
formula for all reachable states at once, representing a large number
of strategies. On the other hand, the Partial approach evaluates the
sub-formula on smaller subsets of states. These states reach only a subset
of the states of the model, reducing the number of strategies to consider.
Overall, this lazy evaluation allows the Partial approach to compute
less strategies than the Partial/filt one to evaluate the sub-formula.
Nevertheless, after evaluating the sub-formula, the Partial/filt approach
detects that there are no general winning strategies in the initial states
and can directly conclude. All in all, the Partial/filt approach performs
worse than the Partial one because it considers all reachable states
at once, instead of different subsets of the reachable states separately,
leading to way more strategies to check. In the case of 4 horses, the
Partial/filt approach does not succeed in checking all the strategies for
the sub-formula within 30 minutes, while the Partial one does.

Regarding the early approaches, the number of strategies to check
in the whole set of reachable states (as done by the Early/filt approach)
is larger than the strategies checked by the Early approach, since the
Early strategies already made a choice in the initial states. This allows
the Early approach to conclude for 4 horses within 30 minutes while the
Early/filt one does not.

Regarding the Symbolic approaches, it is a coincidence that both
approaches take a similar amount of time. The Symbolic approach has
to evaluate the two strategic sub-formulas. On the other hand, the
Symbolic/filt one has to perform pre-filtering on the sub-formula and
then evaluate it, but does not have to evaluate the top formula.

Regarding all the approaches, the Partial approach takes much time
because it has to check a lot of strategies to determine that none of them

7.2. Measures and comparisons 147

are winning. The Early approach has less work to do as it does not
extend the strategy. Finally, the symbolic ones are better because they
can evaluate all the strategies at once and determine that they are not
winning.

Pre-filtering does not work for the Partial/filt and Early/filt ap-
proaches because, in both cases, it triggers the evaluation of the sub-
formula on all reachable states, leading to way more strategies to consider,
as these strategies have to take all states into account at the same time.

φT3 = ⟪Tian Ji⟫X Tian Ji null score

Figure 7.3 shows the evolution of verification time of the eight approaches
for the formula φT3 on the model of Tian Ji. This formula says that Tian
Ji can enforce to lose the first race, and is false because even if he chooses
his slowest horse, the king could use his slowest one, too.

3 4 5 6 7
10−1

100

101

102

103

Number of horses

V
er

ifi
ca

ti
on

ti
m

e
(s

ec
)

Naive

Naive/filt
Partial

Partial/filt
Early

Early/filt
Symbolic

Symbolic/filt

Figure 7.3: Evolution of the verification time of the approaches for the
formula φT3 = ⟪Tian Ji⟫X Tian Ji null score.

Pre-filtering Pre-filtering removes a lot of moves. Indeed, there are
only few states in which Tian Ji can keep his score at 0. In these states,
he has to have a score of 0, and he has to still have a horse that surely
loses the next race. Furthermore, pre-filtering for the Partial/filt and
Early/filt approach is even more efficient as they restrict the sub-formula
Tian Ji null score to the successors of the initial states.

Naive The Naive approach has to check all strategies to conclude that
the formula is false. It is more efficient in this case, compared to the

148 Chapter 7. Experimental comparison

previous formula, because the evaluation of a single strategy is faster
when dealing with ⟪Γ⟫X operators than with ⟪Γ⟫U ones.

Naive/filt This approach has fewer strategies to check than the Naive
one, thanks to pre-filtering. But, as some reachable states have a 0 score
for Tian Ji and a losing horse, the number of strategies to check is still
large.

Partial Thanks to the restriction to adequate partial strategies, the
Partial approach has fewer strategies to check before concluding that the
formula is false.

Partial/filt Thanks to the very efficient pre-filtering, the Partial/filt
approach has very few strategies to check: there remains only N − 1
strategies, as only the initial moves of the game are kept (except the one
playing the best horse, as it cannot be used to win the first race). In this
case, most of the time (50 − 70%) is spent to perform pre-filtering.

Early The Early approach has to check the N initial strategies to
conclude that the formula is false. Indeed, it is not necessary to extend
them as the approach can directly conclude that there is no adequate
winning strategy. Nevertheless, it has to complete each strategy with the
compatible reachable moves to check that they are not winning, leading
to extra work compared to the Partial/filt approach.

Early/filt The Early/filt approach computes the same pre-filtering as
the Partial/filt approach. It thus still has to check N −1 strategies before
concluding that the formula is false. As for the Early approach, it has to
complete each strategy with the compatible reachable moves to check
that they are not winning.

Symbolic approaches The Symbolic approach encodes all strategies
for Tian Ji, and checks them all at the same time, while the Symbolic/filt
one benefits from pre-filtering and encodes fewer strategies.

Comparison The approaches with pre-filtering perform better than
their counterpart without pre-filtering. This is due to the fact that the
number of remaining strategies is way smaller than the initial number of
strategies.

Furthermore, the Early/filt approach performs worse than the Par-
tial/filt one because it has more work to do: for each initial move, it has

7.2. Measures and comparisons 149

to complete the strategy with compatible reachable moves before con-
cluding that the strategy cannot win. On the other hand, the Partial/filt
approach completes the strategy with pre-filtered moves only, and there
are no such moves as pre-filtering is limited to the initial states.

The Partial strategy performs worse than the Early one because it
has to check adequate partial strategies, while the Early approach only
has to check the N initial moves (and complete them before checking
them).

Regarding the naive and symbolic approaches, the former perform
worse than the latter because the former check all strategies (modulo
pre-filtering) one by one, while the latter can check them all at the same
time.

7.2.2 The three castles

This section presents the results for the properties of the three castles.
It includes the results for the backward approach as it is applicable in
this case.

φC1 = ⟪Castle1,Castle2⟫F Castle3 defeated

Figure 7.4 shows the evolution of verification time of the nine approaches
for checking the formula φC1 on the model of the castles. The size of the
model (Number of workers) is given as a triplet 1 2 3, meaning that the
first castle is defended by one worker, the second one by two and the
third one by three workers. The tests were performed on instances in
which there are at least as many workers in the first two castles as in the
third castle. Cases in which there are more workers in the third castle
than in the other two have not been considered because, in this case, the
formula is false even with perfect information.

Pre-filtering Depending on the size of the model, pre-filtering removes
from 18% (1 1 1 case) to 77% (1 1 2 case) of the moves. For the other
sizes, the gain of pre-filtering is between these two bounds.

The huge gain of 77% in the 1 1 2 is explained by the fact that the
power of the workers of the first two castles is comparable to the power
of the workers of the third castle. This means that the first two castles
workers do not have many winning moves, even if they know whether
their opponents defended their castle before and the actual health points
of the castles. On the other hand, in the 1 1 1 case, the first two castles
have more power compared to the third one and can more easily win if
they have perfect information. The other cases are between these two

150 Chapter 7. Experimental comparison

1
1

1

1
1

2

2
1

2

2
2

2

3
2

2

3
2

3

3
3

3

4
3

3

4
3

4

4
4

4

100

101

102

103

Number of workers

V
er

ifi
ca

ti
on

ti
m

e
(s

ec
)

Naive

Naive/filt
Partial

Partial/filt
Backward
Early

Early/filt
Symbolic

Symbolic/filt

Figure 7.4: Evolution of the verification time of the approaches for the
formula φC1 = ⟪Castle1,Castle2⟫F Castle3 defeated .

extremes. In all cases, the time needed to perform pre-filtering is always
negligible compared to the search for a winning strategy.

Naive approaches The number of strategies to check (6.9 × 109 for
the 1 1 1 case) is way too large for the Naive approach to find a winning
one within 30 minutes. Furthermore, the gain from pre-filtering for the
1 1 1 case is low, so the Naive/filt cannot find a winning strategy within
30 minutes, either.

Partial approaches The Partial approach succeeds in finding a win-
ning strategy within 30 minutes for the 1 1 1 case. Nevertheless, for the
1 1 2 case, it cannot find a winning one. In this case, there is the same
number of strategies, but it is more costly to check each strategy as the
model is bigger. On the other hand, the Partial/filt approach benefits
from pre-filtering and finds a winning strategy more quickly than the
Partial one. Nevertheless, it fails at finding a winning one in the 2 1 2
case.

Backward The Backward approach needs to reach at most half the
depth of the model to determine whether a strategy is losing or not in
the initial state. This is especially true in the smaller models in which
the workers of the first two castles have power comparable to those of the
third castle. For larger models, the first two castles workers have more

7.2. Measures and comparisons 151

power than those of the third castle, and the approach needs only one or
two steps, and no backtracking, to find a winning strategy. The increase
of time is simply due to the fact that the model becomes larger and larger,
and evaluating a single strategy—with the filter algorithms—takes more
and more time.

Early In the 1 1 1 case, the Early approach needs to reach up to half
the depth of the model to determine the strategies to be losing. This
allows the approach to find a winning strategy easily.

In the 1 1 2 case, it needs to split only a few steps to determine that
the strategies are losing. This is because the group of agents of the first
two castles have relatively less power than in the previous case.

In the larger cases, the Early approach needs to reach about half way,
again. The number of strategies increases with the number of workers to
consider, as well as the time needed to check larger models.

Early/filt In the 1 1 1 and 1 1 2 cases, the Early/filt approach as
fewer strategies to check than the Early approach because it benefits
from pre-filtered moves.

In the 2 1 2 case, the approach finds a winning strategy within the
same time as the Early approach.

In the 2 2 2, 3 2 2 and 3 3 3 cases, it very quickly finds a winning
strategy (after resp. 18, 37 and 52 strategies). It really benefits from
pre-filtering and finds a good strategy after a few steps. It still has to
reach about half way to find this winning strategy. In the 3 2 3 case, it
needs to consider many more strategies before finding a good one.

The Early/filt approach really benefits from pre-filtering and decreases
the number of strategies to check, compared to the Early approach, but
still struggles to find winning strategies for some cases such as the 3 2 3
and 4 3 3 cases.

Symbolic approaches The Symbolic approach has to encode and
check all strategies at the same time. As the number of workers increases,
there are more and more strategies for the group. Furthermore, the
Symbolic/filt approach cannot benefit from pre-filtering because all
equivalence classes are still present and all actions are still possible in
each of them. Thus, it performs exactly as the Symbolic one, as the time
to perform pre-filtering is negligible.

Comparison The naive approaches are not efficient as they have to
check all strategies before concluding. As the number of strategies is

152 Chapter 7. Experimental comparison

already huge for the first case, they cannot check them all within 30
minutes.

The partial approaches succeed in decreasing the number of strategies
to consider, and thanks to early termination, can stop as soon as a
winning strategy is found. Nevertheless, the number of adequate partial
strategies is still large, and the approaches quickly fail to find a winning
one.

The symbolic approaches are better. Nevertheless, pre-filtering does
not benefit to the Symbolic/filt approach, thus both approaches do the
same work.

The early approaches are better in the present scenario because they
can quickly determine that a partial strategy and all its extensions cannot
be winning. In particular, the Early/filt approach really benefits from
pre-filtering and drastically reduces the number of strategies it checks
for the larger models. The Early/filt approach shows some irregularities
in performances because it sometimes makes the right choices of actions,
and sometimes not.

The backward approach is the best in this scenario because it con-
centrates on the strategies that can effectively reach the target states. It
does not need to backtrack a lot before finding a winning strategy in the
initial state.

φC2 = ⟪Worker1,Worker2⟫F all defeated

Figure 7.5 shows the evolution of verification time of the nine approaches
for checking the formula φC2 on the model of the castles. This formula is
false for all checked sizes.

Pre-filtering A major difference between the 1 1 1 case and the others
is that, in the former case, the two workers have a strategy to achieve
their goal when they have perfect information, while it is not the case
for the greater sizes. Thus, pre-filtering, in the cases of larger models,
allows the Naive/filt, Partial/filt and Early/filt approaches to directly
determine that the formula is false, without checking any strategy.

Naive approaches The Naive approach cannot check the huge amount
of strategies to conclude that the formula is false within the 30 minutes
limit, even for the smallest model. On the other hand, the Naive/filt
one benefits from pre-filtering. For the first two models, pre-filtering
drastically reduces the number of strategies, and for the three last ones,
it leaves only one strategy to check.

7.2. Measures and comparisons 153

1 1 1 1 1 2 2 1 2 2 2 2 3 2 2

100

101

102

103

Number of workers

V
er

ifi
ca

ti
on

ti
m

e
(s

ec
)

Naive

Naive/filt
Partial

Partial/filt
Backward
Early

Early/filt
Symbolic

Symbolic/filt

Figure 7.5: Evolution of the verification time of the approaches for the
formula φC2 = ⟪Worker1,Worker2⟫F all defeated .

For the 1 1 2 case, pre-filtering directly concludes that the initial
state is not winning, but some other states of the model are still winning.
This is why the Naive/filt approach still has some work to do in the
1 1 2, but not after, while the Partial/filt and Early/filt approaches can
directly conclude, even in the 1 1 2 case.

Partial The Partial approach reaches the timeout even for the smallest
model size. Given the number of possible strategies (6.9 × 109) and the
fact that the approach must check them all to determine that the formula
is false, this result is not surprising.

Partial/filt On the 1 1 1 case, pre-filtering drastically reduces the
number of moves to consider, and thus the number of strategies the
Partial/filt approach needs to check before stating that the formula is
false. The approach shows that the remaining strategies are losing within
the time limit, while the Partial fails to do so. For the other cases,
pre-filtering performs all the work.

Backward On the 1 1 1 case, the Backward approach only needs to
reach about half way—that is, to fix actions in states up to half of the
depth of the model from the target states—to determine that there is
no winning extension of the strategy that reaches the all defeated states
from the initial state.

For the other cases, it directly determines that there is no extension of

154 Chapter 7. Experimental comparison

the strategy that is winning in the initial state, thanks to its evaluation of
the losing states. It does not need to extend the first considered strategy.

Early For the 1 1 1 case, the Early approach also needs to reach about
half way—from the initial state—to determine strategies to be losing, as
for the previous formula. This allows the approach to check all strategies
more easily.

For the other cases, the approach only needs to check the 16 initial
actions of the two workers to conclude that there can be no winning
strategy. Indeed there are no winning strategy in these cases, even with
perfect information, and the approach can determine it directly.

The increasing of time for the Early approach only comes from the
fact that the model is bigger and bigger, making the verification of these
16 strategies longer and longer.

Early/filt For the 1 1 1 case, the Early/filt approach does not gain
from pre-filtering. In fact, the moves that are filtered out are never
reached by the Early/filt approach because it can determine that the
strategies are losing before reaching them. Thus, it behaves like the
Early one on this case. For the other cases, the Early/filt approach does
not check any strategy since pre-filtering directly determines that there
can be no winning strategy.

Symbolic approaches The Symbolic approach behaves in the same
way for all model sizes. The only differences come from building a model
of increasing size. The actual fixpoint computation to determine the
winning strategies is exactly the same in all cases. On the other hand,
the Symbolic/filt approach gains from pre-filtering. It drastically reduces
the number of strategies to encode for the first two cases. For the three
last ones, there remains only one strategy to encode and check.

Comparison The Naive and Partial approaches do not handle the
smallest model because they have to check the huge number of strategies
to determine that there are no winning ones. On the other hand, the
Naive/filt, Partial/filt and Early/filt approaches only need pre-filtering
to conclude. The Early approach can also quickly determine that the
formula is false because it just needs to check all possible actions in the
initial state.

The Backward approach is also really quick because there is only one
possible strategy for the two workers in states satisfying all defeated—
doing nothing—,and there is no general strategy reaching these states

7.2. Measures and comparisons 155

from the initial one. The approach can thus directly conclude that the
formula is false. Finally, the symbolic approaches also perform well
because the BDDs they compute remain very small.

In conclusion, all approaches are comparable for the case 2 1 2 and
after because it is easy to show that the formula is false, except for the
Naive and Partial approaches that must check all possible strategies to
reach this conclusion.

7.2.3 The prisoners and the light bulb

This section presents the results for the properties of the prisoners model.

φP = ⟪prisoners⟫[¬executed U released]

Figure 7.6 shows the evolution of verification time of the eight approaches
for checking the formula φP on the model of the prisoners. The formula
is true in all tested models, showing that the prisoners effectively have a
strategy to release all the prisoners without being executed. The number
of partial strategies adequate for the initial state grows exponentially in
terms of the number of prisoners. Furthermore, the number of strategies
is already huge for the smallest model, compared to the model of Tian
Ji: the 2 prisoners have ≈ 20000 strategies while Tian Ji has only 24
strategies with 3 horses.

2 3 4

100

101

102

103

Number of prisoners

V
er

ifi
ca

ti
on

ti
m

e
(s

ec
)

Naive

Naive/filt
Partial

Partial/filt
Early

Early/filt
Symbolic

Symbolic/filt

Figure 7.6: Evolution of the verification time of the approaches for the
formula φP = ⟪prisoners⟫[¬executed U released].

156 Chapter 7. Experimental comparison

Pre-filtering Pre-filtering does not remove a lot of moves. Indeed,
when the prisoners have perfect information, the counting one knows
who has already been interrogated and can make a correct announcement
as soon as possible. The only moves that are removed are the ones that
lead to an incorrect announcement and the execution of all prisoners.

Naive approaches For the 2 prisoners case, the Naive approach finds
a winning strategy among the ≈ 20000 ones within 30 minutes, but fails
to find one for 3 prisoners. The Naive/filt approach acts like the Naive
one because pre-filtering removes some moves, but does not remove
equivalence classes, nor actions in these classes. The number of strategies
to check thus remains the same. So the approach finds a winning strategy
for 2 prisoners but not for 3.

Partial approaches The Partial approach is lucky to find a winning
strategy for 2 prisoners. For 3 prisoners, it does not find a good one
within 30 minutes. The Partial/filt one benefits from pre-filtering and
even achieves to find a winning strategy for 3 prisoners, but fails for 4
prisoners.

Early approaches The Early approach is quicker than the previous
approaches to find a winning strategy for 2 prisoners. It is explained
by the fact that as soon as the current strategy considers an incorrect
announcement, the approach stops extending it because it is surely losing.
The Early/filt one performs even better for 2 prisoners than the Early
approach, but it is the opposite for 3 prisoners. As the time needed
to perform pre-filtering is negligible, this simply means that the Early
approach makes better decisions than the Early/filt one for 3 prisoners.

Symbolic approaches The Symbolic approach is really efficient for
2 prisoners, but is less for 3. This is because there are sufficiently few
strategies to encode in the former case, but too many for the latter.
The other approaches that succeed in finding winning strategies for 3
prisoners simply made the right choices, as they are not able to check all
possible strategies within 30 minutes, while the symbolic approaches have
to check them all. The Symbolic/filt approach behaves like the Symbolic
one because pre-filtering does not remove any equivalence classes, nor
any actions in these classes.

Comparison As for the previous model, the number of strategies to
consider is huge. The naive approaches consider the same number of

7.2. Measures and comparisons 157

strategies, and have to check them all. The Partial approach is quicker for
2 prisoners because there are fewer partial strategies that are adequate
for the initial state. These three approaches fail at finding a winning
strategy for 3 prisoners.

The number of partial strategies to check by the Partial/filt approach
is lower than for the Partial one. This means that pre-filtering is useful
here. On the other hand, the partial approaches are less efficient than the
early ones because the latter can more easily rule out strategies. Both
early approaches behave similarly.

Finally, the symbolic approaches both behave in the same way, and
are really efficient when considering the strategies for 2 prisoners. Nev-
ertheless, for 3 prisoners, the number of strategies is too large and the
other approaches make the right choices and find a winning strategy
within the time limit, while the symbolic approaches have to consider all
strategies at once to conclude.

7.2.4 BDD variable reordering techniques

The implementation of the approaches is based on BDDs. It is well-known
that ordered binary diagrams performances are highly correlated to the
order of their variables. The implementation being based on NuSMV,
it inherits all the functionalities of the tool to dynamically reorder the
BDD variables. NuSMV proposes 19 different heuristics for dynamic
reordering. To assess their performances, 18 of these heuristics have been
tested with the approaches (see the NuSMV Manual for more information
about the different reordering heuristics [CCJ+]). The omitted one is the
exact heuristics that computes the optimal order. It can take a lot of time
and is not advised with more than 16 Boolean variables [CCJ+]. The 18
heuristics have been tested on different formulas, one for each approach.
These formulas have been chosen such that the time needed to solve
the model-checking problem is not too low—when it is too low, other
quick computations such as building the model can have a significant
impact on the overall model-checking time—, and not too high—hitting
the 1800 second timeout would yield no useful information for comparing
the heuristics. As for the previous tests, each formula has been checked
20 times. The formulas are:

• φP with 2 prisoners for the Naive approach;

• φT3 with 4 horses for the Naive/filt approach;

• φT1 with 6 horses for the Partial and Partial/filt approaches;

• φC1 with 4, 4 and 4 workers for the Backward approach;

158 Chapter 7. Experimental comparison

• φT2 with 4 horses for the Early approach;

• φT3 with 4 horses for the Early/filt approach;

• φC1 with 2, 1 and 2 workers for the Symbolic and Symbolic/filt
approaches.

Figure 7.7 shows the time needed for the Partial approach with pre-
filtering to verify the formula ⟪Tian Ji⟫F Tian Ji wins on the model
of Tian Ji with 6 horses.

First, these tests show that no heuristic is better than another. The
approach takes about 110 seconds to verify the formula, regardless of
the reordering technique. Second, these tests show the variability stays
small: the approach usually needs from 100 to 120 seconds to perform
the verification.

si
ft

ra
n

d
om

ra
n

d
o
m

p
iv

ot
si

ft
co

n
ve

rg
e

sy
m

m
et

ry
si

ft
sy

m
m

et
ry

si
ft

co
n
ve

rg
e

w
in

d
ow

2
w

in
d

ow
3

w
in

d
ow

4
w

in
d

ow
2

co
n
ve

rg
e

w
in

d
ow

3
co

n
ve

rg
e

w
in

d
ow

4
co

n
ve

rg
e

gr
ou

p
si

ft
g
ro

u
p

si
ft

co
n
ve

rg
e

a
n

n
ea

li
n

g
ge

n
et

ic

li
n

ea
r

li
n

ea
r

co
n
ve

rg
e0

50

100

V
er

ifi
ca

ti
on

ti
m

e
(s

ec
)

Figure 7.7: Time taken with all variable reordering heuristics with the
Partial/filt approach for checking formula φT1 on the model of Tian Ji
with 6 horses.

Figure 7.8 shows the time needed for the Early approach to verify
the formula ⟪Tian Ji⟫F ⟪Tian Ji⟫[¬King wins U Tian Ji wins] on
the model of Tian Ji with 4 horses. Again, these results show that no
heuristic is better than another and that the variability stays small.

7.2. Measures and comparisons 159

si
ft

ra
n

d
om

ra
n

d
o
m

p
iv

ot
si

ft
co

n
ve

rg
e

sy
m

m
et

ry
si

ft
sy

m
m

et
ry

si
ft

co
n
ve

rg
e

w
in

d
ow

2
w

in
d

ow
3

w
in

d
ow

4
w

in
d

ow
2

co
n
ve

rg
e

w
in

d
ow

3
co

n
ve

rg
e

w
in

d
ow

4
co

n
ve

rg
e

g
ro

u
p

si
ft

gr
ou

p
si

ft
co

n
ve

rg
e

an
n

ea
li

n
g

ge
n

et
ic

li
n

ea
r

li
n

ea
r

co
n
ve

rg
e0

50

100

150
V

er
ifi

ca
ti

on
ti

m
e

(s
ec

)

Figure 7.8: Time taken with all variable reordering heuristics with the
Early approach for checking formula φT2 on the model of Tian Ji with 4
horses.

The other tested approaches showed similar results. For all reordering
heuristics, the Naive approach took about 500 seconds to verify the
formula, the Naive/filt one took about 200 seconds, the Partial, Backward,
Early/filt and symbolic ones took about 100 seconds. No heuristic showed
better performances in verifying the formulas, with all tested model sizes
and approaches. This leads to the conclusion that the chosen heuristic is
not important in the present cases and that choosing the default sift one
is a sensible choice. This heuristic has been used for all the other tests
presented in this chapter.

7.2.5 Conclusions on the experiments

Based on the observations made on the different experiments presented
above, we can draw some general conclusions.

The best approach to check that there exists a winning strategy
when most of them are winning is the Partial approach. Nevertheless, it
performs really poorly when showing that there are no or few winning
strategies.

160 Chapter 7. Experimental comparison

The early approaches present a better trade-off since they take more
time to show that there is a winning strategy if most of them are winning,
but can more easily find one when there are only few winning ones,
or even show that there are no winning strategies. Nevertheless, in
the case in which only complete partial strategies are winning, and not
some incomplete ones that can be extended in winning ones, the early
approaches tend to perform extra useless work. Indeed, they have to
extend a strategy completely to find a winning one, and the intermediate
computations of losing and winning states do not yield any gain.

The symbolic approaches work better when there is a huge number
of strategies to consider because they can represent them in a compact
way. On the other hand, the other approaches cannot handle a huge
amount of strategies since they need to enumerate them. Furthermore,
the symbolic approaches also work well with nested strategic formulas.

Pre-filtering may or may not help. Either it removes a lot of losing
moves when there are big parts of the model in which the agents have
no winning strategies at all (even non-uniform ones), or it removes only
a few of them, producing extra useless work. In some cases, it can even
directly conclude that there are no winning strategies, avoiding the need
to check any strategy.

The symbolic approaches are more stable than the others, in the sense
that the time needed to perform the model checking is less dependent
on the checked property. This can be seen on the first two formulas of
the model of Tian Ji, that the Symbolic approach can evaluate for 4
but never for 5 horses in the available time. On the third formula, the
⟪Γ⟫X operator is easier to deal with because the fixpoint computation is
simpler, allowing the approach to evaluate the formula for 5 horses. On
the other hand, the other approaches have very variable performances
depending on the formula.

While the approaches can be efficient in finding winning strategies
when there are a lot of them, or to check that there are no winning
strategies when there are not even non-uniform ones, they can be very
unpredictable when there are only few winning strategies. Partial and
early approaches can take a long time to find the winning combinations
of moves, and symbolic approaches can have more complicated BDD
manipulations to perform in this case.

The Backward approach has been really efficient in finding strate-
gies that reach a given objective. Nevertheless, the limitations of the
approach—no fairness constraints, only ⟪Γ⟫U and ⟪Γ⟫X objectives—
limited the applicable cases.

While NuSMV and PyNuSMV propose some heuristics to dynamically
reorder the BDD variables, the tests showed that none of them is better

7.2. Measures and comparisons 161

than the others.
In summary, there is no best approach for all cases. The early

approaches present a good trade-off between the cases where there are
winning strategies and the cases where there are not. The symbolic
approaches beat the others when the number of uniform strategies is
really huge. And the backward approach is really good on cases it can
handle. Finally, pre-filtering is useful in some cases but produces extra
useless work in others.

Chapter 8

Part I: Conclusion

The first part of this thesis describes a new logic, ATLKirF , to reason
about time, knowledge and uniform strategies of agents under fairness
constraints. It also presents algorithms to check ATLKirF formulas on
imperfect information concurrent game structures.

The logic combines the CTL operators EX, EU and EW (as well
as their dual operators), the knowledge operators K, D, E and C, and
the ATL strategic operators ⟪Γ⟫X, ⟪Γ⟫U and ⟪Γ⟫W.

The temporal and epistemic operators are interpreted in the usual
way. The strategic operators reason about the existence of uniform
strategies of a group of agents with imperfect information for a given
objective. The structures on which the logic is interpreted, called iCGSf,
embed fairness constraints to rule out unfair behaviors, and a uniform
strategy of a group Γ is said to be winning if all the fair paths enforced
by this strategy satisfy the objective.

Such a logic is useful, for instance, to reason about multi-agent
programs that describe the actions, beliefs and goals of agents with
imperfect information [DJ10]. They are usually executed asynchronously
and need a scheduler to choose which program will act next. In this
context, it is interesting to reason about the strategies and the knowledge
of these agents under the assumption of a fair scheduler, and ATLKirF

can be used to this end.

Model checking ATLKirF formulas over the states of iCGSf is a
difficult problem. Chapters 4 and 5 showed that this problem is ∆2

P -
complete, that is, it needs a polynomial number of calls to an NP oracle
to be solved.

To solve this model-checking problem, this thesis proposes three
different approaches. The first approach is called the naive one. It

164 Chapter 8. Part I: Conclusion

consists in enumerating all uniform strategies of the group Γ and, for
each strategy, computing the states for which it is winning by using
fixpoint computations adapted to the objective ψ. This approach is
simple to understand and to implement, but experiments showed that it
is highly ineffective.

To overcome the ineffective naive approach, this thesis proposes the
partial approach. It is based on the notion of partial strategies that are
adequate for some states of interest. The key idea is that it is sufficient
to check all adequate partial strategies to conclude, instead of all possible
strategies, and there are fewer partial strategies. Furthermore, thanks to
optimizations such as early termination and caching, the partial approach
can be way more efficient than the naive one.

Another proposed improvement is pre-filtering. The idea is that,
while it is costly to compute the winning uniform strategies, it is way
cheaper to compute the moves that belong to winning general strategies.
Ignoring the moves that are not part of a winning general strategy allows
the approaches to decrease the number of strategies to check before
concluding. Nevertheless, practical experiments showed that pre-filtering
can be useless in some cases.

A third approach is the backward one. The idea is to generate the
winning strategies from the target states, instead of generating them
from the states of interest such as the initial states. Nevertheless, this
approach cannot handle fairness constraints and ⟪Γ⟫W formulas.

Two existing approaches have been adapted to the case of ATLKirF .
The first adapted approach is the early approach. It is based on the
work of Pilecki et al. [PBJ14]. The main idea is, instead of computing
adequate partial strategies, to generate incomplete ones, and to check
whether they can be extended into winning adequate partial strategies.
More precisely, this approach alternates between extending a partial
strategy and checking whether (1) all extensions are surely winning, or
(2) no extension can be winning. In the first case, the process can be
stopped there, with a winning uniform strategy. In the second case, the
process can restart with another partial strategy. The early approach
has also been extended to take pre-filtered moves into account.

The early approach improves the original algorithm of Pilecki et al.
in several ways. Their approach is limited to one initial state and to one
top-level strategic operator. Furthermore, it does not support fairness
constraints. The early approach removes all these limitations. Finally,
Pilecki et al. only check whether all extensions of one partial strategy
are winning while the early approach also checks whether no extension
can be winning, and can thus ignore losing strategies more quickly.

The early approach shares some ideas with the backward one. They

165

both start with small partial strategies and try to extend them until
they are either surely winning or surely losing. The difference between
them is that the early one starts with the states of interest while the
backward one starts with the target states. This difference is why the
early approach can handle any ATLKirF model and formula, while the
backward one cannot handle fairness constraints and ⟪Γ⟫W formulas.

The second adapted approach is the symbolic one. It is based on
the work of Huang and van der Meyden [HvdM14a, HvdM14b]. The
main idea is to build, from the original structure, a derived structure in
which the strategies are encoded in the states. Then the model-checking
problem is solved with fixpoint computations on this derived structure.
In other words, while the previous approaches explicitly enumerate the
strategies, this one proposes to encode them in a derived structure and
to manipulate them symbolically. The approach has also been extended
to take pre-filtered moves into account.

The symbolic approach is a restriction of the algorithm of Huang and
van der Meyden. The logic they support subsumes ATLKirF and can
express more properties. Nevertheless, restricting the idea to ATLKirF

leads to simplifications of the algorithm, such as the abandon of the
additional strategic agents. Furthermore, Huang and van der Meyden
did not considered pre-filtering losing moves.

BDD-based model-checking approaches are called symbolic because
they deal with sets of states—defined by BDDs—instead of individual
states. In this sense, the naive, partial, backward and early approaches
are symbolic ones, as they deal with sets of states defined by BDDs.
Nevertheless, they deal with strategies in an explicit way: instead of
working with sets of strategies, they work with individual ones defined
with BDDs. They can thus be seen as semi-symbolic approaches. On the
other hand, the symbolic approaches are fully symbolic ones: they deal
with sets of strategies by encoding them directly into BDD variables.

The advantage of enumerating the strategies is the fact that the
BDDs remain relatively small. Furthermore, the approaches can be very
efficient for finding winning strategies: as soon as they found one, they
can stop the process thanks to early termination. On the other hand,
as the symbolic approaches deal with all strategies at once, they cannot
stop as soon as a winning strategy is found. Nevertheless, enumerating
all strategies can become really time consuming when their number is
very large. This has been shown with the second formula on the Tian
Ji’s model, for which all strategies must be checked to determine that the
formula is false. On the other hand, the symbolic approaches handle all
strategies at once. This leads to larger BDDs as the derived structures
encode more information into BDDs. Nevertheless, these approaches

166 Chapter 8. Part I: Conclusion

can benefit from the full power of BDDs to represent sets of strategies
efficiently.

The approaches have been compared through practical experiments
using three models and six formulas. These experiments compared the
time needed to solve the model-checking problem. As expected, they
showed that the naive approach is not efficient at all as there is no
mechanism in this approach to make it efficient. On the other hand,
some formulas have been checked faster with the partial approaches,
others with the early ones, or with the symbolic ones. Furthermore, pre-
filtering has been shown to be useful in some cases, but a waste of time in
others. Based on these results, we can conclude that the three approaches
have comparable performances. Finally, the backward approach showed
very good performances compared to the other approaches on the small
subset of formulas it could handle.

8.1 Comparison with related work

This section discusses the link between the approaches presented in
Section 3.5 and the ones described in this thesis.

Lomuscio and Raimondi Lomuscio and Raimondi propose to per-
form the model checking of uniform strategies by enumerating all Γ-
uniform systems compatible with a given interpreted system, and by
concluding that the original system satisfies the formula if there exists a
Γ-uniform compatible system satisfying the formula [LR06b].

This approach is similar to the naive one without pre-filtering: com-
patible Γ-uniform interpreted systems are closely related to uniform
strategies, as both define sub-models in which the agents act uniformly.
Furthermore, both approaches work by enumerating the strategies or
compatible Γ-uniform interpreted systems, and by finding winning ones
to conclude that the formula is satisfied.

Nevertheless, as already explained in Section 3.5, the semantics
handled by the two approaches are different. In the case of Lomuscio and
Raimondi, the strategies must be winning for the whole formula, that is,
the same uniform strategy must be winning for all strategic sub-formulas,
and for all states of interest. On the other hand, ATLKirF semantics is
local to the sub-formula, and two different formulas or distinguishable
states can have a different winning strategy. ATLKirF semantics follows
the ideas of ATL and ATLir, where two strategic sub-formulas can
be satisfied because of two different strategies, while the semantics of
Lomuscio and Raimondi diverges from them.

8.1. Comparison with related work 167

Calta et al. Calta et al. propose an algorithm to model check ATLir
formulas over sets of states of iCGS [CSS10]. The problem they solve
is closely related to the model checking of ATLKirF . Nevertheless, this
approach is tailored to the case of ATLir and it is difficult to adapt it to
the case of ATLKirF .

Pilecki et al. The early approach described in this chapter is based
on the one presented by Pilecki et al. [PBJ14]. Nevertheless, the original
approach has been heavily extended, as explained above.

First, the approach described by Pilecki et al. is limited to one initial
state and one top-level strategic operator. Those limitations introduce
simplifications to the problem they solve: they can stop the process as
soon as they find a winning strategy for this single initial state, instead
of keeping track of the states for which they already know the truth
value, as proposed with early termination. Furthermore, considering only
one state prevents the technique to be applied to sub-formulas for which
we need to considerate the same strategy for different states. The early
approach of this thesis handles any subset of states of interest, making it
usable to check strategic sub-formulas in subsets of states.

Second, the approach of Pilecki et al. only uses the idea that we
can stop looking for winning strategies as soon as all extensions of the
current partial strategy are winning (corresponding to Lines 12 to 17
of Algorithm 6.2). The approach described in this thesis extends the
original idea of Pilecki et al. by also trying to filter out states for which
we know no winning extension exists.

Third, the early approach has been extended with pre-filtering, and
the experiments of the previous chapter showed that this extension can
be useful to make the process more efficient.

Pilecki et al. do not describe in which order the strategies are selected
by their algorithm. They can be explored in a depth-first search manner,
taking one strategy and extending it as long as necessary, or they could
be explored in any other manners. On the other hand, the early approach
is tailored to a depth-first search by design. It would be interesting to
adapt the latter to support other exploration orders, and to measure
their impact on experimental results.

Fourth, the approach of Pilecki et al. does not handle fairness con-
straints. Finally, while the early approach has been designed to be
implemented with binary decision diagrams, the algorithm of Pilecki et
al. has been implemented in an explicit framework.

Epistemic Strategy Logic The symbolic approach presented in this
thesis is a particular case of the approach of Huang and van der Mey-

168 Chapter 8. Part I: Conclusion

den [HvdM14b]. Their work describes a more general logic than ATLir
that explicitly quantifies over strategies of agents [HvdM14a], and ex-
plains how to encode the model-checking problem of ATLir [HvdM14b].
Thanks to their logic, it is, for instance, possible to express the fact that
an agent has a strategy to ensure two objectives at the same time.

On the other hand, the symbolic approach presented in this thesis
is tailored to the verification of ATLKirF . More precisely, the original
approach of Huang and van der Meyden is tailored by restricting the syn-
tax of the logic to ATLKirF , that is, asking every strategy quantification
being followed by only one objective. Furthermore, the original work of
Huang and van der Meyden defines so-called strategic agents to be able
to reason about states of EncStrats(S) that share the same strategy. In
our setting, EquivQEqStr is defined such that these strategic agents are
not necessary. They are thus omitted.

Nevertheless, the approach of Huang and van der Meyden is slightly
different from the symbolic approach. By construction, Huang and van
der Meyden force every agent to act uniformly. Indeed, they encode
the uniform strategies of all agents in the derived structure, and the
transition relation is defined such that all agents follow the strategy
encoded in the current state. In the context of ATLKirF , the agents
outside Γ can act freely and they do not have to make uniform choices.
This is achieved by encoding different transition relations for different
groups of agents. In other words, the semantics supported by the work of
Huang and van der Meyden puts more limitations on the capabilities of
the opponents than ATLKirF semantics. Finally, the symbolic approach
has been extended with pre-filtering, while Huang and van der Meyden
do not consider this extension.

Observation-based two-player games Raskin et al. propose an
approach to check the existence of winning observation-based strategies
with perfect recall in the context of two-player games [RCDH07]. Their
algorithm is based on fixpoint computations on sets of states and works
with antichains. The objectives of their strategies are ω-regular ones,
such as Büchi and coBüchi objectives.

Similarly, Bozianu et al. propose another antichain-based algorithm
for checking the existence and synthesizing strategies with imperfect
information and perfect recall in the context of two-player games [BDF14].
The objectives of their strategies are defined using an extension of LTL
with knowledge operators.

These problems are related to the problem of ATLKirF model check-
ing. Nevertheless, they put different limitations on the problem to make
it decidable. Remember that ATL∗iR model checking is undecidable. To

8.2. Future work 169

solve this problem of undecidability, ATLir and ATLKirF are limited to
memoryless strategies. The approaches of Raskin et al. and Bozianu et
al. limit the games to be two-player games. In this context, checking the
existence of winning memory-full uniform strategies becomes decidable.
Furthermore, the approaches they propose, based on antichains, are far
from the BDD-based algorithms proposed in this thesis.

8.2 Future work

Many improvements can be made to the approaches presented in the
first part of this thesis. This section discusses some of them as future
work.

Experiments with real-life cases Chapter 7 performed some exper-
iments. But the tested models and formulas are toy models based on the
ones found in the literature. They do not necessarily reflect the structure,
size and complexity of real-life cases. It would be interesting to find
real-life cases of iCGSf and to test the approaches on them. Nevertheless,
one of the main obstacles with such cases would be their size as the
experiments showed that the approaches do not scale well.

Investigating the initial order of BDD variables Some experi-
ments of Chapter 7 showed that, while NuSMV and PyNuSMV propose
several heuristics to dynamically reorder the BDD variables during the
process, none of these heuristics had a significant impact on the perfor-
mance. Nevertheless, there exist other ways to improve the performance
of BDD-based algorithms by manipulating this variable order. In partic-
ular, the initial order of the variables plays a big role in the successive
orders computed by the heuristics. For the experiments of this thesis,
the standard initial order defined by the order in which the variables
have been declared in the description of the model has been used. It
would be interesting to evaluate the impact of this initial order and to
define, if possible, general guidelines for specifying efficient initial orders.

Fine-tuning pre-filtering The idea of pre-filtering is to ignore the
moves that cannot be winning for the group of agents when dealing with
a particular objective. By ignoring some moves, the number of strategies
to consider is lowered, reducing the effort to find a winning one.

As shown by the experiments, pre-filtering can drastically reduce the
number of strategies to consider, but can also lead to extra useless work,
when all moves belong to some general strategy to win the objective. As

170 Chapter 8. Part I: Conclusion

pre-filtering can help or not, depending on the model and the strategic
formula, it would be interesting to extend the approaches to allow the
user to specify which strategic sub-formulas should be handled with
pre-filtering, and which should not. This would give her a finer control
on how and when pre-filtering is applied. An even better solution would
be to design heuristics to automatically determine whether pre-filtering
should be applied or not for each sub-formula.

Furthermore, pre-filtering triggers the evaluation of sub-formulas on
a large part of the model. When the sub-formulas include strategic ones,
the effort to perform the model checking on such a large subset of states—
usually the whole set of reachable states—is large. Some approximations
could be used to evaluate these sub-formulas. For instance, the strategic
sub-formulas could be evaluated under perfect information, needing the
application of a polynomial algorithm instead of a ∆2

P one. This would
lead to less ignored moves, as the approximation would keep some moves
that should be excluded, but pre-filtering would be way less costly when
dealing with strategic sub-formulas.

Investigating other traversal strategies It has already been men-
tioned that the original algorithm proposed by Pilecki et al. does not
define an order in which the strategies are traversed, while the adapted
early approach makes the choice to enumerate them in a depth-first search
manner (DFS). In fact, all the three semi-symbolic approaches—the naive,
partial, and early ones—enumerate the strategies in a DFS manner. It
would be interesting to modify them to be able to use different orders
such as breath-first search, and to evaluate their relative performances
on different models and formulas.

Fully forward exploration The semi-symbolic approaches presented
in this thesis are based on filter algorithms that perform a backward
exploration of the structure under investigation to evaluate a given
strategy, and on algorithms that perform a forward exploration —or
a backward one, for the backward approach—of the same structure to
generate the strategies. It would be interesting to develop algorithms
that perform both explorations in a forward manner. Nevertheless, some
limitations have been highlighted when performing a forward exploration
for the model checking of CTL formulas (see for instance [INH96] and
[HKQ98] for more information). It would be necessary to study these
limitations to determine whether they also apply to ATLKirF model
checking.

8.2. Future work 171

Reducing the number of choices of actions The number of possi-
ble uniform strategies is directly linked to the number of actions an agent
can choose in equivalence classes of indistinguishable states. Finding
ways to reduce this number of actions can thus lead to performance
improvements. Given a state q and two actions a1 and a2 for agent ag, if
playing a1 or a2 leads to the same set of states—that is, if the opponents
of ag can force the next state to be in the same set of successors, for
both actions—then we can consider that these two actions are equivalent.
By grouping actions into equivalent classes, we could thus reduce the
number of choices that matter, and reduce the number of strategies to
consider. The gain could be even higher by considering groups of agents
instead of individual ones.

CTL∗-like objectives ATLKirF has been limited to CTL-like objec-
tives, that is, ⟪Γ⟫X, ⟪Γ⟫U and ⟪Γ⟫W ones. It would be interesting to
investigate the introduction of more general objectives consisting in any
combination of the propositional and path operators, à la CTL∗. Two
major problems should then be tackled: (1) how to check a particular
(partial, incomplete) strategy for such an objective, and (2) how to adapt
pre-filtering. One advantage would be that, in this case, handling fairness
constraints could directly be done within the logic itself.

Mixing approaches The previous chapter showed that the partial,
early and symbolic approaches are comparable in efficiency, and that
they are efficient in different situations. It would be interesting to mix
them, to evaluate different sub-formulas using different approaches. For
instance, given the formula ⟪Γ1⟫F p ∧ ⟪Γ2⟫G q, the first sub-formula
⟪Γ1⟫F p could be evaluated with the backward approach while the second
one ⟪Γ2⟫G q could be evaluated with the early approach. The approach
to use for each sub-formula could be defined by the user, but it would
also be interesting to investigate criteria to automatically select the best
approach.

Part II

Rich diagnostics
for multi-modal logics

Chapter 9

Explanations for modal logics

A major benefit of model checking is the capability to generate a counter-
example when a property is not satisfied. For linear temporal logics
such as LTL, such a counter-example is a single path of the system.
On the other hand, the counter-examples of CTL are not linear in
general [BEGL01], and their branching feature is even more critical when
dealing with multi-modal logics such as CTLK, or with the µ-calculus.

To illustrate the need for tools and functionalities to handle complex
counter-examples, let us consider the CTL formula AF AG initialized
saying that the system always reaches a state from which it stays initial-
ized forever. A counter-example for this formula is not necessarily linear
as it has to exhibit an infinite path such that, from each state, there exists
another path reaching a non-initialized state. Such a counter-example is
illustrated in Figure 9.1.

s0

¬initialized

s1 s2 s3

s4

s5

¬initialized

s6

s7

¬initialized

s8

¬initialized

Figure 9.1: A branching counter-example for the formula
AF AG initialized . The main path is highlighted.

Unfortunately, most of the current state-of-the-art model checkers
such as NuSMV only return linear counter-examples for CTL formu-

176 Chapter 9. Explanations for modal logics

las [CGMZ95]. In particular, for the formula above, NuSMV would
simply return the main path, without including the secondary paths. On
the other hand, there exists a lot of research on defining, generating and
presenting such kinds of rich explanations. This chapter describes the
existing work on the subject. Section 9.1 first summarizes the solutions
brought for solving the problem of representing, generating and visualiz-
ing explanations for CTL. Section 9.2 describes the solutions proposed
for extensions of CTL such as temporal epistemic logics. Section 9.3
presents tree-like annotated counter-examples for temporal-epistemic
logic. Section 9.4 discusses the solutions for the µ-calculus.

9.1 Explanations for CTL model checking

CTL has branching counter-examples. Solutions are thus needed
to represent them, generate them, and visualize and manipulate them.
Many solutions to these problems have been proposed for the past 25
years, starting from the work of Rasse [Ras92].

9.1.1 Branching explanations for CTL model checking

Explanations based on explicative sequences Rasse describes ex-
planations for a variant of CTL without the next operator (X) interpreted
over Kripke structures with non-serial transition relations labelled with
actions [Ras92]. These explanations are composed of lists of paths of the
systems—called explicative sequences—with states and paths labelled
with the sub-formula they explain, and transitions labelled with actions
of the system. They provide a reason for why existential quantifiers are
satisfied by particular states of the system.

The explicative sequences are paths of the structure. Their shape
depends on the formula they explain. For instance, an explicative se-
quence for the formula E[φ1 U φ2] is a finite path of states satisfying φ1

reaching a state satisfying φ2.

In addition to the structure of explanations, Rasse discusses about
minimal explicative sequences, from which minimal explanations are
built. Intuitively, an explicative sequence is minimal if either it is finite
and has no cycle (no repeating state), or it is infinite and has only one
so-called elementary cycle. Minimal explanations have the same structure
as standard ones but are composed of minimal explicative sequences.

Rasse also describes a way to simplify explanations according to a
given set of visible actions, and briefly presents the implementation of
the technique in the tool Cléo.

9.1. Explanations for CTL model checking 177

Justifications for tabled logic programming Roychoudhury et
al. propose to produce justifications from tableau-based proof systems
executed by a tabled logic programming system [RRR00]. Such a logic
programming system uses tables to store explored proof steps to avoid
infinite inference loops. When a query is proved true or false, it is
difficult to understand why. Indeed, standard debugging techniques for
logic programming allow the user to inspect the search for a proof—with
break points, inspection, assertions, etc.—but are not suited to get the
part of the search tree that is responsible for the final outcome.

Roychoudhury et al. propose an algorithm to extract, from the tables
used to store intermediate proof steps, the smallest part of the proof
tree responsible for the final outcome, that they call justifications. More
precisely, a justification for explaining why a query Q is true of false
in a given proof system R is a directed acyclic graph (DAG) of proof
steps—with leafs being fail or fact nodes indicating false and true
ground results, respectively—, rooted at the node Q, and where edges are
applications of the rules of the proof system. Furthermore, justifications
use the keyword ancestor to pinpoint looping branches—with no indi-
cation of the exact ancestor along the history. Justifications contain the
necessary steps needed to show the final outcome of the proof. Finally,
the DAG can be reduced to match the high-level proof system instead of
its encoding into the logic programming system.

Roychoudhury et al. apply the technique to CTL model checking
performed by encoding the model along the rules expressing the semantics
of CTL operators. Model checking is then performed by writing a query
encoding whether the model satisfies the given formula or not. For
instance, Figure 9.2 presents a simple Kripke structure and Figure 9.3
shows the justification for why q0 does not satisfy the AG p formula.

q0p

q1

p

q2 p

q3

Figure 9.2: A simple Kripke structure [RRR00].

The same research group later improved the algorithm generating
justifications by taking into account non-tabled proof steps [GRR01].
These steps are not present in the memo tables, making the original

178 Chapter 9. Explanations for modal logics

models(q0, ag(p))

tnot(models(q0, ef(not(p))))

models(q0, ef(not(p)))

trans(q0, q1) models(q1, ef(not(p)))

trans(q1, q3) models(q3, ef(not(p)))

models(q3, not(p))

fact

Figure 9.3: A justification for why q0 violates AG p [RRR00].

algorithm evaluate them repeatedly. The improved algorithm uses lazy
generation of justification and sharing of common sub-justifications to
reduce both the time and the memory needed to generate justifications.

A second algorithm has been proposed to further improve the perfor-
mances of generating justification [PGD+04]. Instead of using the data
stored in memo tables a posteriori to generate justifications, this new
algorithm generates them during the evaluation process. This is done
by deriving, from the original proof system, a new proof system that
computes the justification at evaluation time. Experimental results with
XMC, a µ-calculus model checker [RRS+00], showed that generating the
justification on-the-fly instead of after the evaluation really improves the
generation process with little overhead to the evaluation time.

CTL multi-paths Buccafurri et al. got interested in the subset of
ACTL formulas that have linear counterexamples. These formulas φ are
such that, whenever a state q of a structure S violates φ, there exists an
infinite path completely showing why the violation occurs [BEGL01]. In
this context, they make several contributions:

• they precisely capture the notion of counterexample and linear
counterexample through their definition of multi-paths;

• they show that whenever S, q /⊧ φ, it is NP-hard to determine
whether there exists a linear counterexample;

• they show that it is PSPACE-hard to decide whether a given ACTL
formula always admits a linear counterexample in case of violation;

9.1. Explanations for CTL model checking 179

• they define a set of templates of ACTL formulas such that any in-
stantiation of such a template yields a formula for which there exists
a linear counterexample, whatever the structure under interest;

• they provide a polynomial time algorithm to produce linear coun-
terexamples for instantiations of the templates they defined.

Buccafurri et al. capture the notion of counterexample with multi-
paths. A multi-path is either a single state q or an infinite sequence
of multi-paths. A multi-path represents an infinite tree with the main
path serving as a backbone. For instance, ⟨⟨q0, q1, q1, ...⟩, q2, q2, ...⟩ is a
multi-path representing a tree with two branches: the main branch is
q0, q2, q2, ..., and the other branch is q0, q1, q1, This multi-path is also
illustrated in Figure 9.4.

q0

q1

q1

q2

q2

Figure 9.4: A simple multi-path. The main path is highlighted [BEGL01].

The proposed generating algorithm takes advantage of the fact that
the given formula must have a linear counterexample by its structure,
and works inductively on the structure of the formula to produce one.
For instance, if φ = A[p V φ′] is violated1—that is, E[¬p U ¬φ′] is
satisfied—, then the algorithm produces a path of states violating p
and reaching a state violating φ′, makes it the backbone of the linear
counterexample, and expands it by appending a counterexample for why
the last state of the path violates φ′.

Tree-like counter-examples Clarke et al. propose tree-like counter-
examples for the universal fragment of an extended branching time
logic based on ω-regular operators called AΩ [CJLV02]. This fragment
subsumes ACTL, the universal fragment of CTL. The logic AΩ is based

1The φ1 V φ2 path operator is a variant of the U and W operators such that
φ1 V φ2 ≡ ¬(¬φ1 U ¬φ2).

180 Chapter 9. Explanations for modal logics

on atomic propositions, the propositional operators ∧ and ∨, the universal
path quantifier A, and so-called ω-regular linear time operators. These
operators describe paths that can be checked against regular expressions
composed of the special symbol � (don’t care), and one symbol per
sub-formula. For instance, the regular expressions corresponding to the
path formulas G φ1 and φ1 U φ2 are given by (M1)ω and (M1)∗M2

respectively, where Mi is the symbol corresponding to states satisfying
φi. The key characteristics of such path operators is their monotonicity,
ensuring the fact that there exists a tree-like counter-example for any
violated AΩ formula.

A tree-like counter-example is a Kripke structure with a tree-like
underlying graph. A directed graph is tree-like if every strongly connected
component (SCC) is a simple cycle, and the graph where every SCC
is replaced by a single node is a directed acyclic graph. For instance,
Figure 9.5 presents a tree-like counter-example for the ACTL formula
AG ¬x ∨AF ¬y—that is, a witness for EF x ∧EG y.

y

x

y

y y

Figure 9.5: A tree-like counter-example for AG ¬x ∨AF ¬y [CJLV02].

The paper also presents a symbolic algorithm to build these counter-
examples. It supposes the existence of a sub-algorithm that can produce
a path matching the regular expression of any ω-regular operator. Such
a sub-algorithm can be implemented by building the Büchi automaton
corresponding to the regular expression of the operator and finding an
accepted path in the product of the automaton and the Kripke structure
violating the formula. With this sub-algorithm, the generating algorithm
extracts a path showing why the top-level ω-regular operator is violated
and recursively calls itself to generate the sub-branches of the counter-
example explaining why sub-formulas are violated.

Finally, the paper illustrates the applicability of the presented tech-
nique to two use cases: ACTL model checking and counter-example
guided abstraction refinement.

9.1. Explanations for CTL model checking 181

9.1.2 Proof-like counter-examples

Gurfinkel and Chechik propose the idea of proof-like counter-examples for
CTL [GC03a] and for a multi-valued extension of CTL [GC03b]. These
counter-examples are derived from the set of rules of a proof system for
CTL, and show every proof step explaining why a formula is satisfied by
some state of some Kripke structure. For instance, Figure 9.6 shows a
simple proof (with notations adapted from the original paper) showing
why some state q1 of some Kripke structure satisfies the CTL formula
EX p, by exhibiting a successor q2 satisfying p.

q1 → q2

p ∈ L(q2)
q2 ⊧ p

atomic

q1 → q2 ∧ q2 ⊧ p
∧

∃q ∈ Q s.t. q1 → q ∧ q ⊧ p
one − point

q1 ⊧ EX p
EX

Figure 9.6: A simple proof of why q1 ⊧ EX p.

In particular, these proofs—and thus the corresponding proof-like
counter-examples—completely explain why a CTL formula is satisfied,
that is, branches are provided when needed, and universal operators are
explained by expanding all successors. These counter-examples are thus
very detailed, as every step of the proof is given.

Gurfinkel and Chechik give an algorithm to generate these proofs. It
is similar to proof-based local model checkers [SW91] that incrementally
build proofs to check whether a formula is satisfied in a given model,
but instead of testing all rules, it uses a global model checker to find

applicable ones. For instance, when dealing with the ∨ rules
q ⊧ φ1

q ⊧ φ1 ∨ φ2
∨

and
q ⊧ φ2

q ⊧ φ1 ∨ φ2
∨, a local model checker must try a rule and backtrack

if it is not conclusive to try the other. On the other hand, the algorithm
proposed by Gurfinkel and Chechik uses a global model checker to
determine whether q ⊧ φ1 or q ⊧ φ2, and to apply the corresponding rule,
avoiding the need for backtracking.

From these proofs, they build proof-like counter-examples. These
counter-examples are parts of the Kripke structure, where states are
linked to the proof steps that apply to them. For instance, the proof-like
counter-example corresponding to the proof of Figure 9.6 is given in

182 Chapter 9. Explanations for modal logics

Figure 9.7. These counter-examples allow the user to get a part of the
structure that is responsible for the satisfaction (instead of a single path),
and to get more details about why a particular state is part of this
explanation thanks to the proof part.

q1

q2

q1 → q2 ∧ q2 ⊧ p

∃q ∈ Q s.t. q1 → q ∧ q ⊧ p
one − point

q1 ⊧ EX p
EX

p ∈ L(q2)
q2 ⊧ p

atomic

Figure 9.7: A proof-like counter-example for q1 ⊧ EX p.

To control the aspects of the proof, Gurfinkel and Chechik provide
two mechanisms [CG05, CG07]. First, the user can define visualization
strategies that control the way the counter-example is displayed. For
instance, the user can define starting and stopping conditions for the
visualization: the part of the counter-example between a state that
satisfies the starting conditions and a state satisfying the stopping ones is
displayed. These strategies can also control how the states are displayed
and what information is retained in the visualization, allowing the user
to control the verbosity of the proof annotations. Finally, the resulting
counter-example can be examined in a forward fashion—from the state
violating the formula to its successors—, or in a backward fashion, from
faulty states to their source.

The second mechanism allows the user to control the generation of
the proof. The user-specified strategies can inspect the current state of
the proof, add rules and choose the one that must be used for the next
step, and react to rules applications. Thanks to these strategies, the
user can, for instance, choose the smallest subgoal—that is, choose the
smallest sub-formula for φ1 ∨ φ2, if both are satisfied—prefer exploring
some pre-defined parts of the model, or impose sequential constraints on
the paths embedded in the proof. This mechanism also allows the user
to generate the proof interactively, the user choosing the rule to apply
next, or the successor to exhibit for explaining EX formulas.

Finally, Gurfinkel and Chechik describe KEGVis, a graphical tool
for browsing counter-examples. The tool provides several views of the
counter-example—a high-level view of the proof, the proof itself, the

9.1. Explanations for CTL model checking 183

Kripke structure part—and implements some pre-defined visualization
and generation strategies that the user can directly apply.

9.1.3 CTL and Boolean equation systems

Boolean Equation Systems (BES) are sets of equations enriched with
fixpoint operators. They are used to perform model checking for CTL.
More precisely, a BES is defined as a list of blocks, that are composed
of a parity indicator µ or ν and a set of Boolean equations. A Boolean
equation is an identity Xi = fi, where Xi is a Boolean variable and fi a
disjunction or a conjunction of other Boolean variables Xj . It is possible
to construct, from given CTL formula φ, Kripke structure S and state
q of S, a BES such that the top-level variable X is true if and only if
S, q ⊧ φ.

Diagnostic for Boolean equation systems Mateescu proposes a
way to generate examples and counter-examples for Boolean equation
systems (BES) [Mat00]. More precisely, given a BES, we can derive
an extended Boolean graph (EBG), that is, a graph where vertices are
the variables of the BES, the edges denote the (direct) dependencies
between variables, and vertices are labelled with ∨ or ∧, depending on the
operator used in the corresponding equation of the system. Furthermore,
an EBG is extended with a frontier composed of a subset of the vertices.

Let M be a closed BES—that is, a BES where all variables are the
left-hand side of some equation—and Xi a variable. A witness for why
Xi is true—called an example in [Mat00]—is the part of G effectively
showing why Xi is true. More precisely, an example for Xi is a sub-graph
G′ of G such that Xi is still true in G′. Furthermore, as there are several
such sub-graphs—including G itself—the paper defines a partial order
on such sub-graphs. There are thus minimal G′, and the paper describes
an algorithm to generate a minimal example for why Xi is true in G.
Examples and counter-examples are tightly linked, and the paper also
describes witnesses for why Xi is false. These counter-examples are also
sub-graphs of G, on which the same partial order applies. Finally, the
paper provides an algorithm to generate counter-examples.

Evidence-based model checking Tan and Cleaveland propose the
notion of support set, a data structure based on Boolean equation systems
and storing the reasons for a model checker result [TC02]. The data
structure is independent from the actual model-checking technology,
and the paper describes how a support set can be extracted from an
automata-based model checker for CTL∗ [KVW00].

184 Chapter 9. Explanations for modal logics

A support set for a given BES is a rooted directed graph where
nodes are variables of the BES, with the top-level variable X as the
root. Furthermore, any cycle in the graph is such that the shallowest
variable—the variable belonging to the first encountered block of the
BES—is in a ν-block if the value of X is true, or in a µ-block otherwise.
Intuitively, the transition relation Xi →Xj reflects the fact that Xi has
its value (true or false) because Xj has its value. The graph thus encodes
the dependency relation between variables.

Tan and Cleaveland show that the support set extracted from an
automata-based CTL∗ model checker can be used to extract the part of
the system responsible for the property being violated, that is, they show
how to extract a counter-example. Indeed, there is a bijection between
variables Xi of a support set and state-formula pairs ⟨q, φ⟩, such that Xi

is true if and only if q satisfies φ. Thus an edge between Xi and Xj in a
support set encodes the fact that some qi satisfies some φi because some
qj satisfies some φj . From this information, it is possible to extract the
underlying part of the system explaining why the property is violated or
satisfied, depending on the outcome of the model checker.

Tan and Cleaveland also use support sets to certify the result of a
model checker, by showing how to check the essential conditions that
lead to a correct model-checking result. Finally, based on the notion of
support sets, Tan propose a generic interface called PlayGame on top of
the CWB tool for playing diagnostic games in which the user can play
a game against the system to understand why a formula is satisfied (or
violated) [Tan04].

9.1.4 Other solutions

Other authors proposed solutions to explain why a CTL formula is
satisfied (or not) by a given state of a system.

Witness and counter-example automata Meolic et al. are inter-
ested in witnesses and counter-examples for Action-based CTL—that
they call ACTL, not to be confused with the universal fragment of
CTL—interpreted over labelled transition systems (LTSes) [MFG04].

Labelled transition systems are structures S = ⟨Q,Act, T, q0⟩ where Q
and Act are sets of states and actions, respectively, T ⊆ Q ×Act ×Q is a
transition relation labelled with action, and q0 is the initial state. Action-
based CTL is a variant of CTL where path operators are annotated
with propositional formulas over actions. For instance, the formula
E[true aU(b∨c) true] expresses the fact that there exists a path of actions
a ending with an action b or c.

9.1. Explanations for CTL model checking 185

Their primary concern is about generating test cases, so they are only
interested in a fragment of the logic that accepts finite linear witnesses
and counter-examples, that they capture through a particular grammar.
Given an LTS S, a state q of S, and an ACTL formula φ, they propose an
algorithm to generate an automaton accepting all finite linear witnesses
(or counter-examples) explaining why q satisfies (or not) φ in S. For
instance, Figure 9.8 presents a small LTS, and Figure 9.9 shows a witness
automaton for the formula EF EXb true. The automaton effectively
captures all finite linear witnesses for the formula as such a witness can
stay in wc0 (through a) for a while, then must go to wc1 or wc3 to show
that b can happen once or twice, respectively.

q0 q1 q2a
b b

Figure 9.8: A simple labelled transition system [MFG04].

wc0 wc1 wc2

wc3

a

b

b b

Figure 9.9: A witness automaton for q0 ⊧ EF EXb true [MFG04].

Game-based counter-examples Shoham and Grumberg propose a
game-based framework for CTL counter-examples and 3-valued abstrac-
tion refinement [SG07]. In this framework, a concrete Kripke structure
is abstracted into a Kripke Modal Transition System (KMTS) with two
transition relations: the may transition relation links two abstract states
qa1 and qa2 if there exists two concrete states q1 and q2—behind qa1 and
qa2 , respectively—such that q2 is a successor of q1. The must transition
relation links qa1 and qa2 if, for all concrete state q1 behind qa1 , there exists
a successor q2 behind qa2 .

Using these abstract systems, Shoham and Grumberg define a 3-
valued semantics for CTL in which a CTL formula is true, false or
indefinite in a given abstract state. The idea behind this semantics is
that, if the given CTL formula is true (resp. false) in some abstract
state qa, then it is true (resp. false) in all states behind qa, otherwise,
the formula is indefinite in qa and nothing can be concluded about the
concrete states.

186 Chapter 9. Explanations for modal logics

To evaluate a given CTL formula over a given KMTS, Shoham and
Grumberg propose a game-based coloring algorithm. The idea of the
algorithm is to derive, from the KMTS S and the formula φ, a game
between two players Abelard and Eloise. Abelard tries to refute the
formula while Eloise tries to satisfy it. The game is composed of pairs of
states of S and sub-formulas of φ. At each step, the player that chooses
the next step is based on the formula of the current node: if the formula is
an existential one—such as EX or ∨—Eloise chooses the next step, while
if the formula is a universal one—AX and ∧ nodes—Abelard makes the
choice. The formula φ is true in the initial node of the game if Eloise has
a strategy to win the game, φ is false if Abelard has a winning strategy,
and the formula is indefinite otherwise.

The proposed algorithm determines the nodes of the game in which
each player has a winning strategy, and the ones in which none of them
can win. It colors each node, starting from the leaves of the game,
and determines the color of a node—T for true, F for false, and ? for
indefinite—based on its successors and its formula. In this context,
Shoham and Grumberg define annotated counter-examples as the sub-
part of the game graph that is sufficient to show why the root node has
the F color. For instance, Figure 9.10 shows a (concrete) KMTS, and
Figure 9.11 the game graph for the formula A[p V q]—equivalent to
¬E[¬p U ¬q]—evaluated on q0, where gray nodes are colored with F
and white nodes with T . As the KMTS is concrete and not abstract,
the game graph contains no node colored with ?. Figure 9.12 shows the
corresponding counter-example.

The algorithm and the annotated counter-example it generates are
tightly coupled to the coloring algorithm. To allow the generating
algorithm to build the counter-example, the coloring algorithm needs
to remember, for each node, the reason for its color—for instance, the
responsible successor. From these causes, the generating algorithm can
determine which part of the game graph must be exhibited. The drawback
of this approach is that the coloring algorithm determines one cause of
the coloring instead of all of them, resulting in the generation of one
predetermined counter-example. Generating another counter-example
would imply recoloring the game graph and making other choices when
determining the causes of coloring.

9.2. Explanations for multi-modal logics 187

q0

¬p, q
q1

¬p,¬q

Figure 9.10: A simple concrete KMTS [SG07].

⟨q0,A[p V q]⟩

⟨q0, q ∧ (p ∨AX A[p V q])⟩

⟨q0, q⟩ ⟨q0, p ∨AX A[p V q]⟩

⟨q0, p⟩ ⟨q0,AX A[p V q]⟩

⟨q1,A[p V q]⟩

⟨q1, q ∧ (p ∨AX A[p V q])⟩

⟨q1, q⟩ ⟨q1, p ∨AX A[p V q]⟩

⟨q1, p⟩ ⟨q1,AX A[p V q]⟩

Figure 9.11: The colored game graph for q0 ⊧A[p V q]. Gray nodes are
colored with F and the white one with T [SG07].

9.2 Explanations for multi-modal logics

Some authors adapted the solutions proposed for bare CTL to sup-
port extensions of the logic, including epistemic-temporal logics such as
CTLK.

MCMAS MCMAS is an open-source model checker for multi-agent
systems [LR06a, LQR09, LQR15]. Its main functionality is the BDD-
based verification of CTL, ATL and epistemic properties over multi-
agent systems that are described in the framework of interpreted sys-
tems [FHMV95]. This framework describes each agent separately, defin-
ing her local states, her protocol—that is, which actions she can play
in each local state—, and her local evolution. The whole system is the

188 Chapter 9. Explanations for modal logics

⟨q0,A[p V q]⟩

⟨q0, q ∧ (p ∨AX A[p V q])⟩

⟨q0, p ∨AX A[p V q]⟩

⟨q0, p⟩ ⟨q0,AX A[p V q]⟩

⟨q1,A[p V q]⟩

⟨q1, q ∧ (p ∨AX A[p V q])⟩

⟨q1, q⟩

Figure 9.12: An annotated counter-example for q0 ⊧A[p V q] [SG07].

synchronous composition of all the agents.

In addition to the command-line functionalities, MCMAS proposes a
graphical interface based on an Eclipse plug-in. Through this interface,
the user can define new interpreted systems, simulate them, and verify
associated formulas. Furthermore, the tool can generate witnesses for
existential formulas and counter-examples for universal ones. These
witnesses and counter-examples are tree-like ones, as proposed by Clarke
et al. [CJLV02], adapted for the case of epistemic and ATL operators.
More precisely, the tool can generate counter-examples for universal
operators—including the knowledge ones—and witnesses for existential
operators, but does no generate the counter-parts. Nevertheless, it
generates as much of the explanation as possible. For instance, if the
formula AG EF init is violated by an interpreted system, MCMAS will
provide a trace to a state violating EF init, but will not explain why
this state satisfies AG ¬init.

The explanations are displayed in a dedicated window, laid out thanks
to the Graphviz tool [GN00], and state information are displayed next
to the graph representing the counter-example. Figure 9.13 presents a
snapshot of the counter-example window of MCMAS. State information
about particular agents can be selectively hidden or shown, by unchecking
or checking the corresponding box in the right panel.

MCK MCK is a model checker for temporal-epistemic logics over multi-
agent systems [GvdM04]. The tool supports a large panel of logics, such

9.2. Explanations for multi-modal logics 189

Figure 9.13: A snapshot of the counter-example window of MCMAS,
with the graph on the left and the details of the states on the right.

as CTL, CTL∗, knowledge and common knowledge operators, as well as
more restricted variants such as Xn operators reasoning about facts that
become true after a fixed number of n steps of the model. Furthermore,
it supports several semantics for the epistemic operators, such as the
observational one—the agents base their knowledge on what they can
observe from the current state—, the clock semantics—based on the
current state and the number of steps from the initial state—, and the
perfect recall one—based on the whole history of observations.

The tool implements several algorithms to tackle the model-checking
problems, using either BDDs, explicit traversal or bounded model-
checking techniques to verify whether a given formula is satisfied by
a given model. Nevertheless, all combinations are not available. For
instance, it is not possible to check CTLK formulas under the perfect
recall semantics.

MCK proposes several debugging facilities. The first one is the
capability to export the whole finite state machine of the model in a
Graphviz-compliant format. This functionality is however only useful
for very small models. When dealing with bounded model-checking
algorithms, the tool can also export the trace or the tree-like counter-
example showing why the given formula is violated, depending on the
checked formula.

The last proposed debugging facility is the capability to play a game

190 Chapter 9. Explanations for modal logics

against the model checker when a formula is violated [HvdM09]. This
game is played between a verifier, that tries to show that the formula is
satisfied is some state, and a refuter trying to show it is violated. Initially,
the game starts with an initial state and the violated formula, the model
checker being the refuter and the user being the verifier. Depending on
the current sub-formula, either one player or the other must make a step.
For instance, if the formula is φ1∧φ2, then the refuter must choose one of
the two sub-formulas, and the game goes on with the chosen sub-formula.
If the formula is EX φ, then the verifier must choose a successor of the
current state, and the game goes on with the new state and φ.

The idea of this game is to give some insight to the user into why
the formula is violated. For instance, when showing that the formula
E[φ1 U φ2] is violated, the user must exhibit a path of states satisfying
φ1 and reaching a state satisfying φ2. Since the formula is not satisfied
by the current state, the user cannot exhibit such a path. The idea is to
let the player explore the parts of the model she thinks contain a witness
path, and let her understand why there is no such path. The game is
incremental, and the tool allows the user to backtrack to previous game
steps, allowing her to make other choices and get more insight into the
model.

Counter-examples for temporal description logic Weitl et al.
propose structured explanations—they call evidences—for the temporal
description logic ALCCTL, a combination of the description logic ALC
with CTL [WNF10]. Within this logic, it is possible to express facts
about a graph of webpages where edges represent hyperlinks, such as
AG (defined ⊑ explained ⊓ EX examplified), meaning that it holds
globally that the set of elements defined on a page is a subset of the set of
elements that are explained on the same page and exemplified in another
hyperlinked page.

The evidences are tree-like structures where nodes are annotated
with sequences of formulas, and where children of one node explain why
the formulas of the parent node are satisfied or violated. For instance,
Figure 9.14 presents a (incomplete) evidence for the formula

φ = E[(Task ⊑ EX Solution) U ¬(Test ⊑ �)]

satisfied in some state q0 of some model, expressing the fact that there
exists a path of hyperlinks along which every task has a solution in some
directly linked page, to a page with a test.

Weitl et al. also propose an algorithm to generate evidences. It
builds the evidence top-down, by using a model checker to decide which

9.3. Tree-like annotated counter-examples for CTLK 191

q0 ⊧ E[(Task ⊑ EX Solution) U ¬(Test ⊑ �)]

q0 ⊧ Task ⊑ EX Solution, q1 ⊧ Task ⊑ EX Solution, q2 ⊧ ¬(Test ⊑ �)

q2 ⊧ ¬(Test ⊑ �)

q2 ⊧ Test(tree) ∧ ¬�(tree)

q2 ⊧ Test(tree), q2 ⊧ ¬�(tree)

⊺ q2 /⊧ �(tree)

⊺

... ...

Figure 9.14: An evidence for q0 ⊧ φ [WNF10].

successors are true, and which nodes must be added. In particular,
it generates all evidences for some parts of the graph, instead of one:
when dealing with concept formulas—that speaks about the concepts
such as Task and Solution—, the algorithm generates all elements for
which there exists a task in the current page, instead of just showing one
example.

For the cases of AX and EX operators, it exposes all successors,
limited to the ones satisfying the sub-formula for EX. Nevertheless,
it generates only one (shortest) path for the witnesses of existential
temporal operators (such as EU) and the counterexamples of universal
temporal ones (such as AF). Furthermore, witnesses of universal tem-
poral operators (such as AF) and counter-examples of existential ones
(such as EU) are not given at all; a simple ⊺ evidence is returned, giving
no additional information to the user.

Weitl and Nakajima further extend the algorithm in [WN10] to
include incremental and interactive generation. Instead of giving all
evidences for the parts it gives all evidences, the user is asked to choose
one of them. Furthermore, the evidence is lazily generated, one node at
a time, and the user is asked about which node must be expanded. This
allows the approach to scale better when dealing with large models, and
to allow the user to explore the parts of the evidence she is interested in.

9.3 Tree-like annotated counter-examples
for temporal-epistemic logic

In [BP12], we present tree-like annotated counter-examples for the logic
CTLK (TLACEs in short). These counter-examples have a tree-like

192 Chapter 9. Explanations for modal logics

structure, that is, there are composed of a hierarchy of single paths. Each
path—or branch—is annotated with the sub-formula that it explains.
These counter-examples are defined in the framework of ARCTL, an
extension of CTL that restricts path quantifiers [PR06], but they are
targeted to CTLK through a translation of its model-checking prob-
lem [LPR07].

For instance, let us consider a variant of the simple card game. In
this variant, the game is played with four cards—A, K, Q and J—such
that A wins over K and Q, K over Q and J , Q over J and J over A.
Furthermore, the dealer and the player never see their opponent’s card,
nor the cards on table, but they both know who is the winner at the
end. In this game, we can ask whether the player always finally knows
whether the dealer has the A or not, expressed as

φ = AF (dc ≠ ∧ (Kplayer dc = A ∨Kplayer dc ≠ A)),

where dc = C is true in states in which the dealer has card C.
The formula is violated, and TLACE for explaining why is given in

Figure 9.15. It corresponds to a scenario where the dealer receives the
A and the player the Q, and the player chooses to keep his card. The
states contain the values of the cards of both agents—C1,C2 means that
the player has C1 and the dealer C2. The wavy transitions link together
states that are undistinguishable by the player and arrowed transitions
are temporal ones. States are annotated with the formulas they satisfy
and transitions are annotated with formulas they explain.

The main branch in bold explains how the agents receive their cards
and how the player keeps his. For the two last states of this main path,
two states that are undistinguishable by the player from the main state
are given to show that he does not know that the dealer has the A (right
state) nor that he has not (left state). Furthermore, dashed states show
that each of these states are reachable from the initial one.

A TLACE is an adequate explanation for explaining why an ARCTL
formula φ is satisfied by a system S in the sense that it matches S and
explains φ. A TLACE n matches S if the states and paths of n are
states and paths of S. Furthermore, n explains φ if n correctly explains
each sub-formula of φ. In practice, these counter-examples integrate the
complete information to explain why the existential fragment of the logic
is satisfied, but they do not provide explanations for universal operators.

The paper also presents an algorithm to generate adequate TLACEs
and an implementation of this algorithm in NuSMV. This implementation
is complemented with a tool to display and manipulate TLACEs. This
tool is an interactive graphical interface application for displaying and
browsing tree-like annotated counter-examples. The counter-examples

9.3. Tree-like annotated counter-examples for CTLK 193

−,− −,− −,−dc = −,− −,−

Q,A Q,A

dc = A

Q,A Q,J

dc ≠ A

Q,K

Q,A

dc = A

Q,A Q,K

dc ≠ A

EG (dc = ∨
(¬Kplayer dc = A ∧
¬Kplayer dc ≠ A)

¬Kplayer dc ≠ A ¬Kplayer dc = A

¬Kplayer dc ≠ A ¬Kplayer dc = A

Figure 9.15: A tree-like annotated counter-example for the formula
AF (dc ≠ ∧ (Kplayer dc = A ∨Kplayer dc ≠ A)).

are loaded from XML files produced by the modified NuSMV and pictured
as a graph in the main area of the interface. The tool also provides
different means to arrange the layout of the graph and explore the detailed
information associated to each node. A snapshot of the interface is given
in Figure 9.16.

The tool automatically lays out the counter-example upon loading,
according to a custom layout algorithm that takes into account the
semantic structure of the counter-example. This representation presents
the general structure of the TLACE, showing branches and loops. Single
states or entire subtrees can be dragged around for better readability. To
support browsing of larger graphs, branches can be folded and unfolded
to reduce clutter and selectively show relevant information.

A side panel displays the values of all variables and annotations along
a selected path in the graph, in a collapsible hierarchical presentation.
All variable values can also be accessed as a pop-up menu on each node
in the main panel, and variables can be selected for display as part of
the node label, giving immediate visibility for a few variables of interest.

The main advantage of TLACEs is the fact that they give the complete
information to understand why an existential ARCTL formula is satisfied.
Furthermore, the visualization tool can help the user to understand
complex explanations thanks to its functionalities to move parts of the
graph and to inspect particular paths.

Nevertheless, tree-like annotated counter-examples can be very large:
the number of nodes of a TLACE is exponential in the size of the checked

194 Chapter 9. Explanations for modal logics

Figure 9.16: A snapshot of the interface of the graphical tool illustrating
its different features.

formula. Furthermore, they also lack some information as they do not
explain why a universal A operator is satisfied. The explanation for such
a formula is not a single (potentially lasso-shaped) path of the system,
so TLACEs are not an adequate structure to explain them.

9.4 Explanations for the µ-calculus

The µ-calculus and CTL share the same problems with counter-
examples because they have the same branching characteristics. Several
authors proposed solutions to solve these problems for the µ-calculus,
starting from the (unpublished) work of Kick [Kic95b, Kic95a].

9.4.1 Explanation graphs for µ-calculus

In two technical reports, Kick proposes witnesses for global µ-calculus
model checking. First, he defines witnesses as parts of the checked Kripke
structure S with states labelled with sets of sub-formulas of the checked
formula φ [Kic95b]. Furthermore, he proposes an algorithm to generate
such witnesses. The algorithm uses information generated during the

9.4. Explanations for the µ-calculus 195

execution of a modified model-checking algorithm that keeps track of the
successive iterations used in least fixpoint evaluations.

Second, Kick refines these witnesses by separating in different nodes
the labels of the states [Kic95a]. In effect, these new witnesses are derived
from tableaux for the µ-calculus: a witness is a part of a proof tree based
on tableau rules, where isomorphic sub-trees are merged. They can
be viewed as graphs where each node is annotated with q ⊧ φ, with
successors showing why q effectively satisfies φ. Kick also describes an
algorithm that uses the same modified model-checking algorithm.

9.4.2 Using games to explain formula violation

Stirling et al. proposed a proof system for the µ-calculus over states
of labelled transition systems (LTS) [SW91]. From this proof system,
Stirling derives a game between two players such that one player has a
strategy for winning the game if and only if the formula is satisfied [Sti95].

This work leads to the definition of a debugging game in which the
user plays against the computer to understand why a given µ-calculus
formula is satisfied or violated [SS98]. The idea of the game is to show to
the user why what she thinks might be true is false, or vice versa. These
games can give more information than standard counter-examples (and
witnesses) because they allow the user to explore the parts of the model
she thinks should be a counter-example (or a witness), and allow her to
understand why it is not the case. She can thus explore and expose all
witnesses or counter-examples she wants.

For instance, if a state q of some LTS violates the µ-calculus formula
φ = µv. p ∨ ◇ v—meaning that there exists a path from q eventually
reaching a state satisfying p—, then the user can play a game with the
system in which she will try to exhibit such a path, without succeeding
(as the formula is not satisfied).

Lange and Stirling later defined model-checking games for CTL∗ and
some of its fragments such as CTL and LTL, using the same ideas [LS02].
These games have inspired the work of Tan [Tan04] presented in Sec-
tion 9.1.3, and the work of Huang and van der Meyden [HvdM09] pre-
sented in Section 9.2.

9.4.3 Boolean equation systems and µ-calculus

Boolean equation systems are also used to perform model checking for
µ-calculus formulas.

196 Chapter 9. Explanations for modal logics

A relational graph algebra for evidence exploration Dong et al.
propose a framework and a tool to explore what they call evidences in
the case of model checking µ-calculus formulas [DRS03a, DRS03b]. An
evidence is a graph with nodes composed of state-formula pairs that
shows why the state of the root of the graph satisfies its formula in a
given model. The problem they try to solve is to provide the user with
tools to explore and understand evidences, that can become very large
and complex when dealing with large models and formulas.

The size of an evidence is O(∣S∣ × ∣φ∣), thus can be very large for large
systems. To overcome this complexity, Dong et al. propose a relational
graph algebra. A relational graph is a graph where nodes and edges are
labelled with values from some domains DV and DE , respectively. A
domain is either a primitive domain such as integers, or the Cartesian
product of other domains D1, ...,Dn. Furthermore, we assume that any
domain contains the special null value ε. An element of a domain D is
thus a tuple of values from the domains composing D.

An evidence can be viewed as a relational graph with the vertex
domain Q × Lµ, where Lµ is the set of µ-calculus formulas, and with the
empty domain for edges.

Similarly to standard relational algebra, Dong et al. propose a set of
basic operators to manipulate relational graphs. Given two graphs G1,
G2 with nodes and edges on domains DV,i, DE,i for i = 1,2,

• G1 ∪G2 is the union of the graphs, containing nodes and edges of
both graphs, assuming that they are defined on the same nodes
and edges domains;

• G1 ∩ G2 is the intersection of the graphs, containing nodes and
edges present in both graphs, assuming that they are defined on
the same nodes and edges domains;

• G1 −V G2 is the node-difference of G1 and G2, containing nodes of
G1 not in G2;

• G1 −E G2 is the edge-difference of G1 and G2, containing nodes of
G1, and edges of G1 not in G2;

• given two Boolean functions fv and fe over nodes and edges domains
of G1, σfv ,fe(G1) is the selection of nodes and edges satisfying fv
and fe, respectively, that is, the graph composed of nodes v and
edges e of G1 such that fv(v) and fe(e) are true, respectively;

• given two sub-domains dv and de of DV,1 and DE,1, respectively,
πdv ,de(G1) is the projection of nodes and edges onto sub-domains dv

9.4. Explanations for the µ-calculus 197

and de respectively, that is, the graph composed of the projection
of nodes and edges of G1 on sub-domains dv and de, respectively;

• G1 ×G2 is the graph composed of cross-product of nodes and edges
of G1 and G2.

Other operators can be derived from the basic ones, such as the natural
join of two graphs, or the extension and grouping of nodes and edges
of a graph. We will reuse this algebra in Chapter 10 to manipulate
explanations.

Using this relational graph algebra, Dong et al. designed and imple-
mented the Evidence Explorer, a tool to visualize and navigate through
an evidence thanks to smaller views [DRS03b]. The tool proposes several
views of the same evidence, synchronized on a so-called focus node, such
as the formula window displaying the top-level formula in a graph-based
fashion, the overview window displaying the whole evidence as a spanning
tree, and the path window displaying a path from the state of the root
node to the state of the focus node. Using these windows, the user can
inspect the evidence and update the focus node—within any window—to
display information about other parts of the evidence.

Diagnostics for Model Checking Linssen proposes the notion of
generic diagnostic graph for µ-calculus model checking, a graph where
vertices are labelled with pairs of state and formula, and where edges
follow a well-defined dependency relation, based on the states and for-
mulas labelling the extremities [Lin11]. For instance, a vertex labelled
with ⟨q0,◇ φ⟩ must have, as only successor, a vertex labelled with ⟨q1, φ⟩,
where q1 is a successor of q0 in the checked model. Linssen then shows how
these generic diagnostic graphs are related to different model-checking
frameworks such as parity game-based model checking, and Boolean
Equation System-based model checking.

Linssen applies and extends the notion of generic diagnostic graph
to BES, and shows how to generate them by extending the BES with
state-formula annotations on BES variables. Furthermore, he provides
algorithms to play an interactive game against the system based on the
annotated BES solution to understand why a formula is true (or false) in
some state, and uses this algorithm to generate simple paths and reduced
systems, that is, the part of the model responsible for the model-checking
outcome.

Proof graphs for parameterised Boolean Equation Systems and
fixpoint logic Cranen et al. extend the notion of support set for

198 Chapter 9. Explanations for modal logics

parameterised Boolean equation systems (PBES) [CLW13]. These PBES
extend Boolean equation systems by introducing data types to variables
of the system. This allows a user to define infinite state space systems,
and to reason about such systems in a more compact way. Cranen et al.
define the notion of proof graph, an extension of support sets where the
vertices of the underlying graph are not variables anymore, but so-called
instantiations, that is, variables coupled with a particular data element
from the corresponding data type.

Cranen et al. show that there exists a proof graph explaining that
some instantiation satisfies a given PBES if and only if this instantiation
effectively satisfies the PBES. Furthermore, they discuss about minimality
of proof graphs and show that minimizing a proof graph—that is, finding
the smallest sub-graph that still fully explains the outcome—is an NP-
hard problem. Finally, they apply the idea of proof graphs to the
verification of strong bisimilarity of two systems, and show that it is
possible to extract, from the proof graph showing that the two systems
are not bisimilar, a distinguishing formula, that is, a formula that is
satisfied by the first system but not by the second.

Cranen et al. further extend their notion of proof graphs for the
case of least fixpoint logic (LFP) [CLW15]. LFP is an extension of
first-order logic with least fixpoints. LFP formulas are based on first-
order variables, function and relation symbols (over a given domain of
discourse A), first-order logic operators, and the least fixpoint operator
µ on second-order variables. For instance, the following formula (using
the notations of Cranen et al.) expresses the fact that only finitely many
consecutive a-transitions can be taken from the state s1:

φ = [lfpXs.∀s′, s aÐ→ s′ Ô⇒ Xs′]s1

X is a second-order variable ranging over relations.
In this context, a proof graph is a graph where nodes are triplets

composed of (1) a truth value, (2) a second-order variable or a function
symbol, and (3) a sequence of elements of the domain A. A node
⟨true,X, s⟩ means that s ∈X, and the descendants of the node explain
why this is the case. Thanks to the introduction of the truth value, the
framework can handle negations, as a node ⟨false,X, s⟩ says that s /∈X.
Proof graphs are restricted through several dependency conditions. In
particular, any cycle in the proof graph must be about a greatest fixpoint
if the truth value within this cycle is true, or about a least fixpoint
otherwise. These conditions ensure that there exists a proof graph for
q ⊧ φ if and only if q effectively satisfies φ.

From these proof graphs, Cranen et al. explain how to extract what
they call an evidence, that is, the part of the system responsible for

9.5. Summary 199

the validity or invalidity of the formula. While the proof graph still
retains information about variables, relation and function symbols of
the formula, as well as elements of the domains linked to them, the
evidence is expressed in the language of the model under verification.
They finally apply the idea of evidences to generate counter-examples for
stuttering bisimulation checking, and for providing linear and tree-like
counter-examples for LTL and ACTL∗ formulas.

9.4.4 Model-checking certificates

Namjoshi proposes a deductive proof system to certify the result of a
model checker in the framework of automata-based verification of the
µ-calculus [Nam01]. The idea behind the proof system is to be able to
check the result given by a model checker independently from the model
checker itself. In the considered automata-based framework, a µ-calculus
formula is translated into an alternating automaton on which a parity
game is played between two players to decide whether the given Kripke
structure satisfies the given formula or not. If the first player has a
winning strategy, then the formula is satisfied, otherwise the formula is
violated.

The proposed deductive proof system is composed of predicates
and partial rank functions for each state of the alternating automaton
satisfying some predefined rules to effectively explain the satisfaction of
the underlying µ-calculus formula.

Namjoshi then explains how to generate deductive proofs from the
automaton used for verification, and discusses how such a proof is related
to counter-examples: a proof embeds all possible counter-examples, that
is, all reasons for why the formula is satisfied by the given model.

Similarly to Namjoshi, Hofmann and Rueß provide certificates for
µ-calculus formulas—that is, proofs of validity that can be checked
independently from the model checker result—by providing winning
strategies for parity games [HR14]. Parity games are two-player games
with ranks over states, in which player 0 (resp. 1) wins a play if and only
if the parity of the highest rank met infinitely often during the play is
even (resp. odd). The players of such games have positional strategies—
that is, memoryless strategies—, and µ-calculus model checking can be
reduced to solving a derived parity game. Hofmann and Rueß propose
an algorithm to generate a positional strategy to show why player 0 can
win the game.

200 Chapter 9. Explanations for modal logics

9.5 Summary

Even if they apply to different frameworks—such as game-based, BDD-
based, or BES-based model checking—or logics—such as CTL, epistemic
logics, or the µ-calculus—, the ideas presented in this chapter share some
common ideas.

They represent an explanation as a directed graph. This graph can
be a part of the system, such as the tree-like counter-examples of Clarke
et al. But they can be more detailed, including the sub-formulas of
the formula of interest, in the cases, for instance, of TLACEs, Kick’s
witnesses, or proof-like counter-examples.

As they can be complex, some ideas have been proposed to project
them on the system, such as the evidences of Cranen et al. Other ideas to
deal with this complexity include interactive and incremental generation,
with the framework of Weitl et al., and the generation and visualization
strategies of Gurfinkel and Chechik.

Another solution is the debugging game of Stirling, in which the user
tries to show that some formula is true in a system that violates it. This
idea has been later adapted by Huang and van der Meyden, and by Tan.
Finally, the relational graph algebra of Dong et al. can also be used to
reduce the richness by providing different views of the explanation.

Chapter 10

A framework
for µ-calculus based logic

explanations

This chapter presents a framework for generating, manipulating and
visualizing explanations for logics that can be translated into the µ-
calculus. More precisely, let us suppose that someone—called the designer
in the sequel—defines a new logic—called the top-level logic in the sequel—
to express and verify new facts about some system, and wants to develop
a model checker for it. She can either develop the tool from scratch, or
she can translate the models and formulas of the logic into another logic
models and formulas—the base logic—and use existing tools to solve the
model-checking problem.

Many logics can be translated into the µ-calculus, making it a good
candidate for a base logic. Nevertheless, when translating her model-
checking problem into a µ-calculus one, the designer has no help to
facilitate this translation, in particular, the counter-examples returned by
the model checker (if any) are expressed in terms of µ-calculus primitives
instead of top-level logic ones. To overcome this limitation and to help
designers to quickly develop a model checker with rich counter-examples,
this chapter proposes a µ-calculus based framework with rich explanations.
The framework provides

• a BDD-based µ-calculus model checker with generation of rich
explanations,

• functionalities to define how top-level logic formulas are translated
into µ-calculus formulas,

202 Chapter 10. A framework for µ-calculus based logic explanations

• functionalities to control how the explanations for the µ-calculus
are generated,

• functionalities to translate µ-calculus explanations into top-level
logic explanations.

To illustrate the presented concepts, this chapter uses the case of
ATL model checking. Given a CGS S, a state q of S, and an ATL
formula φ, it is possible to translate S into a Kripke structure S′, q into
a state q′ of S′, and φ into a µ-calculus formula φ′ such that S, q ⊧ φ
if and only if S′, q′ ⊧ φ′. To avoid technical details, this introduction
only presents the intuition of the translation, and focuses on one ATL
operator only. The full translation and the application of the framework
to the full ATL logic are differed to Section 10.4.

The idea of the translation from a CGS S = ⟨Ag,Q,Q0,Act, e, δ, V ⟩
to a µ-calculus Kripke structure S′ = ⟨Q′,{R′

i ∣ i ∈ Σ}, V ′⟩ is to derive,
from each state q ∈ Q, each group of agents Γ ⊆ Ag, and each joint action
aΓ of Γ, a new state qaΓ

representing the fact that Γ chose to play aΓ in q.
In the sequel, we write original(qaΓ

) for the original state q from which
qaΓ

is derived. For each group Γ, two transition relations are derived
from δ: RΓchoose links any state q ∈ Q to the derived states qaΓ

for all
possible actions of Γ; RΓfollow links any derived state qaΓ

to the original
successors of q through aΓ, that is, the successors of q restricted to the
ones reached if Γ choose aΓ. Intuitively, the derived Kripke structure S′

encodes in two steps (q → qaΓ
→ q′) the one-step transitions of S (q

aÐ→ q′).

For instance, Figure 10.1 presents a CGS for a simple one-bit transmis-
sion problem in which a sender tries to send a value through a unreliable
link. The sender can send the value or wait, and the link can transmit
the message (if any), or block the transmission. In this context, we ask,
for instance, whether the transmitter has a strategy to never transmit
the value.

q0¬sent q1 sent

⟨∗, block⟩

⟨wait,∗⟩

⟨send, transmit⟩

⟨∗,∗⟩

Figure 10.1: The CGS of the bit transmission problem. The action
couples are the action of the sender, and the transmitter, respectively. ∗
means any action of the agent.

203

The CGS of the bit transmission problem can be translated into a
µ-calculus Kripke structure. Figure 10.2 presents a part of the translation,
focusing on the states derived from q0; the part about q1 is not shown.

q0

¬sent

q0send¬sent q0wait¬sent q0block¬sent q0transmit¬sent

q1

sent

sc

sc

tc

tc
sf

sf

sf

tf

tf

tf

Figure 10.2: A part of the Kripke structure corresponding to the CGS of
the bit transmission problem. Edges are labelled with (a shortcut of) the
name of the transition relation they belong to: sc means sender chooses,
sf means sender follows, tc and tf means transmitter chooses and
transmitter follows, respectively. Transition relations for the two other
groups of agents (no agent, and both agents) are not shown.

ATL formulas can also be translated into µ-calculus formulas. The
formula ⟪Γ⟫G φ is translated into

νv. φ′ ∧◇Γchoose (◇Γfollow true ∧ ◻Γfollow v),

where φ′ is the translation of φ. For instance, ⟪transmitter⟫G ¬sent,
saying that the transmitter has a strategy to never transmit the value, is
translated as

νv. ¬sent ∧◇trans chooses (◇trans follows true ∧ ◻trans follows v),

where the relations trans chooses and trans follows are shortcuts for
transmitter chooses and transmitter follows, respectively. The idea
behind this translation can be understood as follows. First, a state
satisfies

◇trans chooses (◇trans follows true ∧ ◻trans follows v)

204 Chapter 10. A framework for µ-calculus based logic explanations

if there exists an action for transmitter (◇trans chooses), such that the
action is enabled (◇trans follows true), and all choices of the other agents
lead to v (◻trans follows v). In other words, q satisfies the formula
◇trans chooses (◇trans follows true ∧ ◻trans follows v) if the transmitter
has an action to enforce to reach v in one step. Second, a state satisfies

νv. ¬sent ∧◇trans chooses (◇trans follows true ∧ ◻trans follows v)

if the transmitter can enforce to stay in states satisfying ¬sent forever,
that is, if the transmitter has a strategy to enforce G ¬sent.

To explain why a given ATL formula φ is satisfied by a given state q
of some CGS S, we want to extract the part of the model starting at q
that is responsible for the satisfaction. Furthermore, as such part can
be complex and difficult to understand, we want to annotate each state
with the sub-formulas of φ that are true in these states.

For instance, an explanation for why the state q0 satisfies the for-
mula ⟪transmitter⟫G ¬sent in the bit transmission problem is given in
Figure 10.3. The explanation shows that, in q0, the block action of the
transmitter allows it to prevent the message to be sent. The goal of the
µ-calculus based framework presented in this chapter is to help the de-
signer of a new logic to implement a model checker with explanations for
her logic, by translating her models and formulas into the µ-calculus, and
translating the generated explanations back into the original language.

q0¬sent ⟪transmitter⟫G ¬sent
⟪transmitter⟫X ⟪transmitter⟫G ¬sent

⟨∗, block⟩

Figure 10.3: An explanation for why the transmitter has a strategy to
never transmit the value.

The remainder of this chapter is structured as follows: Section 10.1
defines µ-calculus explanations and describes an algorithm to generate
them. Section 10.2 presents the functionalities to facilitate the trans-
lation of formulas and explanations. Section 10.3 briefly describes an
implementation of the framework based on PyNuSMV. Finally, Sec-
tion 10.4 extends the running example to the full ATL logic, showing
the applicability of the framework.

10.1. µ-calculus explanations 205

10.1 µ-calculus explanations

This section defines the notion of explanations for µ-calculus formulas
and an algorithm to generate them. Given a structure S, a state q of S,
a µ-calculus formula φ with free variables FV ar, and an environment e
defined for all variables of FV ar—that is, a function associating a subset
of states to each variable of FV ar—, an explanation gives the reasons for
why q ∈ JφKSe, that is, it explains why q satisfies φ in the environment e.

An explanation is a graph where nodes are triplets—called obli-
gations—composed of a state q of S, a µ-calculus formula φ, and an
environment e. An edge ⟨⟨q, φ, e⟩, ⟨q′, φ′, e′⟩⟩ of the graph encodes the
fact that q ∈ JφKSe because q′ ∈ Jφ′KSe′. In this section, all µ-calculus
formulas are considered in positive normal form, that is, all negations
are applied to atomic propositions or variables only.

More formally, given a Kripke structure S = ⟨Q,{Ri ∣ i ∈ Σ}, V ⟩
labelled with atomic propositions from the set AP , an explanation is a
graph E = ⟨O,T ⟩ such that

• the nodes of the graph O ⊆ Q × Lµ × E are composed of triplets of
states, µ-formulas and environments. Lµ is the set of µ-calculus
formulas over atomic propositions from AP and variables from the
set V ar, E the set of environments defined for variables in V ar.

• The edges T ⊆ O ×O of the graph link obligations together. We
note succ(o) = {o′ ∣ ⟨o, o′⟩ ∈ T} for the set of successors of o.

We are interested in explanations that effectively show why q belongs
to the interpretation of φ over S in e (that is, why q ∈ JφKSe). Such an
explanation E is consistent and composed of elements of S, φ and e. We
call these explanations adequate explanations.

An explanation is consistent if it exhibits the different parts needed
to explain its elements. More formally, let E = ⟨O,T ⟩ be an explanation
and let o = ⟨q, φ, e⟩ ∈ O. o is said to be locally consistent in E iff

• φ ≠ false;

• if φ = true, then succ(o) = ∅;

• if φ = p or φ = ¬p, for an atomic proposition p, then succ(o) = ∅;

• if φ = v, for a variable v, then q ∈ e(v) and succ(o) = ∅;

• if φ = ¬v, then q /∈ e(v) and succ(o) = ∅;

• if φ = φ1 ∧ φ2 then succ(o) = {o1, o2}, where o1 = ⟨q, φ1, e⟩ ∈ O and
o2 = ⟨q, φ2, e⟩ ∈ O;

206 Chapter 10. A framework for µ-calculus based logic explanations

• if φ = φ1 ∨φ2 then succ(o) = {oj}, where oj = ⟨q, φj , e⟩ ∈ O for some
j ∈ {1,2};

• if φ = ◇iφ
′ then succ(o) = {o′}, where o′ = ⟨q′, φ′, e⟩ ∈ O for some

state q′;

• if φ = ◻iφ′ then for all o′ ∈ succ(o), o′ = ⟨q′, φ′, e⟩ ∈ O for some state
q′;

• if φ = µv.ψ(v), then succ(o) = {o′}, where o′ = ⟨q,ψk(false), e⟩ ∈ O
for some k ≥ 0;

• if φ = νv.ψ(v), then succ(o) = {o′}, where o′ = ⟨q,ψ(φ), e⟩ ∈ O.

The notations µv. ψ(v) and νv. ψ(v) are used to stress the fact that ψ
depends on variable v. This emphasis is usually dropped in the sequel
when the variable v is clear from the context, in particular when it comes
from a least or greatest fixpoint formula. Given a formula ψ(v) depending
on variable v, ψk(φ) is defined as ψ0(φ) = φ, and ψk+1(φ) = ψ(ψk(φ)).
Also, ψ(φ) is a shortcut for ψ1(φ). E is then consistent iff all obligations
o ∈ O are locally consistent in E.

Intuitively, if φ = µv. ψ, then q ∈ JφKSe because q belongs to a finite
number of applications of ψ on false, that is, q ∈ Jψk(false)KSe for some
k ≥ 0. On the other hand, this idea cannot be applied for φ = νv. ψ. In
this case, q ∈ JφKSe because it belongs to any number of applications of ψ
on true. Thus, to explain it, E simply shows that q ∈ Jψ(φ)KSe and relies
on the fact that the structure has a finite number of states to ensure
that the explanation is finite as well.

An explanation E = ⟨O,T ⟩ is adequate for explaining why q belongs
to the interpretation of φ over S = ⟨Q,{Ri ∣ i ∈ Σ}, V ⟩ in environment e
iff E is consistent, E matches S and ⟨q, φ, e⟩ ∈ O. E matches S iff

1. for all ⟨q′, φ′, e′⟩ ∈ O, q′ ∈ Q;

2. for all ⟨q′, p, e′⟩ ∈ O, p ∈ V (q′) and for all ⟨q′,¬p, e′⟩ ∈ O, p /∈ V (q′)
for an atomic proposition p;

3. for all ⟨⟨q′, φ′, e′⟩, ⟨q′′, φ′′, e′′⟩⟩ ∈ T , either q′ = q′′, or φ′ belongs to
{◇iφ

′′,◻iφ′′} and ⟨q′, q′′⟩ ∈ Ri;

4. for all o′ = ⟨q′,◻iφ′, e′⟩ ∈ O,

∃o′′ ∈ succ(o′) s.t. o′′ = ⟨q′′, φ′′, e′′⟩ for some φ′′, e′′

⇐⇒ ⟨q′, q′′⟩ ∈ Ri.

10.1. µ-calculus explanations 207

E matches S if E is part of S: Point 1 says that the states of E are
states of S; Point 2 says that atomic propositions of E are coherent with
labels of S; Point 3 says that successor states in E are successors in S;
Point 4 is an additional condition that says that the explanation for the
◻i operator exhibits all successors through Ri.

For instance, an adequate explanation for why q0 of the Kripke
structure of Figure 10.2—the µ-calculus structure for the bit transmission
problem—belongs to the interpretation of

φ = νv. ¬sent ∧◇trans chooses (◇trans follows true ∧ ◻trans follows v)

is given in Figure 10.4.

q0, φ, e

q0,¬sent ∧◇tc (◇tf true ∧ ◻tf φ), e

q0,¬sent, e q0,◇tc (◇tf true ∧ ◻tf φ), e

q0block ,◇tf true ∧ ◻tf φ, e

q0block ,◇tf true, e q0block ,◻tf φ, e

q0, true, e

Figure 10.4: An explanation for why q0 ∈ JφKSe in the bit transmission
problem.

Adequate explanations are necessary and sufficient proofs for why
q ∈ JφKSe, captured by the following property. Its proof is given in
Appendix B.

Property 10.1. Given a Kripke structure S = ⟨Q,{Ri ∣ i ∈ Σ}, V ⟩, a
state q ∈ Q, a µ-calculus formula φ and an environment e, q ∈ JφKSe if
and only if there exists an adequate explanation E for q ∈ JφKSe.

Furthermore, we can view adequate explanations as patterns. Let us
consider an explanation E. E defines an entire set of Kripke structures
K(E) that E matches. We can see these Kripke structures as the set of
models that are coherent with E. E is thus an explanation for why all

208 Chapter 10. A framework for µ-calculus based logic explanations

structures of K(E) satisfy any formula φ that E contains. This intuition
is formally captured by the following property.

Property 10.2. Given a consistent explanation E = ⟨O,T ⟩, for all
⟨q, φ, e⟩ ∈ O, q ∈ JφKSe for all S such that E matches S.

Proof. This property is directly derived from Property 10.1. If E is
consistent, E matches S and ⟨q, φ, e⟩ ∈ O, E is adequate for q ∈ JφKSe. By
Property 10.1, since there exists an adequate explanation for q ∈ JφKSe,
q ∈ JφKSe is true.

Finally, we can define an algorithm to generate adequate explana-
tions for µ-calculus formulas, presented in Algorithm 10.1. It takes as
arguments a Kripke structure S, a state q of S, a µ-calculus formula φ,
and an environment e such that q ∈ JφKSe. It then returns an adequate
explanation for q ∈ JφKSe.

Intuitively, the algorithm starts with an empty explanation and adds
the ⟨q, φ, e⟩ obligation into the pending set. Then it considers each
obligation o′ ∈ pending, adding to O and T the necessary obligations and
edges to make o′ locally consistent, and adding to pending the newly
discovered obligations. The algorithm thus stops the process when all
pending obligations have been made locally consistent in ⟨O,T ⟩.

This algorithm supposes that, for each state q′ of S and each sub-
formula φ′ of φ, it is determined whether q′ ∈ Jφ′KSe. It is necessary for
cases such as φ1 ∨ φ2 or ◇i φ1 because the algorithm must be able to
choose the right sub-formula of φ′ or the right successor of q′.

The correctness of this explain algorithm is proved in Appendix B.

10.2 Translating µ-calculus explanations

The previous section proposed a structure to explain why a µ-calculus
formula is satisfied by a state of some Kripke structure. Nevertheless,
as the µ-calculus model checker and explanations are used to solve the
model-checking problem of some other top-level logic, the usefulness of
such explanations is limited.

This section presents a set of functionalities to help the top-level logic
designer to translate these µ-calculus explanations back into the top-level
logic. They are generic to allow her to easily translate the explanations
for many top-level logics such as CTL, CTLK, ATL or PDL, as well
as their fair variants such as FCTL and ATLKIrF .

The functionalities provided by the framework are presented in the
following six sections:

10.2. Translating µ-calculus explanations 209

Algorithm 10.1: explain(S, q, φ, e)
Data: S = ⟨Q,{Ri ∣ i ∈ Σ}, V ⟩ a Kripke structure, q ∈ Q a state of

S, φ a µ-calculus formula, and e an environment such that
q ∈ JφKSe.

Result: An adequate explanation for q ∈ JφKSe.

O = ∅; T = ∅
pending = {⟨q, φ, e⟩}
while pending ≠ ∅ do

pick o′ = ⟨q′, φ′, e′⟩ ∈ pending
pending = pending/{o′}
O = O ∪ {o′}
case φ′ ∈ {true, p,¬p, v,¬v}

O′ = ∅
case φ′ = φ1 ∧ φ2

O′ = {⟨q′, φ1, e
′⟩, ⟨q′, φ2, e

′⟩}
case φ′ = φ1 ∨ φ2

if q′ ∈ Jφ1KSe′ then O′ = {⟨q′, φ1, e
′⟩}

else O′ = {⟨q′, φ2, e
′⟩}

case φ′ = ◇i φ
′′

pick q′′ ∈ {q′′ ∈ Q ∣ ⟨q′, q′′⟩ ∈ Ri ∧ q′′ ∈ Jφ′′KSe′}
O′ = {⟨q′′, φ′′, e′⟩}

case φ′ = ◻i φ′′
O′ = {⟨q′′, φ′′, e′⟩ ∣ ⟨q′, q′′⟩ ∈ Ri}

case φ′ = µv. ψ
φ′′ = false; sat = Jφ′′KSe′

while q′ /∈ sat do

φ′′ = ψ(φ′′); sat = Jφ′′KSe′

O′ = {⟨q′, φ′′, e′⟩}
case φ′ = νv. ψ

O′ = {⟨q′, ψ(φ′), e′⟩}
T = T ∪ {⟨o′, o′′⟩ ∣ o′′ ∈ O′}
pending = pending ∪ (O′/O)

return ⟨O,T ⟩

1. Section 10.2.1 presents the notion of formula aliases. They link the
formulas stored in the obligations to the top-level logic formulas
they represent.

210 Chapter 10. A framework for µ-calculus based logic explanations

2. Section 10.2.2 shows how the relational graph algebra of Dong et
al. can be used to manipulate explanations and derive new graphs
from them. This algebra allows the designer to transform the
original µ-calculus explanation into the part of the original model
responsible for the model checking outcome.

3. The relational graph algebra treats the explanation as a whole.
Section 10.2.3 describes obligation and edge attributes. They add
information to individual nodes and edges of the explanation graph.

4. Attributes allow the designer to add information to obligations and
edges, and the relational graph algebra allows her to manipulate the
explanation as a whole. Section 10.2.4 presents local translation, a
way to focus on the small part that explains a given alias without
having to deal with the whole graph at once.

5. The previous functionalities help the designer to manipulate and
transform the generated explanation. Nevertheless, the generating
algorithm produces one arbitrary explanation among the possible
ones. Section 10.2.5 presents the notion of choosers and explains
how they can be used to perform interactive or guided generation
of explanations. These choosers introduce the notion of partial
explanations that are also described in this section.

6. Finally, Section 10.2.6 describes the notion of formula markers.
They are generic tags on formulas, and two instantiations are
presented: points of interest mark the formulas that the user would
have an interest in—for instance, formulas corresponding to top-
level logic operators—, and points of decision mark the formulas
that should remain unexplained to produce partial explanations.

All these functionalities work together to help the designer to produce
useful explanations. Figure 10.5 illustrates the structure of the framework;
in gray, the parts that the designer has to define; in white, the elements
provided by the framework.

The designer first translates the original model into a µ-calculus one.
She also translates the formula. She can enrich the translated formulas
with aliases and markers, and she can also attach attributors, local
translators and choosers. The aliases and markers will be present in the
obligations in the generated enriched µ-calculus explanation to help the
designer with the translation of explanations.

The attributors and local translators are used by the model checker to
add extra information to the generated explanations. The choosers allow
the generation process to make the right choices. Finally, the designer

10.2. Translating µ-calculus explanations 211

model formula explanation

µ-calculus
model

µ-calculus
formula

enriched
µ-calculus

explanation

aliases

markers

attributors

local translators

choosers

relational graph algebra

model
translation

formula
translation

explanation
translation

model
checker

Figure 10.5: The structure of the framework.

translates the enriched explanation back into the top-level logic language
thanks to the relational graph algebra.

10.2.1 Aliases

Aliases allow the designer to hide µ-calculus translations behind top-
level logic formulas. An alias is a syntactic function. It takes a set of
arguments and returns an aliased µ-calculus formula. Such an aliased
formula is a standard µ-calculus formula φ to which is attached the alias
α and the correspondence between φ sub-elements and α arguments. In
the sequel, we say that φ is decorated with α(a1, ..., an), where a1, ..., an
are the sub-elements of φ corresponding the the arguments of α.

For instance, the alias ⟪⟫G, defined as

⟪⟫G(Γ, φ) = νv. φ ∧◇Γchoose (◇Γfollow true ∧ ◻Γfollow v),

takes a group of agents Γ and a µ-calculus formula φ as arguments and
returns the aliased formula corresponding to the greatest fixpoint above.
In the sequel, we usually write the arguments of the aliases in place, such
as ⟪Γ⟫G φ instead of ⟪⟫G(Γ, φ), for better presentation.

Let φ be an aliased formula. Let alias α(a1, ..., an) be the alias
decorating φ. In the sequel, both φ and α(φ1, ..., φn) are interchangeably
used to represent the same aliased formula. For instance, the aliased
formula φ, decorated with ⟪⟫G({transmitter},¬sent) and defined as

⟪⟫G({transmitter},¬sent) =
νv. ¬sent ∧◇trans chooses (◇trans follows true ∧ ◻trans follows v)

212 Chapter 10. A framework for µ-calculus based logic explanations

is usually written ⟪transmitter⟫G ¬sent in the sequel. This illustrates
the usefulness of aliases: they hide µ-calculus formulas behind something
more intelligible.

Aliases and aliased formulas support substitution. More precisely,
when substituting a sub-formula in an aliased formula, the alias decorates
the resulting new formula, but only if the actual substitutions happen
in arguments of the alias, keeping the alias integrity. For instance, let
⟪Γ⟫X φ be an alias for ◇Γchoose (◇Γfollow true ∧ ◻Γfollow φ).

Let ψ = ¬sent∧⟪transmitter⟫X v. When substituting v for another
formula, the ⟪⟫X alias is kept:

ψ[false/v] =
¬sent ∧◇trans chooses (◇trans follows true ∧ ◻trans follows false) =
¬sent ∧ ⟪transmitter⟫X false.

On the other hand, when substituting ◇trans follows true with true, for
instance, the ⟪⟫X alias is lost, as intended:

ψ[true/ ◇trans follows true] =
¬sent ∧◇trans chooses (true ∧ ◻trans follows v).

Finally, aliases support negation, in the sense that the designer can
define two aliases and tell that the first one is the negation of the second.
For instance, let JΓKX φ be an alias for

◻Γchoose (◻Γfollow false ∨◇Γfollow φ).

By telling that ¬⟪Γ⟫X φ = JΓKX ¬φ, and that ¬JΓKX φ = ⟪Γ⟫X ¬φ,
the designer informs the framework that when deriving positive normal
forms of formulas, the negation of the alias ⟪Γ⟫X φ is the alias JΓKX ¬φ,
and vice versa.

To illustrate the usefulness of aliases, Figure 10.6 presents the expla-
nation of Figure 10.4 for why q0 of the structure of the bit transmission
problem satisfies the formula ⟪transmitter⟫G ¬sent, with the ⟪⟫X alias
defined above and the ⟪⟫G alias redefined as ⟪Γ⟫G φ = νv. φ ∧ ⟪Γ⟫X v.
Some formulas are unchanged, but the ones that are aliased are more
understandable by the end user.

The main goal of aliases is to give intelligible names to whole µ-
calculus formulas. As most of the formulas appearing in an explanation
come from the top-level logic designer, she has the freedom to define
aliases for some sub-formulas that have a meaning in the top-level logic
while keeping the others in plain µ-calculus.

10.2. Translating µ-calculus explanations 213

q0,⟪transmitter⟫G ¬sent, e

q0,¬sent ∧ ⟪transmitter⟫X ⟪transmitter⟫G ¬sent, e

q0,¬sent, e q0,⟪transmitter⟫X ⟪transmitter⟫G ¬sent, e

q0block ,◇tf true ∧ ◻tf ⟪transmitter⟫G ¬sent, e

q0block ,◇tf true, e q0block ,◻tf ⟪transmitter⟫G ¬sent, e

q0, true, e

Figure 10.6: An explanation for why q0 ∈ J⟪transmitter⟫G ¬sentKSe in
the bit transmission problem, with aliases for the important formulas.

The explain algorithm nevertheless derives two sets of formulas not
written by the designer: µv. ψ formulas are extended as ψk(false) for
some k, and νv. ψ ones are extended as ψ(νv. ψ). While the latter is
usually not problematic as it expands the ψ body only once, the former
results in a rather large formula when the value of k is high.

For instance, let ⟪Γ⟫F φ′ be an alias for

µv. φ′ ∨ ⟪Γ⟫X v,

and let us consider the formula φ = ⟪sender⟫F sent. If some state q
satisfies φ, then an explanation will contain, for instance, an obligation
with the formula

sent ∨ ⟪sender⟫X (sent ∨ ⟪sender⟫X (sent ∨ ⟪sender⟫X false)),
(10.1)

if sender can force to reach sent within 3 steps. Such a formula is already
long to read and understand, even with a low value of k (k = 3).

To solve this problem, an alias of the form (ψ)k(v = false) is attached
to the φ′ = ψk(false) formula. More precisely, for every k′ from 1
to k, the sub-formula ψk

′(false) is linked to the corresponding alias
(ψ)k′(v = false). For instance, the formula of Equation 10.1 is rendered
as

(sent ∨ ⟪sender⟫X v)3(v = false).

214 Chapter 10. A framework for µ-calculus based logic explanations

Furthermore, its sub-formula

sent ∨ ⟪sender⟫X (sent ∨ ⟪sender⟫X false)

is aliased by

(sent ∨ ⟪sender⟫X v)2(v = false),

and so on. The goal of these aliases is to reduce the size of the aliased
formulas, making them more readable for the end user.

10.2.2 Relational graph algebra

Aliases allow the designer to give intelligible names to µ-calculus formulas
with meaningful correspondences to the top-level language. Nevertheless,
the explanation of Figure 10.6 is still far from the original model of the
bit transmission problem.

To ease the translation of explanations back into the original model
language, the framework integrates the relational graph algebra of Dong
et al. (see Section 9.4.3 and [DRS03a]) to manipulate and transform
explanations.

Relational graphs are graphs where nodes are labelled with elements
of some domain DV , and edges with elements from DE . A µ-calculus
explanation can thus be viewed as a relational graph where nodes are
labelled with triplets of values from the domain Q × Lµ × E , and where
edges are labelled with elements of the empty domain, as the edges carry
no value apart from their extremities.

The relational operators include the simple union G1 ∪G2 and in-
tersection G1 ∩ G2 of two relational graphs G1 and G2, the selection
σfv ,fe(G) of some nodes and edges of a graph G satisfying fv and fe
resp., the projection πdv ,de(G) of nodes and edges on sub-domains dv
and de resp., and the cross-product G1 ×G2 of two graphs. From these
operators, other ones can be defined such as the extension εxv ,xe(G) of
one graph with new domains on nodes and edges for which elements
are obtained through xv and xe resp., the mapping ρxv ,xe(G) of a graph
replacing nodes and edges with results of xv and xe resp., or the grouping
γdv ,de(G) of nodes and edges with the same values for domains dv and
de resp.

Thanks to this algebra, the designer can more easily translate ex-
planations back into the original model language. For instance, let E
be the explanation of Figure 10.7. This explanation is derived from the
explanation of Figure 10.6 to which we added an edge decorated with
an action block. This graph can thus be viewed as a relational graph

10.2. Translating µ-calculus explanations 215

q0,⟪transmitter⟫G ¬sent, e

q0,¬sent ∧ ⟪transmitter⟫X ⟪transmitter⟫G ¬sent, e

q0,¬sent, e q0,⟪transmitter⟫X ⟪transmitter⟫G ¬sent, e

q0block ,◇tf true ∧ ◻tf ⟪transmitter⟫G ¬sent, e

q0block ,◇tf true, e q0block ,◻tf ⟪transmitter⟫G ¬sent, e

q0, true, e

⟨block⟩

Figure 10.7: An explanation for why q0 ∈ J⟪transmitter⟫G ¬sentKSe in
the bit transmission problem, with aliased formulas and an extra edge.

with Q′ ×Lµ × E as the node domain, where Q′ is the set of states of the
µ-calculus model, and with Act as the edge domain.

The designer can extract, from the obligations, the original state
using the algebra extension operator ε:

E′ = εstate,id(E),

where id is the identity function—so edges are not extended with any new
value—, and state(⟨q′, φ′, e′⟩) = original(q′), that is, nodes are extended
with the original state corresponding to q′. E′ is thus defined on the
node domain Q′ × Lµ × E ×Q—where Q are the states of the original
model—, and on the edge domain Act.

The designer can then project the result on the formulas and original
states with the projection operator π:

E′′ = πLµ×Q,Act(E′).

E′′ is thus defined on the node domain Lµ ×Q and on the edge domain
Act. Intuitively, E′′ is E′ but we removed the derived state and the
environment from every node.

From E′′, the designer can then group obligations according to their
original state, accumulating all the formulas in a new domain, filter these
accumulated formulas to keep the important ones only, and finally keep
the edges that are labelled with some action. That is, the final result Ef

216 Chapter 10. A framework for µ-calculus based logic explanations

is given by

Ef = σtrue,actions (ρimportant,id (γQ,empty(E′′))) , (10.2)

where

• empty is the empty domain, γQ,empty(E′′) is thus defined on the
node domain Q × 2Lµ and on the edge domain Act.

• important takes a tuple ⟨q,{φ}⟩ ∈ Q × 2Lµ and returns the tuple
⟨q,{φ ∣ φ is important}⟩ composed of the same state and the for-
mulas that are important (this notion is kept vague here, and will
be developed further in Section 10.2.6).

• true is the function selecting all nodes.

• actions is the function selecting all edges with an attached action.

The Ef explanation is illustrated in Figure 10.8. It is defined on the
node domain Q × 2Lµ and on the edge domain Act. This final graph is
similar to the explanation of Figure 10.3.

q0,
{⟪transmitter⟫G ¬sent,

¬sent,
⟪transmitter⟫X ⟪transmitter⟫G ¬sent}

⟨block⟩

Figure 10.8: An explanation for why q0 ∈ J⟪transmitter⟫G ¬sentKSe
in the bit transmission problem, translated using the relational graph
algebra.

10.2.3 Obligation and edge attributes

The relational graph algebra allows the designer to translate the explana-
tion back into the original model language, but it treats the explanation
as a whole. In the given example, the translation first extends the in-
formation of obligations and edges before transforming the graph. To
ease the addition of information to obligations and edges, the framework
provides the notion of attributes and attributors. An attribute is an
element of a relational graph domain, and an attributor is a function
taking an obligation or an edge and returning attributes to add to this

10.2. Translating µ-calculus explanations 217

element. If the function works on obligations, we call it an obligation
attributor, if it takes an edge as argument, we call it an edge attributor.

Attributors work as local decorators, in the sense that they deal with
obligations and edges one at a time. They can be given to the generating
algorithm to be run on every obligation or edge after generating the
explanation, or they can be attached to individual aliases to be run only
on the obligations with instantiations of the aliases, or outgoing edges
of these obligations. This improves the performances of decorating the
graph when only a few elements must be decorated. For instance, the
designer of the ATL model checker can decorate every outgoing edge of
an obligation labelled with a ⟪Γ⟫X formula with the action chosen by
the agents. As there are only few such edges, using an attributor would
make the decoration process more efficient than extending the edges with
a relational graph operation.

Updating the generating algorithm of Section 10.1 to take attribu-
tors into account is not difficult. The main idea is to take additional
attributors as arguments, and to post-process the explanation graph
to add attributes when needed. More precisely, Algorithm 10.2 com-
putes the original explanation using the explain algorithm, then runs
every obligation through the obligation attributors, that is, the ones
given in argument as well as the ones attached to the obligation formula
(φ′.attributors).

Then it runs every edge through the edge attributors. The attributors
run on an edge e are the ones attached to the formula of the origin of e
(origin.formula.attributors). This allows the designer to easily attach
edge attributors. Furthermore, edge attributors take the decorated
obligations at both ends of the edge instead of the original ones. This
allows obligation attributors to add to obligations information that could
be useful for edge attributors. To this end, the algorithm keeps in the
new O dictionary the correspondence between original and decorated
obligations. More precisely, new O[o] = o′ makes the decorated obligation
o′ correspond to the original obligation o, and new O[o] returns the
decorated obligation corresponding to o. Furthermore, the attributors
linked to formulas as well as the ones given as argument are ordered
into a list. This allows, again, the last attributors to rely on information
added by the previous ones.

Obligation and edge attributors can be replaced by the relational
graph algebra. Indeed, an attributor adds information to a graph element,
and this can be done with the extension operator ε. We nevertheless
keep both because attributors can be attached to particular formulas,
restricting the attributor to a small set of graph elements, and simplifying
its definition.

218 Chapter 10. A framework for µ-calculus based logic explanations

Algorithm 10.2: explain with attr(S, q, φ, e, attributors)
Data: S = ⟨Q,{Ri ∣ i ∈ Σ}, V ⟩ a Kripke structure, q ∈ Q a state of

S, φ a µ-calculus formula, and e an environment such that
q ∈ JφKSe, and attributors a list of attributors.

Result: An adequate explanation for q ∈ JφKSe augmented with
attributes.

⟨O,T ⟩ = explain(S, q, φ, e)
O′ = ∅; T ′ = ∅
new O = empty dictionary
for o = ⟨q′, φ′, e′⟩ ∈ O do

o′ = o
attrs = φ′.attributors + attributors
obl attrs = ⟨attr ∈ attrs ∣ attr is an obligation attributor⟩
for attributor ∈ obl attrs do

o′ = o′ + attributor(o′)
O′ = O′ ∪ {o′}
new O[o] = o′

for ⟨origin, end⟩ ∈ T do
e′ = ⟨⟩
attrs = origin.formula.attributors + attributors
edge attrs = ⟨attr ∈ attrs ∣ attr is an edge attributor⟩
for attributor ∈ edge attrs do

e′ = e′ + attributor(new O[origin], e′, new O[end])
T ′ = T ′ ∪ {⟨new [origin], e′, new O[end]⟩}

return ⟨O′, T ′⟩

10.2.4 Local translation

The relational graph algebra treats the explanation as a whole, and
the attributors only see one element at a time. The framework also
provides local translators to treat a part of the given graph. A local
translator receives a sub-graph of the explanation and can update it.
It is useful, for instance, for adding the edge with the action shown in
Figure 10.7: instead of having to search for obligations with a ⟪Γ⟫X φ
formula through the whole explanation, a local translator receives the
sub-graph explaining the aliased formula, and can manipulate it.

More precisely, a local translator is a function taking a relational
graph and a particular node as arguments, and that returns a new
relational graph. To translate a small part of the explanation in an

10.2. Translating µ-calculus explanations 219

isolated manner, it is necessary to define what part of the explanation to
isolate. The framework uses aliases to define this part: a local translator
is attached to an alias, and the graph it receives is the part of the
explanation that explains a formula aliased by the alias. Aliases can
have sub-formulas, such as the formula φ in the alias ⟪Γ⟫X φ. In this
case, the local translator receives the part of the explanation that starts
at the obligation labelled with the aliased formula, and that stops at
obligations labelled with sub-formulas of the alias.

For instance, the part of the explanation of Figure 10.6 explaining
the aliased formula ⟪transmitter⟫X ⟪transmitter⟫G ¬sent is given in
Figure 10.9. The whole explanation is given for clarity, and the part
explaining the ⟪Γ⟫X alias is in bold. This is the sub-graph a local
translator attached to the ⟪Γ⟫X alias would receive as argument.

q0,⟪transmitter⟫G ¬sent, e

q0,¬sent ∧ ⟪transmitter⟫X ⟪transmitter⟫G ¬sent, e

q0,¬sent, e q0,⟪transmitter⟫X ⟪transmitter⟫G ¬sent, e

q0block ,◇tf true ∧ ◻tf ⟪transmitter⟫G ¬sent, e

q0block ,◇tf true, e q0block ,◻tf ⟪transmitter⟫G ¬sent, e

q0, true, e

Figure 10.9: An explanation for why q0 satisfies ⟪transmitter⟫G ¬sent
in the bit transmission problem. The bold part explains the ⟪Γ⟫X alias.

More precisely, let φ be a µ-calculus formula with alias α(φ1, ..., φn).
In other words, φ is a formula to which is attached the alias α, and
sub-formulas φ1, ..., φn are sub-formulas of φ and arguments of α. For
instance, the formula

νv. ¬sent ∧◇trans chooses (◇trans follows true ∧ ◻trans follows v)

is aliased as ⟪transmitter⟫G ¬sent, the ⟪⟫G(Γ, φ) alias is attached to
it, and the only sub-formula of this alias is ¬sent.

Given an explanation E = ⟨O,T ⟩ and an obligation o with an aliased
formula—noted o.formula—with alias α(φ1, ..., φn), the part of the

220 Chapter 10. A framework for µ-calculus based logic explanations

explanation explaining α(φ1, ..., φn) is the graph containing all the obli-
gations and edges encountered on any prefix of a path from o to the first
obligation with φi attached, for some i ∈ {1, ..., n}. For this definition
to make sense, o must be connected to the obligations with φi. This is
effectively the case for the original adequate explanations as they are
consistent, and it is still the case for the explanations augmented with
attributes, as attributes do not change the connectivity of obligations.

Algorithm 10.3 extracts, from an explanation E = ⟨O,T ⟩ and an obli-
gation o ∈ O, the part of the explanation explaining o.formula, assuming
that o.formula is aliased with α(φ1, ..., φn). Starting from empty O′ and
T ′, it accumulates in them the obligations and edges encountered during
a traversal of E that stops at obligations with formulas in {φ1, ..., φn}.

Algorithm 10.3: extract local(E,o)
Data: E = ⟨O,T ⟩ an explanation, and o ∈ O an obligation such

that o.formula is aliased with α(φ1, ..., φn).
Result: The part of E explaining α(φ1, ..., φn).
O′ = ∅; T ′ = ∅
pending = {o}
while pending ≠ ∅ do

pick o′ ∈ pending
pending = pending/{o′}
O′ = O′ ∪ {o′}
if o′.formula /∈ {φ1, ..., φn} then

T ′ = T ′ ∪ {⟨origin, edge, end⟩ ∈ T ∣ origin = o′}
pending = pending ∪ (succ(o′)/O′)

return ⟨O′, T ′⟩

The extract local algorithm can be integrated in the generating
algorithm. Indeed, after generating the original explanation and running
attributors on its elements, we can locally translate all parts that can be
translated. The local explanation of some alias can be contained in the
local explanation of some other alias. For instance, the local explanation
of the ⟪⟫X alias is contained in the local explanation of the ⟪⟫G alias.
In this case, extract local can only work with the explanation in which
the part for ⟪⟫X has already been translated if this part maintains the
connectivity property of the graph. To ensure that it is always the case,
the proposed algorithm augments the explanation with the translated
graph instead of replacing it.

More precisely, Algorithm 10.4 performs the local translation of parts
of the explanation with translators attached to aliased formulas. It

10.2. Translating µ-calculus explanations 221

first gets the explanation augmented with attributes, and then locally
translates the parts that can be locally translated. For this, it computes
in to translate the list of obligations with an attached local translator.
Then it accumulates in the subgraphs dictionary the sub-graphs that
must be translated. The to translate list is then sorted by the Sort
algorithm that reorders obligations according to the graph inclusion of
the corresponding sub-graphs—that is, for two obligations o1 and o2

from to translate, o1 ≤ o2 if and only if subgraphs[o1] ≤ subgraphs[o2],
and ⟨O1, T1⟩ ≤ ⟨O2, T2⟩ if and only if O1 ⊆ O2 and T1 ⊆ T2. Finally, it
locally translates each sub-graph according to the order of to translate.
After translating each sub-graph, the translated graph is added to the
explanation. The final result is then the explanation where every sub-
graph has been translated.

Algorithm 10.4: explain translate(S, q, φ, e, attributors)
Data: S = ⟨Q,{Ri ∣ i ∈ Σ}, V ⟩ a Kripke structure, q ∈ Q a state of

S, φ a µ-calculus formula, and e an environment such that
q ∈ JφKSe, and attributors a list of attributors.

Result: A locally translated adequate explanation for q ∈ JφKSe
augmented with attributes.

⟨O,T ⟩ = explain with attr(S, q, φ, e, attributors)
to translate = ⟨o ∈ O ∣ o.formula has a local translator⟩
subgraphs = empty dictionary
for o ∈ to translate do

subgraphs[o] = extract local(⟨O,T ⟩, o)
Sort(to translate, subgraphs)
for o ∈ to translate do

⟨O′, T ′⟩ = o.formula.translator(extract local(⟨O,T ⟩, o), o)
O = O ∪O′

T = T ∪ T ′

return ⟨O,T ⟩

The explain translate algorithm sorts the obligations of to translate
according to the sub-graph relation to ensure that a graph E1 included
into another graph E2 is translated before E2. Thanks to this sorting, the
designer, that defines local translators, is ensured that the local translator
attached to some formula will be run after the local translators that
translate parts of its sub-graphs, and thus can rely on this translation.

For instance, if we attach a local translator to the ⟪⟫X alias to add
an edge in the graph, such as the one added in Figure 10.7, a local
translator attached to the ⟪⟫G alias is sure that this extra edge will be

222 Chapter 10. A framework for µ-calculus based logic explanations

present in the sub-graph it will receive, as the algorithm ensures that
the ⟪⟫X local translator will be run first.

Nevertheless, this mechanism must be used with caution because,
if two sub-graphs are not included in one another, then the algorithm
does not guarantee any order of their translation. Furthermore, because
the algorithm extracts the sub-graph to give to a local translator from
the current translated explanation—and not from the original one—the
second translator could receive a sub-graph with more elements than
expected, if the first one has already been run and the corresponding
sub-graphs share some elements. The designer must thus be aware of
this particularity when defining the local translators.

10.2.5 Choosers and partial explanations

The previous functionalities help the designer to translate the µ-calculus
explanation into another graph that is closer to the initial model language.
The aliases replace µ-calculus formulas with their corresponding top-level
logic formulas, the attributes attach more information to elements of
the graph, and the algebra and local translators derive new graphs from
the initial one. Nevertheless, the designer has no control on the initial
explanation the algorithm produces. For instance, when explaining why
a ⟪Γ⟫X φ formula is true is some state q, it can be the case that there
are multiple viable actions for Γ. Nevertheless, the explain algorithm
will make a choice among the successors qaΓ

of q, with no intervention
from the designer.

To allow the designer to interfere into these choices, the framework
provides the notion of choosers. A chooser is a function that takes
as arguments an obligation, a set of choices—that is, a set of possible
successors of this obligation—, and a type of choice, that depends on
the top operator of the obligation formula. The set of choices given
to a chooser are the choices that can effectively lead to an adequate
explanation. For instance, for a ◇i φ formula, the choices are restricted
to the successors of the state that actually satisfy φ. The chooser must
then return a subset of the choices, depending on the choice type:

• exclusive choices are for ∨ and ◇i operators. In these cases, only
one successor must be chosen among the possible ones, to ensure a
consistent explanation of the satisfaction. The chooser still has the
right to return no successor.

• inclusive choices are for ∧ and ◻i operators. In these cases, the full
explanation needs to show all successors. Nevertheless, the chooser
can return only a subset of the successors.

10.2. Translating µ-calculus explanations 223

• meaningless choices are for the other operators. In these cases, there
is no meaningful choice: there is no successor for true formulas,
atomic propositions or variables, and there is only one successor
for least and greatest fixpoint formulas. When there is only one
successor, the chooser can still ignore it.

Choosers can guide the explanation generation by choosing particular
successors, but also limit the size of the generated explanation by only
exploring parts of it. This introduces the notion of partial explanations,
that is, explanations where some obligations are not fully explained
because they lack some successors. The advantage of partial explanations
is that the complete explanation can be too large to be generated. For
instance, when explaining why the initial state of some Kripke structure
satisfies the CTL formula AG p, the explanation is the complete graph
of reachable states. So getting a part of it is better than an explanation
too large to be useful.

More precisely, a partial explanation is a couple Ep = ⟨E,U⟩ where
E = ⟨O,T ⟩ is a (non-consistent) explanation and U ⊆ O is the set of
unexplained obligations of E. Let E = ⟨O,T ⟩ be an explanation, we say
that o = ⟨q, φ, e⟩ ∈ O is partially consistent in E if and only if

• φ ≠ false,

• if φ = true, then succ(o) = ∅;

• if φ = p or φ = ¬p, for an atomic proposition p, then succ(o) = ∅;

• if φ = v, for a variable v, then q ∈ e(v) and succ(o) = ∅;

• if φ = ¬v, then q /∈ e(v) and succ(o) = ∅;

• if φ = φ1 ∧ φ2 then succ(o) ⊆ {o1, o2}, where o1 = ⟨q, φ1, e⟩ and
o2 = ⟨q, φ2, e⟩;

• if φ = φ1 ∨ φ2 then succ(o) ⊆ {oj}, where oj = ⟨q, φj , e⟩ for some
j ∈ {1,2};

• if φ = ◇iφ
′ then succ(o) ⊆ {o′}, where o′ = ⟨q′, φ′, e⟩ for some state

q′;

• if φ = ◻iφ′ then for all o′ ∈ succ(o), o′ = ⟨q′, φ′, e⟩ for some state q′;

• if φ = µv.ψ, then succ(o) ⊆ {o′} where o′ = ⟨q,ψk(false), e⟩ for
some k ≥ 0;

• if φ = νv.ψ, then succ(o) ⊆ {o′} where o′ = ⟨q,ψ(φ), e⟩.

224 Chapter 10. A framework for µ-calculus based logic explanations

Intuitively, o is partially consistent in E if it has at most the successors it
should have to be locally consistent in E. A consistent partial explanation
is a partial explanation Ep = ⟨⟨O,T ⟩, U⟩ such that all obligations o ∈ U
are partially consistent in ⟨O,T ⟩, and all obligations in O/U are locally
consistent in ⟨O,T ⟩.

Partial explanations are linked to Kripke structures as standard
explanations are. Given a structure S = ⟨Q,{Ri ∣ i ∈ Σ}, V ⟩, a partial
explanation ⟨⟨O,T, ⟩, U⟩ partially matches S if and only if

1. for all ⟨q′, φ′, e′⟩ ∈ O, q′ ∈ Q;

2. for all ⟨q′, p, e′⟩ ∈ O, p ∈ V (q) and for all ⟨q′,¬p, e′⟩ ∈ O, p /∈ V (q),
for an atomic proposition p;

3. for all ⟨⟨q′, φ′, e′⟩, ⟨q′′, φ′′, e′′⟩⟩ ∈ T , q′ = q′′ or φ′ ∈ {◇iφ
′′,◻iφ′′} and

⟨q′, q′′⟩ ∈ Ri;

4. for all o′ = ⟨q′,◻iφ′, e′⟩ ∈ O,

∃o′′ ∈ succ(o′) s.t. o′′ = ⟨q′′, φ′′, e′′⟩ for some φ′′, e′′

Ô⇒ ⟨q′, q′′⟩ ∈ Ri.

The only difference with the matches relation is that not all successors
of ◻i obligations have to appear.

Finally, given a Kripke structure S = ⟨Q,{Ri ∣ i ∈ Σ}, V ⟩, a state
q ∈ Q, a µ-calculus formula φ, and an environment e, we say that a
partial explanation Ep = ⟨⟨O,T ⟩, U⟩ is adequate for q ∈ JφKSe if and only
if Ep is consistent, Ep partially matches S, and ⟨q, φ, e⟩ ∈ O.

As for attributors, choosers can be attached to formulas. Attaching
a chooser to a formula φ allows the algorithms below to use them only
when choosing the successors of the obligations with φ. For instance, it
is possible to choose the successors of ⟪Γ⟫X formulas without running
the chooser on all the other cases.

Finally, choosers are allowed to avoid making a choice: by returning
a special none value, a chooser tells that it does not want to make that
particular choice, and lets the next chooser to make the choice instead.
This allows choosers to be chained.

The algorithms of the previous sections can be updated to take
choosers and partial explanations into account. The explain algorithm
must be updated to (1) ask choosers to make choices, and (2) keep track of
the unexplained obligations. Algorithm 10.5 presents this new version. It
behaves similarly to the original one, but it computes all valid successors,
instead of picking one, and runs them through the available choosers—the

10.2. Translating µ-calculus explanations 225

ones attached to the formula, and the ones given as argument (Lines 22
to 25). Furthermore, it keeps track of unexplained obligations in an
additional U local variable (Line 29). The algorithm uses the ChoiceType
function returning inclusive, exclusive or meaningless, depending on
the choice type of the top operator of the given formula.

The explain with attr algorithm stays almost the same. The only
difference is that it calls the explainp algorithm instead of the explain
one, and returns a partial explanation instead of a standard one. The
new version is not given here, but is called explainp with attr in the
sequel.

Local translation, on the other hand, handles several obligations and
edges of the explanation at the same time. Thus, it needs to be sure that
the part that explains a given aliased formula is completely generated
before translating it. For achieving this, the extract local algorithm
is updated to return the frontier of the sub-graph, that is, the nodes
that contain a sub-formula of the alias under consideration. Thanks
to this frontier, the explain translate algorithm can translate only the
sub-graphs for which there are no unexplained obligations outside their
frontier.

More precisely, the updated extract local algorithm is given in Algo-
rithm 10.6. The main difference with the original algorithm is given at
Line 11, where it accumulates in the frontier set the obligations with a
sub-formula of the alias of the main obligation o.

The updated explain translate algorithm uses the frontier of sub-
graphs explaining aliases to be sure that the alias is completely explained
before translating it. More precisely, Algorithm 10.7 presents the new
version. The main difference is at Line 7, where it ignores the obligations
for which the sub-graph still contains some unexplained obligations
outside their frontier.

Finally, providing partial explanations allows the designer to build
smaller but incomplete explanations. This also allows the designer to
provide interactive generation of explanations, in which the user chooses
which part of the explanation must be generated at the next step. This
functionality needs thus a way to expand a partial explanation with new
obligations explaining the parts left unexplained.

Algorithm 10.8 presents the expandp algorithm that takes a partial
explanation Ep = ⟨⟨O,T ⟩, U⟩ and an unexplained obligation o ∈ U in
addition to the arguments of the explainp algorithm, and returns a
partial explanation extending Ep. The difference between the expandp

and explainp algorithms is that the latter starts with an empty partial
explanation—O = T = U = ∅—,while the former starts with the partial
explanation given as argument.

226 Chapter 10. A framework for µ-calculus based logic explanations

Algorithm 10.5: explainp(S, q, φ, e, choosers)
Data: S = ⟨Q,{Ri ∣ i ∈ Σ}, V ⟩ a Kripke structure, q ∈ Q a state of

S, φ a µ-calculus formula, and e an environment such that
q ∈ JφKSe, and choosers a list of choosers.

Result: An adequate partial explanation for q ∈ JφKSe.

O = ∅; T = ∅; U = ∅
pending = {⟨q, φ, e⟩}
while pending ≠ ∅ do

pick o′ = ⟨q′, φ′, e′⟩ ∈ pending
pending = pending/{o′}
O = O ∪ {o′}
case φ′ ∈ {true, p,¬p, v,¬v}: O′ = ∅
case φ′ = φ1 ∧ φ2: O′ = {⟨q′, φ1, e

′⟩, ⟨q′, φ2, e
′⟩}

case φ′ = φ1 ∨ φ2

O′ = {}
if q′ ∈ Jφ1KSe′ then O′ = O′ ∪ {⟨q′, φ1, e

′⟩}
if q′ ∈ Jφ2KSe′ then O′ = O′ ∪ {⟨q′, φ2, e

′⟩}
case φ′ = ◇i φ

′′

O′ = {⟨q′′, φ′′, e′⟩ ∣ ⟨q′, q′′⟩ ∈ Ri ∧ q′′ ∈ Jφ′′KSe′}
case φ′ = ◻i φ′′: O′ = {⟨q′′, φ′′, e′⟩ ∣ ⟨q′, q′′⟩ ∈ Ri}
case φ′ = µv. ψ

φ′′ = false; sat = Jφ′′KSe′

while q′ /∈ sat do

φ′′ = ψ(φ′′); sat = Jφ′′KSe′

O′ = {⟨q′, φ′′, e′⟩}
case φ′ = νv. ψ: O′ = {⟨q′, ψ(φ′), e′⟩}

22 chrs = φ′.choosers + choosers
for chooser ∈ chrs do

new O′ = chooser(o′,O′,ChoiceType(φ′))
25 if new O′ ≠ none then break

if new O′ = none then new O′ = O′

T = T ∪ {⟨o′, o′′⟩ ∣ o′′ ∈ new O′}
pending = pending ∪ (new O′/O)

29 if new O′ ⊊ O′ then U = U ∪ {o′}
return ⟨⟨O,T ⟩, U⟩

The expandp algorithm needs the original partial explanation to
work, that is, the partial explanation before running attributors and local

10.2. Translating µ-calculus explanations 227

Algorithm 10.6: extract localp(E,o)
Data: E = ⟨O,T ⟩ an explanation, and o ∈ O an obligation such

that o.formula is aliased with α(φ1, ..., φn).
Result: The part of E explaining α(φ1, ..., φn), and the frontier of

this part.

O′ = ∅; T ′ = ∅
frontier = ∅
pending = {o}
while pending ≠ ∅ do

pick o′ ∈ pending
pending = pending/{o′}
O′ = O′ ∪ {o′}
if o′.formula /∈ {φ1, ..., φn} then

T ′ = T ′ ∪ {⟨origin, edge, end⟩ ∈ T ∣ origin = o′}
pending = pending ∪ (succ(o′)/O′)

11 else frontier = frontier ∪ {o′}
return ⟨⟨O′, T ′⟩, frontier⟩

translators on it. This means that the algorithms explainp with attr and
explainp translate have be updated to keep track and return the original
partial explanation beside the translated one. This is a technicality not
developed here, but it is not difficult to isolate the new elements of the
partial explanation, to run attributors onto them only, and to isolate
newly fully explained parts of the extended explanation that must be
locally translated.

10.2.6 Markers

Section 10.2.2 showed the translation of µ-calculus explanations into
ATL explanations using the relational graph algebra. This translation
includes the step of keeping, in the explanation, the formulas that are
interesting for the designer. Furthermore, the previous section discussed
the notion of choosers, and how they can be used to produce partial
explanations, with obligations that are kept unexplained.

To further facilitate these two cases, the framework provides the
notion of markers. A marker is attached to a formula to add extra
information to it. The framework provides two types of markers, points
of interest, and points of decision, but new types can be defined by the
designer.

Points of interest are intended to mark the formulas that are im-

228 Chapter 10. A framework for µ-calculus based logic explanations

Algorithm 10.7: explainp translate(S, q, φ, e, attributors)
Data: S = ⟨Q,{Ri ∣ i ∈ Σ}, V ⟩ a Kripke structure, q ∈ Q a state of

S, φ a µ-calculus formula, and e an environment such that
q ∈ JφKSe, and attributors a list of attributors.

Result: An adequate locally translated partial explanation for
q ∈ JφKSe augmented with attributes.

⟨⟨O,T ⟩, U⟩ = explainp with attr(S, q, φ, e, attributors)
to translate = ⟨o ∈ O ∣ o.formula has a local translator⟩
subgraphs = empty dictionary
explained = ⟨⟩
for o ∈ to translate do

⟨⟨O′, T ′⟩, frontier⟩ = extract localp(⟨O,T ⟩, o)
7 if U ∩ (O′/frontier) = ∅ then

subgraphs[o] = ⟨O′, T ′⟩
explained = explained + ⟨o⟩

Sort(explained, subgraphs)
for o ∈ explained do

⟨O′, T ′⟩ = o.formula.translator(extract localp(⟨O,T ⟩, o), o)
O = O ∪O′

T = T ∪ T ′

return ⟨O,T ⟩

portant for the designer. The important function of Equation 10.2 in
Section 10.2.2 can thus be defined as

important(o) = POI ∈ o.formula.markers,

where o.formula.markers is the set of markers attached to the formula
of the o obligation, and POI is the point of interest marker.

While points of interest simply give some flexibility and simplicity
to the designer, points of decision (PODs, in short) take part to the
generation process itself. The purpose of these markers is to avoid
explaining an obligation if its formula is marked with a POD. So the
explainp and expandp algorithms have to take them into account.

Algorithm 10.9 updates the explainp algorithm to take PODs into
account. The difference is at Line 21, where the algorithm exposes no
successor of the o′ obligation if it contains a formula with a POD.

The expandp algorithm is updated similarly. In this case, the o
obligation given as argument has to be explained—that is, run through
the choosers—, even if its formula is marked with a POD. Otherwise,
the obligations with POD formulas could not be explained at all.

10.2. Translating µ-calculus explanations 229

Algorithm 10.8: expandp(S, q, φ, e,Ep, o, choosers)
Data: S = ⟨Q,{Ri ∣ i ∈ Σ}, V ⟩ a Kripke structure, q ∈ Q a state of

S, φ a µ-calculus formula, and e an environment such that
q ∈ JφKSe, Ep = ⟨⟨O,T ⟩, U⟩ a partial explanation adequate
for q ∈ JφKSe, o ∈ U an unexplained obligation, and
choosers a list of choosers.

Result: An adequate partial explanation for q ∈ JφKSe extending
Ep.

pending = {o}
while pending ≠ ∅ do

pick o′ = ⟨q′, φ′, e′⟩ ∈ pending
pending = pending/{o′}
O = O ∪ {o′}
case φ′ ∈ {true, p,¬p, v,¬v}: O′ = ∅
case φ′ = φ1 ∧ φ2: O′ = {⟨q′, φ1, e

′⟩, ⟨q′, φ2, e
′⟩}

case φ′ = φ1 ∨ φ2

O′ = {}
if q′ ∈ Jφ1KSe′ then O′ = O′ ∪ {⟨q′, φ1, e

′⟩}
if q′ ∈ Jφ2KSe′ then O′ = O′ ∪ {⟨q′, φ2, e

′⟩}
case φ′ = ◇i φ

′′

O′ = {⟨q′′, φ′′, e′⟩ ∣ ⟨q′, q′′⟩ ∈ Ri ∧ q′′ ∈ Jφ′′KSe′}
case φ′ = ◻i φ′′: O′ = {⟨q′′, φ′′, e′⟩ ∣ ⟨q′, q′′⟩ ∈ Ri}
case φ′ = µv. ψ

φ′′ = false; sat = Jφ′′KSe′

while q′ /∈ sat do

φ′′ = ψ(φ′′); sat = Jφ′′KSe′

O′ = {⟨q′, φ′′, e′⟩}
case φ′ = νv. ψ: O′ = {⟨q′, ψ(φ′), e′⟩}
chrs = φ′.choosers + choosers
for chooser ∈ chrs do

new O′ = chooser(o′,O′,ChoiceType(φ′))
if new O′ ≠ none then break

if new O′ = none then new O′ = O′

T = T ∪ {⟨o′, o′′⟩ ∣ o′ ∈ new O′}
pending = pending ∪ (new O′/O)
if new O′ ⊊ O′ then U = U ∪ {o′}

return ⟨⟨O,T ⟩, U⟩

230 Chapter 10. A framework for µ-calculus based logic explanations

Algorithm 10.9: explainpod(S, q, φ, e, choosers)
Data: S = ⟨Q,{Ri ∣ i ∈ Σ}, V ⟩ a Kripke structure, q ∈ Q a state of

S, φ a µ-calculus formula, and e an environment such that
q ∈ JφKSe, and choosers a list of choosers.

Result: An adequate partial explanation for q ∈ JφKSe.

O = ∅; T = ∅; U = ∅
pending = {⟨q, φ, e⟩}
while pending ≠ ∅ do

pick o′ = ⟨q′, φ′, e′⟩ ∈ pending
pending = pending/{o′}
O = O ∪ {o′}
case φ′ ∈ {true, p,¬p, v,¬v}: O′ = ∅
case φ′ = φ1 ∧ φ2: O′ = {⟨q′, φ1, e

′⟩, ⟨q′, φ2, e
′⟩}

case φ′ = φ1 ∨ φ2

O′ = {}
if q′ ∈ Jφ1KSe′ then O′ = O′ ∪ {⟨q′, φ1, e

′⟩}
if q′ ∈ Jφ2KSe′ then O′ = O′ ∪ {⟨q′, φ2, e

′⟩}
case φ′ = ◇i φ

′′

O′ = {⟨q′′, φ′′, e′⟩ ∣ ⟨q′, q′′⟩ ∈ Ri ∧ q′′ ∈ Jφ′′KSe′}
case φ′ = ◻i φ′′: O′ = {⟨q′′, φ′′, e′⟩ ∣ ⟨q′, q′′⟩ ∈ Ri}
case φ′ = µv. ψ

φ′′ = false; sat = Jφ′′KSe′

while q′ /∈ sat do φ′′ = ψ(φ′′); sat = Jφ′′KSe′

O′ = {⟨q′, φ′′, e′⟩}
case φ′ = νv. ψ: O′ = {⟨q′, ψ(φ′), e′⟩}

21 if POD ∈ φ′.markers then new O′ = ∅
else

chrs = φ′.choosers + choosers
for chooser ∈ chrs do

new O′ = chooser(o′,O′,ChoiceType(φ′))
if new O′ ≠ none then break

if new O′ = none then new O′ = O′

T = T ∪ {⟨o′, o′′⟩ ∣ o′′ ∈ new O′}
pending = pending ∪ (new O′/O)
if new O′ ⊊ O′ then U = U ∪ {o′}

return ⟨⟨O,T ⟩, U⟩

10.3. Implementation 231

Figure 10.10 gives a summary of the call graph for the transformation
of a (potentially partial) µ-calculus explanation into a locally trans-
lated explanation with attributes. The explanation is generated with
explainpod, then attributes are added by explainp with attr, and sub-
graphs are eventually extracted with extractp local and locally translated
by explainp translate. The last one is thus the entry point to generate
such enriched explanations.

explainpod

explainp with attr

explainp translate

extractp local

Figure 10.10: The translation call graph.

Finally, markers are attached to formulas. A drawback appears when
dealing with substitution: when explaining an obligation o with a greatest
fixpoint formula φ, some descendants of o are labelled with φ, too. This
means that, if φ is marked with a point of decision, the generation will
stop at all the descendants of o with φ. This can be useful to precisely
control the generation, but it also can be annoying, for instance, when
explaining why EG φ′ is true: the generation is stopped at every step of
the path showing G φ′.

To solve this problem, the framework provides two kinds of markers:
the standard markers are attached to all occurrences of the same greatest
fixpoint formula, and the simple markers are not attached to the copy of
the formula in the substitution. The framework provides standard and
simple POIs, as well as standard and simple PODs. Thanks to simple
PODs, the problem above is avoided: as the marker is not attached to
the descendants of o, the generation is not stopped, and the explanation
of EG φ′ directly gives the full path.

10.3 Implementation

The framework has been implemented in Python, using PyNuSMV for
solving the model-checking problem. This section briefly describes how
all the parts of the framework are implemented. It also presents a tool
to visualize and manipulate translated explanations.

232 Chapter 10. A framework for µ-calculus based logic explanations

10.3.1 Encoding the model

To be able to use the framework, the designer has to derive, from the
original model, a µ-calculus Kripke structure S = ⟨Q,{Ri ∣ i ∈ Σ}, V ⟩.
Such a structure is implemented with PyNuSMV as a standard SMV
model to which several transition relations Ri are attached.

The framework provides two functionalities for defining and attach-
ing several transition relations. The first functionality relies on the
SMV model itself: if the SMV model contains an input variable called
transition, its values are taken as the different transition relation
names, and when dealing with a transition relation named trans, the
framework uses the standard model transition relation restricted by the
transition = trans constraint.

For instance, a toy µ-calculus model representing a simple counter
ranging from 0 to 3 is given in Figure 10.11. The corresponding µ-calculus
model contains the two transition relations named inc and dec.

MODULE main

VAR counter: 0..3;

IVAR transition: {inc, dec};

INIT counter = 0

TRANS transition = inc ->

(next(counter) = (counter + 1) mod 4)

TRANS transition = dec ->

(next(counter) = (counter + 3) mod 4)

Figure 10.11: A NuSMV model encoding the µ-calculus structure of a
simple counter.

The second functionality allows the designer to provide, when building
the µ-calculus model, an additional set of named transition relations
defined using PyNuSMV features. For instance, she can remove the two
TRANS clauses of Figure 10.11 and declare them in Python (assuming
that the model is stored in model.smv):

pynusmv.glob.load("model.smv")

transitions = {

’inc’: pynusmv.fsm.BddTrans.from_string(

"next(counter) = (counter + 1) mod 4"),

’dec’: pynusmv.fsm.BddTrans.from_string(

"next(counter) = (counter + 3) mod 4")

}

muModel = bddModel(transitions)

10.3. Implementation 233

10.3.2 Defining µ-calculus formulas

The framework provides Python classes to define µ-calculus formulas,
one for each µ-calculus operator: MTrue, MFalse, Atom, Variable, Not,
And, Or, Diamond, Box, Mu, and Nu. With this implementation µ-calculus
formulas do not have to be declared in positive normal form. Instead,
the framework lazily derives positive normal forms when needed. This
allows the formulas that annotate the obligations to stay as close to the
main formula as possible.

10.3.3 Implementation of translation features

This section briefly discusses how the different features to translate
explanations back into the top-level language are provided by the imple-
mentation.

Most of the features are implemented with Python decorators, that
is, function annotations that change the function behavior. Aliases
are defined as Python functions returning the corresponding µ-calculus
formula and decorated with the @alias decorator. Alias negations are
defined similarly, by redefining the aliased function f and decorating
it with the @f.negation decorator. Aliases α(a1, ..., an) are printed, by
default, as alpha(a 1, ..., a n), where a i are replaced by the actual
arguments of the alias. This can be overridden by providing a Python
format string as an argument to the alias.

For instance, we can define the alias IFF (φ1, φ2) as

@alias("{f1} <==> {f2}")

def IFF(f1 , f2):

return Or(And(f1 , f2), And(Not(f1), Not(f2)))

and define its negation as

@IFF.negation

def IFF(f1 , f2):

return And(Or(Not(f1), f2), Or(f1 , Not(f2)))

The @alias argument "{f1} <==> {f2}" tells the framework to print
IFF(a, b) as "a <==> b" instead of "IFF(a, b)".

Given an alias, the designer can define a local translator in the
same way as she defines the negation of the alias: she decorates the
function f taking the sub-graph and obligation as arguments with the
@f.translation decorator. The decorated function must return a new
graph representing the translated sub-graph.

Finally, choosers are also defined as functions decorated with the
@chooser decorator. They take an obligation, a set of successor obli-

234 Chapter 10. A framework for µ-calculus based logic explanations

gations, and a choice type as arguments, and return a subset of the
successors, depending on the choice type.

Markers are instances of the Marker class. The four markers provided
by the framework are implemented by the POD and SPOD instances for
standard and simple points of decision, and by the POI and SPOI instances
for the points of interest.

Relational graphs, and generated explanations in particular, are
implemented with the Graph class. Nodes and edges of these graphs are
implemented with the domaintuple class. This class defines a dictionary-
like structure where domains of the elements are identified by a name.
For instance, bare explanation nodes are instances of domaintuple with
three keys: "state" contains the state of the obligation, "formula" is the
formula of the obligation, and "context" is its context.

The designer can manipulate Graph instances through their methods:
the extension method derives a new graph extending the instance—it
implements the ε operator of the algebra—, the projection method
returns a new graph with projected elements, etc. Each operator of the
relational graph algebra is implemented by a method of the Graph class.

Finally, attributors are also defined with decorated Python functions.
These functions take either an obligation as argument and are decorated
with the @obligation_attributor decorator, or take an edge as argument—
a triplet composed of an obligation, one edge information, and another
obligation—, and are decorated with the @edge_attributor decorator.
They then return a Python dictionary of new attributes to add to the
obligation or edge. These attributors can then be attached to formulas,
or directly given to the explain algorithm.

For instance, we can define an obligation attributor that extends
obligations with the left sub-formula of its formula as

@obligation_attributor

left_sub(obligation):

return {"left": obligation["formula"].left}

and attach it to the IFF alias as

@alias("{f1} <==> {f2}")

def IFF(f1 , f2):

return left_sub(Or(And(f1 , f2),

And(Not(f1), Not(f2))))

10.3.4 Visualization tool

The framework allows the designer to efficiently translate an explanation
back into the top-level language. Nevertheless, these explanations remain

10.3. Implementation 235

complex and difficult to understand. To help the user in understanding
these complex explanations, the implementation also provides a graphical
visualization tool. A snapshot of the tool is given in Figure 10.12.

Figure 10.12: A snapshot of the visualization tool.

The main part of the tool (top left part) presents the explanation as
a graph. Nodes are depicted in ovals, and edges are depicted as arrows
decorated with information in a box. This graph can be moved with the
mouse, allowing the user to re-arrange it as she wishes. Additionally, the
tool provides two ways to automatically re-arrange the graph through
the Force-based layout and Dot layout buttons.

The information displayed in nodes and edge labels come from the
explanation elements themselves. These elements are domaintuple in-
stances, that is, dictionary-like structures, so the tool displays in nodes
and edges a representation of these dictionaries as key = value strings.
More precisely, the tool displays only the keys not starting with _, al-
lowing the designer to add extra information to the explanation without
polluting the displayed graph. This behavior can be overridden: if the
graph element contains a "_label_" key, its value is used instead of the
whole dictionary. This mechanism allows the designer to freely choose
what will be rendered.

236 Chapter 10. A framework for µ-calculus based logic explanations

If a "_label_" key is not provided, the tool also allows the user to
select which keys of the graph elements are displayed, through a right-
click menu on the graph area. This functionality is useful when the
complete information is too large to be displayed in nodes or edges, or
when some keys are useless for the user.

To enable interactivity, the designer can define, for any node or edge,
the "_menu_" key. If this key exists for some element, it is assumed to be
a graphical menu that is displayed whenever the user right-clicks on the
element. This can be used, for instance, to expand partial explanations.

The top right part of the tool displays the so-called element inspector.
When the user clicks on a particular graph element (the dashed one on
Figure 10.12), the tool displays in this window the complete information
of the element, as a table, where keys are displayed in the left column
and values in the right one. This window allows the user to quickly
get the complete information of some graph element without having to
re-display everything on the whole graph.

Again, the designer can decide what is effectively displayed in the
element inspector. By default, all keys not starting with _ are displayed
but, if the element contains the "_view_" key, it is used instead to fill
the window.

Finally, the bottom part of the tool can display one particular path
of the graph. More precisely, the user can select a path in the graph
by dragging and dropping the cursor from one node to another. In this
case, the shortest path from the first node to the second one is displayed.
The user can also add or remove elements from the selection to include
or exclude them from the displayed path. When the set of selected
elements effectively represents a finite path through the graph, the path
inspector displays the information of each node and edge in a table. As
for the element inspector, the keys of the dictionaries are given in the
left column, and the other columns display the information of the edges
and nodes along the path. The path inspector uses the same mechanism
as the element inspector, so the displayed information can be overridden
by the designer by providing a "_view_" key.

10.4 Application to ATL

The objective of this section is to show the usefulness of the framework by
applying it to the full ATL logic. It describes how explanations for ATL
can be obtained, displayed and manipulated thanks to the framework
implementation.

First, the full translation of ATL structures and formulas into µ-

10.4. Application to ATL 237

calculus ones is given, detailing the intuition given at the beginning of
the chapter. This formal translation is completed with a brief descrip-
tion of its Python implementation. Second, the section presents the
functionalities used to translate µ-calculus explanations back into ATL
ones: aliases, attributors, choosers, markers and local translators, as well
as relational graphs manipulations. The section also describes how the
visualization tool presented in the previous section can be used to display,
manipulate and extend partial ATL explanations. Finally, the section
draws some conclusions about the framework based on the presented
ATL model checker.

10.4.1 Translating ATL structures

The intuition behind the translation of an ATL CGS into a µ-calculus
Kripke structure is to split the concurrent choices of the agents of the
system into two steps: at the first step, the agents of Γ choose their
action; at the second step, the other agents react to this choice, making
the system evolve according to the chosen actions.

More precisely, let S = ⟨Ag,Q,Q0,Act, e, δ, V ⟩ be a CGS. From S, we
can derive a µ-calculus Kripke structure TATL(S) = ⟨Q′,{R′

i ∣ i ∈ Σ}, V ′⟩
where

• Q′ = Q ∪ {qaΓ
∣ Γ ⊆ Ag ∧ q ∈ Q ∧ aΓ ∈ ActΓ}, that is, Q′ is the set of

states Q augmented with states qaΓ
representing the fact that the

group of agents Γ chose action aΓ in state q;

• the set of transition relations {R′
i ∣ i ∈ Σ} is the set

{RΓchoose ∣ Γ ⊆ Ag} ∪ {RΓfollow ∣ Γ ⊆ Ag},

where

RΓchoose = {⟨q, qaΓ
⟩ ∈ Q′ ×Q′ ∣ aΓ ∈ ActΓ},

and

RΓfollow = {⟨qaΓ
, q′⟩ ∈ Q′ ×Q′∣ aΓ ∈ ActΓ ∧ ∃a ∈ EAg(q)

s.t. aΓ ⊑ a ∧ q′ = δ(q, a) } .

Intuitively, RΓchoose encodes the fact that Γ choose an action, and
RΓfollow encodes the fact that the system evolves according to the
choice of Γ;

• V ′(q) = V (q) for all q ∈ Q, and V ′(qaΓ
) = ∅ for all qaΓ

∈ Q′/Q.

238 Chapter 10. A framework for µ-calculus based logic explanations

The implementation represents a CGS with a standard SMV model
to which is attached a set of agents. Each agent is defined by a name and
a set of SMV input variables corresponding to its actions. For instance,
the CGS for the bit transmission problem is given in Figure 10.13. The
two agents are the sender, controlling the sender.action input variable,
and the transmitter, controlling the transmitter.action input variable.
The transition relation of the SMV model defines the enabled actions of
each agent in each state—in this case, all actions are always enabled—,
as well as how the state of the system evolves according to the actions of
the agents.

MODULE Sender()

IVAR action : {send, wait};

MODULE Transmitter()

IVAR action : {block, transmit};

MODULE main

VAR sender : Sender();

transmitter : Transmitter();

sent : boolean;

INIT !sent

TRANS (next(sent) = (sender.action = send &

transmitter.action = transmit) ?

true : sent)

Figure 10.13: A NuSMV model encoding the CGS for the bit transmission
problem.

As discussed in Section 10.3, the framework implementation provides
two ways for defining µ-calculus models: the SMV model can include a
transition input variable, or the designer can provide additional external
transition relations. The implementation of the CGS translation uses
the second option and provides, with the SMV model defining the CGS,
a Python instance acting like a dictionary of transition relations, and
lazily building these relations when needed. The advantage of this
mechanism is that, even if the CGS contains a lot of agents—resulting
into an exponentially large set of µ-calculus transition relations, since
two transition relations must be defined for each subset of agents—its
implementation builds the transition relations that are actually needed,
that is, for the groups of agents appearing in the checked formula.

10.4. Application to ATL 239

10.4.2 Translating ATL formulas

ATL formulas can be translated into µ-calculus ones such that the ATL
formula φ is satisfied by state q from some CGS S if and only if the
µ-calculus formula corresponding to φ is satisfied by the same state in
TATL(S). The intuition behind the translation is that the ⟪Γ⟫X and
JΓKX operators can be translated into µ-calculus formulas involving ◻i
and ◇i operators, and the other strategic operators are translated into
greatest and least fixpoints over formulas involving these operators.

More formally, let φ be an ATL formula. TATL(φ) is defined as

TATL(p) = p,
TATL(¬φ) = ¬TATL(φ),
TATL(φ1 ∨ φ2) = TATL(φ1) ∨ TATL(φ2),
TATL(⟪Γ⟫X φ) = ◇Γchoose (◇Γfollow true ∧ ◻Γfollow TATL(φ)),
TATL(⟪Γ⟫[φ1 U φ2]) =
µv. TATL(φ2) ∨ (TATL(φ1) ∧◇Γchoose (◇Γfollow true ∧ ◻Γfollow v)),
TATL(⟪Γ⟫[φ1 W φ2]) =
νv. TATL(φ2) ∨ (TATL(φ1) ∧◇Γchoose (◇Γfollow true ∧ ◻Γfollow v)).

The translation for the other propositional operators—∧, Ô⇒ , ⇐⇒—
and strategic ones—⟪Γ⟫F, ⟪Γ⟫G, and their JΓK counterparts—is easily
derived by syntactic reduction to the ones above.

The implementation of ATL formula translation simply uses the
Python classes provided by the framework to define µ-calculus formulas.
For instance, the µ-calculus formula

νv. ¬sent ∧◇trans chooses (◇trans follows true ∧ ◻trans follows v)

corresponding to the ATL formula ⟪transmitter⟫G ¬sent is defined by

Nu(Variable("v"),

And(Not(Atom("sent")),

Diamond("trans chooses",

And(Diamond("trans follows", MTrue()),

Box("trans follows",

Variable("v"))))))

The translation from CGS and ATL formulas to µ-calculus structures
and formulas is correct, in the sense that the model-checking outcome
for one is the same as for the other. This is formally captured by the
following property.

Property 10.3. Given a CGS S = ⟨Ag,Q,Q0,Act, e, δ, V ⟩, a state q ∈ Q,
and an ATL formula φ, S, q ⊧ φ if and only if q ∈ JTATL(φ)KTATL(S)∅.

240 Chapter 10. A framework for µ-calculus based logic explanations

Proof. First, TATL(φ) is a closed formula by construction. Thus, the
result of JTATL(φ)KTATL(S)e is the same for all environments e, and so
for the empty environment ∅. Second, we can prove this property by
showing that the function

PreJΓK(S,Q′) = {q ∈ Q ∣ ∀aΓ ∈ EΓ(q),∃a ∈ EAg(q)
s.t. aΓ ⊑ a ∧ δ(q, a) ∈ Q′ }

defined in Equation 2.2 of Section 2.2.3 is equivalent to the µ-calculus
formula ◻Γchoose (◻Γfollow false∨◇Γfollow TATL(φ′)). Then the evalATL
algorithm of Section 2.2.3 corresponds to the evaluation of TATL(φ), and
the translation is correct.

Let Q′ ⊆ Q, we can show that

PreJΓK(S,Q′) =
Q ∩ J◻Γchoose (◻Γfollow false ∨◇Γfollow v)KTATL(S){v → Q′}.

Let us first assume that q belongs to the righthand side of this equality.
In this case, q belongs to Q and for all successors qaΓ

of q through Γchoose,
either qaΓ

belongs to J◻Γfollow falseKTATL(S){v → Q′}, or q belongs to
J◇Γfollow vKTATL(S){v → Q′}. In the first case, aΓ is not enabled in q.
Indeed, if qaΓ

has no successor through RΓfollow, this means that there
are no action a ∈ EAg(q) and no state q′ such that aΓ ⊑ a and q′ = δ(q, a).
In the second case, there exists a way to reach a state of Q′ through aΓ.
Indeed, as qaΓ

has a successor q′ in Q′, this means that there exists an
action a ∈ ActAg completing aΓ and leading to q′. Thus, q belongs to the
righthand side because for any action aΓ ∈ ActΓ, either aΓ is not enabled
in q or there exists a completing action leading to some state of Q′, that
is, q belongs to PreJΓK(S,Q′).

The other direction is similar. Let us assume that q ∈ PreJΓK(S,Q′).
For all actions aΓ ∈ ActΓ, either aΓ is not enabled in q, or there exists a
completing action a ∈ ActAg leading to Q′. Thus, for all aΓ ∈ ActΓ, either
aΓ is not enabled and qaΓ

belongs to

J◻Γfollow falseKTATL(S){v → Q′},

or aΓ is enabled and there exists a successor of qaΓ
belonging to Q′, that

is, qaΓ
belongs to J◇Γfollow vKTATL(S){v → Q′}. Thus, q belongs to the

righthand side of the equality, and the proof is done.

10.4.3 Translating explanations

The previous sections showed that we can translate an ATL model-
checking problem into an equivalent µ-calculus one. The µ-calculus

10.4. Application to ATL 241

framework can thus be used to solve the equivalent µ-calculus model-
checking problem and produce rich adequate explanations. This sec-
tion presents how the framework functionalities are used to translate
µ-calculus explanations back into ATL ones.

Aliases

First, aliases are declared for ATL operators by defining Python functions
that return the corresponding µ-calculus formulas and are decorated
with the @alias decorator. The implementation takes advantage of the
format string we can give as argument to @alias to override its string
representation. For instance, the alias for the ⟪Γ⟫X φ formula is defined
with

@alias(" <{agents}> X {formula}")

def CEX(agents , formula):

return Diamond(agents + "_choose",

And(Diamond(agents + "_follow",

MTrue()),

Box(agents + "_follow",

formula)))

Furthermore, alias negations are defined to make the link between
each ATL operator and its dual. For instance, the negation of the CEX

alias is defined with

@CEX.negation

def CEX(agents , formula):

return CAX(agents , Not(formula))

where CAX is the alias for the JΓKX φ operator.

Finally, the @alias decorator also accepts the bounded argument, to
override the way least fixpoint formulas are expanded. For instance, the
formula pattern ⟪Γ⟫F is defined with

@alias(" <{agents}> F {formula}",

" <{agents }>^{bound} F {formula}")

def CEF(agents , formula):

var = Variable("CEF")

return Mu(var , Or(formula , CEX(agents , var)))

where the second argument tells the framework that, when the least
fixpoint operator is expanded, the string pattern used for the aliased
formula should be the given one instead of the standard one.

242 Chapter 10. A framework for µ-calculus based logic explanations

Markers

All top-level formulas returned by the defined aliases are marked as points
of interest, and both CEX and CAX aliases are also marked as points of
decision. The reason for the latter is to be able to generate small partial
explanations and to allow the user to expand them as she wishes. For
instance, the CEG alias marks the top-level formula as a point of interest:

@alias(" <{agents}> G {formula}")

def CEG(agents , formula):

var = Variable("CEG")

return POI(Nu(var ,And(formula , CEX(agents , var))))

We do not use a simple point of interest (SPOI) for the CEG and
CAG aliases because we try to give as much information as possible, thus
explaining that some state of the checked system satisfies ⟪Γ⟫G φ because
it satisfies both φ and ⟪Γ⟫X ⟪Γ⟫G φ. With an SPOI instead of a POI,
successors of a ⟪Γ⟫G φ formula would not be annotated with ⟪Γ⟫G φ
in the final translated explanation.

Attributors

Two attributors are defined to add information to edges and obligations
of the explanation. The first one attaches, to each obligation, the original
state its state derives from:

@obligation_attributor

def original_state(node):

return {"original":

node["state"]. get_str_values ()}

It relies on PyNuSMV functionalities to extract, from the BDD repre-
senting the state of the obligation—node["state"]—,a dictionary with
SMV state variables and their corresponding value. This attributor is
given to the explain algorithm to enrich all obligations.

The other attributor is an edge attributor. It stores the actions
chosen by the group in the outgoing edge of the obligations labelled with
a CEX or CAX aliased formula. This way, the information is more easily
accessed by local translators. The technical extraction of the actions
from the model is hidden behind the actions_for_group function.

@edge_attributor

def chosen_action(edge):

origin , label , end = edge

group = origin["formula"]["agents"]

actions = actions_for_group(group , end)

return {"action": actions}

10.4. Application to ATL 243

This attributor is then attached to the CEX and CAX aliases:

@alias("[{ agents }] X {formula}")

def CAX(agents , formula):

return POD(POI(chosen_action(

Box(agents + "_choose",

Or(Box(agents + "_follow",

MFalse ()),

Diamond(agents + "_follow",

formula)))

)))

Local translators

The implementation defines two local translators for ⟪Γ⟫X and JΓKX.
They extract, from the two steps of the µ-calculus model, the original
one-step transitions of the CGS. The first one extracts from the sub-graph
the action chosen by the group Γ and links it to all its successors in
the sub-graph, while the second one links the top-level node to all its
successors through the different actions chosen by Γ. For instance, the
local translator for the CAX alias is defined with

1 @CAX.translation

2 def CAX(graph , node):

3 new_graph = {node: set()}

4 agents = node["formula"]["agents"]

5 for (edge , or_node) in graph[node]:

6 actions = edge.action

7 _, dia_node = next(iter(graph[or_node]))

8 if isinstance(dia_node.formula , Diamond):

9 _, succ = next(iter(graph[dia_node]))

10 new_graph[node] |= {(domaintuple(

11 inputs=actions)),

12 succ)}

13 new_graph[succ] = set()

14 return Graph(new_graph)

This translator gets the sub-graph explaining the alias and its root node
as arguments, and, for each successor of this node, gets the action chosen
by the group—actions, at Line 6. Then, for all the successors that have
a ◇i labelled formula (Line 8), it adds a new edge to the graph with the
actions as label (Lines 9 to 13). The translator for CEX works similarly: it
adds edges from the root node to the frontier of the sub-graph, labelled
with the action chosen by the agents.

244 Chapter 10. A framework for µ-calculus based logic explanations

Using the relational graph algebra to translate explanations

The relational graph algebra is used to translate µ-calculus explanations
back into ATL ones. More precisely, the translate_explanation function
below manipulates the µ-calculus explanation to:

1. project the explanation nodes on formulas and original states
coming from the original_state attributor (Lines 3 and 4);

2. group nodes by their original state (Lines 5 and 6);

3. compute the pairs unexplained formulas of original states and
formulas still unexplained (Lines 7 to 10);

4. extend the nodes through the extract_formulas function (Lines 11
to 13) that takes the set unexplained formulas of pairs of original
states and unexplained formulas, and return a dictionary with two
new keys: (1) "explained" contains the explained formulas of the
node, (2) "unexplained" contains the unexplained ones;

5. select edges that are labelled with some actions (Lines 14 and 15);

6. keep only the useful information about nodes and edges (Lines 16
to 18); the node_values function keeps the original state and the
explained and unexplained formulas, and edge_values keeps the
actions of the edges.

1 def translate_explanation(explanation):

2 graph = explanation.graph

3 graph = graph.projection(

4 node_domain ={"formula", "original"})

5 graph = graph.grouping(

6 node_group =("formulas", {"original"}))

7 unexplained_formulas = {

8 (node["original"], node["formula"])

9 for node in explanation.unexplained

10 }

11 graph = graph.extension(

12 node_extension=

13 extract_formulas(unexplained_formulas))

14 graph = graph.selection(edge_selector=

15 lambda e: e[1]. inputs)

16 graph = graph.mapping(

17 node_mapping=node_values ,

18 edge_mapping=edge_values)

19 return graph

10.4. Application to ATL 245

Choosers

Finally, a chooser is defined to expand partial explanations. When dealing
with a CEX alias, this chooser gets, from the given choices, the original
actions of the group—through the actions_from_choices function—,
and displays a window showing one button per possible choice and
asking the user to choose one of them—through the window_for_choices

function and window.display(). The chosen action is then returned. The
unimportant details of the two sub-functions are not shown here. They
use PyNuSMV functionalities to extract possible action choices, and
Python GUI functionalities to build and display the window.

@chooser

def single_action_chooser(obligation , choices , type_):

if isinstance(obligation.formula , CEX):

action_choices = actions_from_choices(choices)

window = window_for_choices(action_choices)

window.display ()

return {window.chosen_action}

The chooser is then given to the explain function.

10.4.4 Visualizing explanations

Thanks to the visualization tool, it is possible to display and manipulate
the translated explanations. In particular, the ATL implementation
defines three new attributes for the nodes of the explanation to tweak
what the visualization tool displays:

1. the "_label_" key is defined to display, as the label of the nodes,
a sorted list of key, value pairs, instead of an unsorted one. This
minor detail allows the user to understand node labels more easily
as the information is displayed in the same order on every node;

2. the "_view_" key is similarly defined to order the key, value pairs
displayed in the element and path inspectors;

3. the "_menu_" key is also defined to display, through a right-click
menu, the list of unexplained formulas that can be clicked to explain
the formula. This menu triggers the expansion of the currently
displayed partial explanation, running through the chooser defined
in the previous section to select the action to play.

Figure 10.14 shows the tool displaying the initial node of an expla-
nation for why the formula ⟪transmitter, sender⟫F sent is satisfied by
the bit transmission problem, as well as the window displayed by the

246 Chapter 10. A framework for µ-calculus based logic explanations

chooser to ask the user which action should be chosen to expand the
explanation. In this case, there is only one action as both agents must
agree to send and transmit the bit. The generating algorithm is limited
to adequate explanations, so the other actions are not proposed as they
do not lead to winning strategies. The full explanation has already been
shown in Figure 10.12.

Figure 10.14: A snapshot of the explanation visualization tool for ATL
explanations, with the window asking the user for the action to play.

10.4.5 Conclusion

The previous sections showed that the framework can be used to solve
the model-checking problem of ATL formulas and to produce rich ex-
planations. This section analyses the benefits and drawbacks of the
framework, based on the ATL model-checking case.

The main advantage of the framework is the fact that the designer
does not have to worry about solving the model-checking problem itself,
nor about generating adequate explanations. Nevertheless, the effort
that she would put into developing a model checker from scratch is
transferred into translating models and formulas into the µ-calculus, as
well as into translating explanations back into the top-level language.
For instance, the translation from CGS to µ-calculus structures is not
trivial to implement, and the framework gives no help for that.

10.4. Application to ATL 247

Using the propositional µ-calculus as the base logic allows many
existing logics to be translated. This section showed the case of ATL,
but similar constructs can be implemented to solve the model-checking
problems of CTL, FCTL, CTLK, ARCTL, PDL, or ATLKIrF .

The framework features allow the designer to divide the concerns
into smaller parts, first dealing with formula translations (with aliases
and markers), then with single elements (with attributors), small sub-
graphs (with local translation), and with the whole explanation (with
the algebra).

Furthermore, all the features are useful, as illustrated by the ATL
case. In particular, local translation is useless for cases such as CTL,
but for ATL, where the model translation is difficult, local translators
can help treating small parts of the explanation separately, instead of
having to deal with the whole explanation graph at once.

Finally, the framework supports interactive and guided generation
of the explanations through choosers. This can lead to (1) smaller
manageable partial explanations that can be interactively expanded, as
illustrated by the ATL case, and (2) to guided generation, by embedding
some particular generation strategies in choosers. This second use case
will be discussed in the next chapter when comparing the framework to
other existing approaches.

Nevertheless, the designer still needs to translate the top-level model
into a µ-calculus structure by herself. This should be simpler than imple-
menting the model checking algorithm, as well as generating explanations,
but it can be difficult, especially with logics such as ATL. In simpler
cases such as (F)CTL(K), ARCTL, and PDL, the model stays the
same.

Finally, the framework produces one single (partial) explanation at a
time, for given state and formula. While the user or the designer can
control the generation, the final result still represents one witness for the
satisfaction. The framework cannot generate several explanations at the
same time for the same pair of state and formula, and, if the user wants
to get different explanations for the same satisfaction, the designer has
to define choosers that remember the choices made before to produce
different explanations whenever the explain algorithm is called.

Chapter 11

Part II: Conclusion

In the second part of this thesis, we describe a solution for generating
and understanding rich explanations for multi-modal logics. Because of
the branching characteristics of these logics, their explanations have a
complex structure that makes them difficult to understand.

The proposed solution is a framework for µ-calculus based logics
explanations. It integrates a µ-calculus model checker that generates rich
explanations and provides several functionalities to translate them into
explanations for a top-level logic such as ATL.

The framework produces adequate µ-explanations showing why a
given µ-calculus formula φ is satisfied by a given µ-calculus Kripke
structure S. In this context, an explanation is adequate if it matches
S—that is, it is composed of elements of S—and it has the right structure
to explain φ.

In addition to the µ-calculus model checker with rich explanations,
the framework provides several functionalities to translate them back
into top-level logic ones:

• aliases allow the designer to link µ-calculus formulas to their cor-
responding top-level logic counterparts. Aliases can be viewed as
other names for the µ-calculus formulas, but they also support other
features such as negation—to derive positive normal forms—and
substitution.

• the framework integrates the relational graph algebra of Dong et
al. (see Section 9.4.3 and [DRS03a]). This algebra allows the de-
signer to derive new explanations from the µ-calculus ones through
relational operators such as selection, projection, grouping, etc.

• While the algebra allows the designer to manipulate the explanation

250 Chapter 11. Part II: Conclusion

as a whole, attributors take one explanation node or edge at a time
and add information to them.

• local translators are attached to aliases and have access to the sub-
graph explaining why the formula they are attached to is satisfied.
They can then update this sub-graph to facilitate the translation
of the explanation.

• The preceding features allow the designer to translate and produce
rich explanations, embedding the information to understand them.
On the other hand, choosers allow her to interfere in the generation
process. They are functions that can be passed to the generating
algorithm and that resolve the choices to produce particular ex-
planations. These choosers can thus be used to perform guided
generation of explanations, or to perform interactive generation
where the user resolves the choices.

• Choosers introduce the notion of partial explanations. Such expla-
nations lack some parts that are not fully explained, making them
smaller, more manageable and more understandable. They can be
later expanded, to explain the parts left unexplained so far.

• markers add information to formulas themselves. The framework
provides two kinds of markers: points of interest and points of
decision. The former can be used by the designer to mark formulas
that are meaningful for the user. The latter are attached to formulas
that should stay unexplained. The generating algorithm take points
of decision into account and stops the generation when it encounters
them. This leads to partial explanations as well.

The framework has been implemented with PyNuSMV, taking ad-
vantage of Python functionalities such as function decorators to easily
describe aliases, attributors, local translators and the other features. The
implementation also integrates a graphical tool to visualize, manipulate
and explore relational graphs.

Finally, the whole framework has been validated on the case of ATL
model checking. ATL can be translated into the µ-calculus, and this
application showed that all the features provided by the framework are
useful to translate µ-explanations into ATL ones.

One of the main advantages of the framework is that many logics
can be translated into the µ-calculus, such as CTL, FCTL, ARCTL,
CTLK, ATL, ATLKIrF , and PDL. It is thus generic enough to provide
model-checking functionalities for all of them. Furthermore, thanks to
the framework, the designer does not have to worry about designing

11.1. Comparison with related work 251

and implementing a model checker, nor to worry about generating rich
explanations. Nevertheless, she has to translate the top-level models and
formulas into µ-calculus ones. Model translation can be difficult—for
instance, the translation from an ATL CGS to a µ-calculus structure is
not trivial—, and the framework gives no help to complete this task.

The framework features are generic and complement each other:

• the relational algebra, attributors and local translators manipulate
the explanation at different scales;

• points of decision and choosers work together to produce smaller
partial strategies and to select the explanations of interest;

• points of interest and aliases add information to important formulas.

Finally, the visualization tool provided by the framework complements
the translation features. The latter help the designer to produce useful
explanations while the former helps to user in visualizing, manipulating
and exploring it.

On the other hand, one of the main drawbacks of the framework is
the fact that it produces one single explanation at a time. Representing
several explanations at once could help the user to extract the reasons for
the satisfaction of the formula more easily. This idea is briefly discussed
in Section 11.2 presenting some future work.

11.1 Comparison with related work

This section compares the µ-calculus framework of this thesis with the
related work of Chapter 9. It discusses explanations for CTL model
checking, then for multi-modal logics, and finally for the µ-calculus.

11.1.1 Explanations for CTL model checking

The explanations of Rasse [Ras92] and the tree-like counter-examples of
Clarke et al. [CJLV02] are similar structures. They are hierarchies of
paths, and Rasse additionally annotates them with the formulas they
explain. They are composed of paths of the model because CTL path
formulas can be witnessed by single paths. This is not the case for our
framework as µ-calculus explanations cannot be defined as a hierarchy
of looping paths in general. Nevertheless, the explanations of Rasse
and Clarke et al. are designed for CTL and can be produced with the
µ-calculus framework of this thesis. Furthermore, the multi-paths of
Buccafurri et al. [BEGL01] are very similar to tree-like counter-examples,

252 Chapter 11. Part II: Conclusion

but the goal of Buccafurri et al. is to study the existence of linear
counter-examples, while the goal of the other solutions is to help the user
understand why the formula is satisfied.

The justifications of Roychoudhury et al. [RRR00], the proof-like
counter-examples of Gurfinkel and Chechik [GC03a], and the game-
based counter-examples of Shoham and Grumberg [SG07] share the same
level of details. They are more detailed than explanations such as
tree-like counter-examples as they expose logical steps in addition to
transition steps. For instance, they explain that state q satisfies φ1 ∧ φ2

because q satisfies both φ1 and φ2. In addition, justifications, proof-
like counter-examples and game-based counter-examples explain why
universal operators are satisfied. Again, explanations with such details
can be generated with the µ-calculus framework. A major difference
between justifications, game-based counter-examples, and the µ-calculus
framework is that the first ones are developed on a logic-programming-
based model-checking framework, the second ones on a game-based
model-checking one, and the third is tailored to work with BDD-based
model checking.

The visualization and generation strategies proposed by the proof-
like counter-examples framework can be easily implemented within the
µ-calculus framework by defining adequate choosers. The designer can
implement strategies to produce CTL counter-examples, but also for
any other logic that can be translated into the µ-calculus. Finally,
the visualization tool KEGVis is similar to visualization tool of our
framework: the main idea of these tools is to present the explanation as
an annotated graph, with additional windows displaying more precise
information. The difference between KEGVis and our tool is that the
former is centered around the notion of proof while the latter is centered
around the checked model itself.

Mateescu’s extended Boolean graphs (EBGs) capture the part of the
checked structure as well as the sub-formulas of the checked formula
responsible for the model-checking outcome [Mat00]. EBGs nodes are
linked to Boolean equation systems variables, and a BES variable says
whether some state of the structure satisfies a formula or not. EBGs
are thus full explanations for BES, and thus for the full CTL, includ-
ing universal operators. Nevertheless, the translation of EBG to CTL
explanations is not detailed in Mateescu’s paper, making it difficult to
compare it with the features provided by the µ-calculus framework and
the associated visualization tool.

Tan and Cleaveland’s support sets are similar to EBGs [TC02]. A
translation of support sets to CTL∗ explanations is given, but the paper
concentrates on linear witnesses while support sets could be used to

11.1. Comparison with related work 253

extract tree-like counter-examples. Their work is more theoretical than
the framework presented in this thesis and does not provide functionalities
to translate support sets into actual explanations. Also, Mateescu’s and
Tan and Cleaveland’s solutions are based on the framework of Boolean
equation systems while the solution of this thesis is based on BDD-based
model-checking techniques.

Finally, Meolic et al. witness automata do not solve the same problem
as µ-calculus explanations. The former concentrate on linear witnesses
for test case generation while the latter are used to give insight on the
model-checking outcome. One advantage of these automata is that they
represent several explanations at once.

11.1.2 Explanations for multi-modal logics

The visualization tool of MCMAS displays tree-like counter-examples for
CTLK and ATL formulas [LR06a, LQR09, LQR15]. It is similar to the
visualization tool of our µ-calculus framework but it is a bit more limited:
the inspection capabilities are limited to one state at a time—thus, no
full path inspection—, and the graph is fixed, that is, the user cannot
move its nodes and edges. Furthermore, the nodes and edges are not
annotated with the formulas they explain.

On the other hand, MCK provides several debugging functionali-
ties [GvdM04]. First, it can export the part of the model resulting
from SAT-based model checking, but it is not annotated with sub-
formulas. Furthermore, it provides a debugging game inspired by Stir-
ling’s games [Sti95] in which the user can try to show why the model-
checking outcome is wrong while the system shows her why it is actually
right. Such debugging game can be implemented with the choosers pro-
vided by the µ-calculus framework. In this case, the user would choose
the successor for inclusive choices (∧ and ◻i formulas) while the system
would choose the successor for exclusive ones (∨ and ◇i formulas).

Tree-like annotated counter-examples (TLACEs) take direct inspi-
ration from the work of Rasse and from the tree-like counter-examples
of Clarke et al. [CJLV02]. They can be viewed as a hierarchy of an-
notated paths. While these counter-examples allow the user to better
understand violations of CTLK formulas, they still suffer from some
limitations. They do not explain why a universal operator—such as
AF φ formulas—is satisfied by a given structure, as such an explanation
cannot be expressed as a single path. Furthermore, a TLACE represents
a single arbitrarily chosen explanation. The user has no control on the
way the counter-example is generated. Finally, it can be very large.
The µ-calculus framework overcomes all these limitations: it can explain

254 Chapter 11. Part II: Conclusion

universal operators by extracting the sub-model responsible for the satis-
faction, it allows the designer to generate particular counter-examples
through choosers, and partial explanations allow her to manage the size
of the witness.

Finally, the ALCCTL counter-examples of Weitl et al. [WNF10]
are similar to TLACEs as they are graphs with paths and states an-
notated with formulas. Nevertheless, they are designed for another
logic—ALCCTL—and give more information for some cases: they pro-
vide all witnesses for AX and EX formulas, as well as all instantiations
of ALC expressions. Nevertheless, like TLACEs, they do not explain
other A operators such as AF, AG, AU and AW. Furthermore, they
provide a lazy interactive generation algorithm. This feature can be
implemented with the µ-calculus framework by defining the adequate
choosers, but it is not clear whether the ALC part of the logic can be
translated into the µ-calculus.

11.1.3 Explanations for the µ-calculus

The relational graph algebra of Dong et al. is designed to manipulate
explanations [DRS03a]. It is reused by the µ-calculus framework. Nev-
ertheless, Dong’s goals are not the same as the goals of the µ-calculus
framework. The former uses the algebra to derive different views of the
evidence to present them to the user. On the other hand, the µ-calculus
framework uses the algebra to produce new explanations that can be
very different from the original one.

The explanations from the work of Kick [Kic95b, Kic95a] are similar
to the µ-calculus explanations of this thesis. The main difference between
the two solutions is the generation algorithm. While Kick’s solution up-
dates the model-checking algorithm to compute and store the additional
information needed to explain why least fixpoint formulas are satisfied,
the solution of this thesis relies on BDD caching mechanisms to retrieve
the information. The advantage of the latter is that the algorithm is
simpler, but it has no control on the caching mechanism to make sure
that the intermediate computations are still accessible when building the
explanation.

Linssen’s generic diagnostic graphs [Lin11] are similar to Kick’s ex-
planations and to the adequate µ-calculus explanations of this thesis.
They are graphs where nodes are couples of state and formula. The proof
graphs of Cranen et al. [CLW13] share the same idea as Linssen’s graphs,
but are adapted to richer formalisms. The difference with the µ-calculus
framework of this thesis is that these graphs are generated from BES
instead of BDDs.

11.2. Future work 255

Finally, model-checking certificates of Namjoshi [Nam01] and Hof-
mann and Rueß [HR14] are closely related to adequate explanations as
the latter can also be used to check that the model-checking outcome is
correct. Nevertheless, the approaches of Namjoshi, Hoffmann and Rueß
work within a game-based framework.

All solutions discussed in this section work for particular logics such
as CTL, CTLK, the µ-calculus, ALCCTL, or are generic solutions with
some application to one use case such as BES and their extensions,
games, proofs. But no work proposes a solution to produce explanations
and to translate them back into the original language, as the µ-calculus
framework of this thesis. They either limit themselves to one logic, or
they provide generic structures without giving explicit help for applying
and translating it into something useful for the end user.

11.2 Future work

Several improvements and evolutions can be made on the µ-calculus
framework. This section lists and explains some of them.

Providing more than one explanation at a time One of the main
disadvantages of the µ-calculus explanations is that they represent one
single witness of the satisfaction. If the user wants another witness, she
has to re-run the generating algorithm with tuned choosers to get another
explanation. It would be interesting to explore how we could represent
several explanations at once. A set of states can be represented with
a single BDD, so such an explanation could be a graph with BDDs in
nodes instead of single states. Nevertheless, this raises some problems
such as (1) how to display a set of states to the user, and (2) how to
treat paths with different lengths. This idea is related to the one of
Shen et al. [SQL05b, SQL05a]. They propose to post-process an ACTL
linear counter-example, represented as a list of BDDs, to build a list of
BDD cubes that captures more executions of the system that violate the
formula. The difference with the idea above is that the one of Shen et
al. post-processes the counter-example to derive several traces while we
propose to directly produce several explanations during the generation
process.

Using the alternating-time µ-calculus as base logic Translating
a CGS and an ATL formula into µ-calculus model and formula is not an
easy task compared to other logics such as CTL and CTLK. The diffi-
culty comes from the fact that the CGS transition relation is translated

256 Chapter 11. Part II: Conclusion

into several µ-calculus transition relations, and one step of the original
model corresponds to two steps of the translated one. One solution to
make this particular translation easier is to use the alternating-time
µ-calculus as base logic instead of the propositional µ-calculus. In this
case, the notion of adequate explanations must be slightly reworked as
the ◻i and ◇i operators are replaced by their strategic counter-part. On
the other hand, this new framework would still be adequate for all the
logics already mentioned.

Helping the designer to translate the model One of the draw-
backs of the µ-calculus framework is that it gives no help to the designer
for translating the original model into a µ-calculus one. It would be
interesting to explore solutions to provide translation functionalities for
the model itself. With such translation functionalities, the translation of
explanations back into the original language could become automatic.

Chapter 12

Conclusion

In the first part of this thesis, we present algorithms to solve the model-
checking problem of ATLKirF , a multi-modal logic that mixes temporal,
knowledge and strategic operators for reasoning about systems with
fairness constraints and agents with imperfect information. These algo-
rithms are based on an enumeration of the strategies of the agents, with
several improvements such as the restriction to partial strategies—with
the partial approach—, the usage of pre-filtering—for the naive and par-
tial algorithms—, and the construction of the strategies from the target
states with the backward approach. They are experimentally compared
to other symbolic algorithms—the early and symbolic ones—, and the
results show that each approach outperforms the others on some cases,
and works worse on others. More precisely, the experiments showed that:

• The naive approach is not efficient at all; this is expected as
it blindly enumerates and checks all uniform strategies before
concluding.

• The partial approach is really good when most of the strategies
are winning, but performs poorly when showing that there are no
winning strategies.

• The early approach presents a better trade-off and can efficiently
handle cases with and without winning strategies.

• The symbolic approach works better on models with a huge number
of strategies as it handles them all at the same time.

• The backward approach is limited to reachability objectives but
works better than any other approach on these cases.

258 Chapter 12. Conclusion

• Pre-filtering can improve the process when the model contains a
lot of losing moves, but can make it worse otherwise.

In the second part, we present a solution for providing rich ex-
planations for multi-modal logics. This solution is a µ-calculus-based
model-checking framework with rich explanations. As many logics can be
translated into the µ-calculus, the framework has a large range of applica-
tions. This framework provides a µ-calculus model checker that produces
graphs as adequate explanations, and a set of features to translate them
into the original modeling language. These features are:

• formula aliases, to attach top-level formulas to µ-calculus ones;

• the relational algebra of Dong et al. [DRS03a] to manipulate and
transform the µ-calculus explanations;

• the notion of explanation attributes, and the usage of attributors
to attach these attributes to explanation elements;

• local translators, to translate small parts of the explanation;

• choosers that can produce partial explanations;

• markers to attach extra information to formulas.

To show that the framework is useful, it is applied to the case of ATL
model checking. The resulting explanations represent the parts of the
original model responsible for the model-checking outcome, annotated
with the sub-formulas of interest. Finally, we present a graphical tool to
display, manipulate and explore the translated explanations.

The µ-calculus framework cannot be used to implement the semi-
symbolic approaches described in the first part, because the strategies
are explicitly enumerated by the model-checking approaches while the
µ-calculus framework offers a fully symbolic solution only. Nevertheless,
extracting an explanation for why an ATLKirF formula is satisfied is
not very difficult. Indeed, as these semi-symbolic algorithms enumerate
and check each strategy, they can keep track of the ones that are winning
for the states of interest. An explanation for the satisfaction is then the
execution of a winning strategy from the state of interest. Annotations
are also easily added by keeping track of the checked sub-formulas in
addition to the strategies themselves.

Furthermore, interactive exploration of one particular strategy can
be achieved by asking the user which successor must be explored. Never-
theless, interactive generation of such explanations would be way less

259

efficient as, in this case, the algorithms would have to check all strategies
to keep the winning ones instead of stopping at the first one.

On the other hand, the symbolic approach presented in Chapter 6 can
be directly encoded into the µ-calculus framework. Given a concurrent
game structure S, the approach derives a new structure EncStrats(S) by
encoding the uniform strategies of the agents in its states. The winning
strategies and the states satisfying the formula are then computed with
fixpoints on the derived structure. This EncStrats(S) translation can
be easily adapted to produce a µ-calculus Kripke structure. Furthermore,
the functions the evaluation relies on can be translated into µ-calculus
formulas with ◻i and ◇i operators on adequate translation relations of
the µ-calculus structure, and the whole model-checking algorithm can be
translated into µ-calculus formulas, too.

This translation would bring the full set of features to control the
generation of the explanations. Thanks to these features, the user
could choose the winning strategy to explore, and would be able to
do it interactively. Nevertheless, this way of translating the ATLKirF

model-checking problem into the µ-calculus introduces a major limitation:
because the evalSymbolicATLKirF

algorithm first fixes the strategy before showing
why it is winning, the user would need to choose the whole strategy to
play through the initial µ-calculus state. In other words, implementing
the evalSymbolicATLKirF

algorithm within the µ-calculus framework enforces the
µ-calculus explanation to start by choosing the strategy to play, then
showing that it is effectively winning. On the other hand, the ATL
translation given in Chapter 10 can be used to explore and build the
winning strategies incrementally because the translation does not force
the framework to choose the strategy a priori.

A solution to this limitation is to extend the µ-calculus framework
to produce multiple explanations at once: instead of explaining why
one state qES of EncStrats(S) satisfies some µ-calculus formula φ, the
framework could explain why a set of states Q′ of EncStrats(S) satisfy
φ. In this case, Q′ could be all the states of EncStrats(S) corresponding
to one state q of S. These states would thus represent all the strategies
that are winning in q. Then the framework could interactively explore
these strategies by asking the user which action should be played, and
by restricting the successors to the ones that fit the user choices. This
solution shows the need for the framework to support explanations for
sets of states instead of single states.

Finally, this thesis concentrates on two problems: the ATLKirF

model-checking problem—and more largely, the problem of checking
the existence of uniform memoryless strategies—, and the problem of
producing and exploring rich explanations for multi-modal logics. Nev-

260 Chapter 12. Conclusion

ertheless, several related problems remain unsolved. The rest of this
chapter discusses three of them.

Approximations for the existence of uniform strategies The
complexity analysis of Section 5.6 and the experiments of Chapter 7
showed that model checking the existence of uniform memoryless strate-
gies is a difficult problem, both in theory and in practice. The complexity
analysis showed that the problem is ∆2

P -complete—that is, the problem
for one strategic operator is NP-complete—, and the experiments showed
that the problem cannot be solved in reasonable time for models with
more than tens of thousands of states.

One way to tackle this complexity is to work with approximations.
One approximation is already extensively used by this thesis through
the pre-filtering feature. Indeed, pre-filtering works because, if there is
no winning general strategy in some state q of the checked iCGSf, then
there is no winning uniform one in q. Another approximation is used by
the early approach in which a given partial strategy is run through the
filterA algorithms to check whether all its extensions are winning.

To solve the model-checking problem more efficiently, we can look for
tighter approximations. Jamroga and other researchers already attacked
this idea by proposing some variants of the alternating epistemic µ-
calculus that lead to tighter approximations [JKK15, JKK16].

Generating minimal explanations The algorithm for generating
µ-calculus explanations provides an adequate explanation, without any
guarantee about its size. In particular, it does not try to find the smallest
explanation that effectively illustrates the satisfaction of the formula.

For the simpler case of trace-based explanations, Clarke et al. al-
ready showed that finding the smallest linear counter-example is an
NP-complete problem [CGMZ95], and some authors already attacked the
problem of generating minimal linear counter-examples [GMZ04, HG08,
ZJC11]. Nevertheless, new solutions are needed for the case of µ-calculus
explanations, as they are not based on individual paths. Also, it is not
clear what would be the best minimality criterion for the size of such
complex branching explanations.

Finding the cause of error Even if the generated explanation is the
smallest possible one, it still can be too large to be correctly explored and
understood by the user. In the second part of this thesis, we proposed
a graphical tool to explore and inspect the explanations but, instead of
letting the user use this tool to find the cause of the error by herself, we
could develop techniques to find and isolate this cause.

261

Many ideas have already been proposed for finding and isolating
the possible causes of a formula violation in the domain of trace-based
explanations [BNR03], [RS04, JRS04], [GV03, GKL04, GK05, GCKS06].
But how these ideas can be adapted for the case of branching explanations
remains an open question.

References

[ÅA12] Thomas Ågotnes and Natasha Alechina. Epistemic coali-
tion logic: completeness and complexity. In International
Conference on Autonomous Agents and Multiagent Systems,
AAMAS 2012, Valencia, Spain, June 4-8, 2012, pages 1099–
1106, 2012.

[AG11] Krzysztof R. Apt and Erich Grädel. Lectures in Game Theory
for Computer Scientists. Cambridge University Press, New
York, NY, USA, 1st edition, 2011.

[AHK98] Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman.
Alternating-time temporal logic. In Amir Pnueli Willem-
Paul de Roever, Hans Langmaack, editor, Compositionality:
The Significant Difference, volume 1536 of Lecture Notes in
Computer Science, pages 23–60. Springer Berlin Heidelberg,
1998.

[AHK02] Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman.
Alternating-time temporal logic. J. ACM, 49(5):672–713,
September 2002.

[BCCZ99] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and
Yunshan Zhu. Symbolic model checking without BDDs. In
Tools and Algorithms for Construction and Analysis of Sys-
tems, 5th International Conference, TACAS ’99, Amsterdam,
The Netherlands, March 22-28, 1999, pages 193–207, 1999.

[BCLM09] Thomas Brihaye, Arnaud Da Costa, François Laroussinie,
and Nicolas Markey. ATL with strategy contexts and
bounded memory. In Logical Foundations of Computer Sci-
ence, International Symposium, LFCS 2009, Deerfield Beach,
FL, USA, January 3-6, 2009, pages 92–106, 2009.

264 REFERENCES

[BCM+90] Jerry R Burch, Edmund M Clarke, Kenneth L McMillan,
David L Dill, and Lain-Jinn Hwang. Symbolic model check-
ing: 1020 states and beyond. In Logic in Computer Science,
1990. LICS’90, pages 428–439. IEEE, 1990.

[BDF14] Rodica Bozianu, Cătălin Dima, and Emmanuel Filiot. Safra-
less synthesis for epistemic temporal specifications. In Armin
Biere and Roderick Bloem, editors, Computer Aided Verifi-
cation, volume 8559 of Lecture Notes in Computer Science,
pages 441–456. Springer International Publishing, 2014.

[Bea96] David M. Beazley. SWIG: an easy to use tool for integrating
scripting languages with C and C++. In Proceedings of
the 4th conference on USENIX Tcl/Tk Workshop, 1996 -
Volume 4, TCLTK’96, pages 15–15, Berkeley, CA, USA, 1996.
USENIX Association.

[BEGL01] F. Buccafurri, T. Eiter, G. Gottlob, and N. Leone. On
ACTL formulas having linear counterexamples. Journal of
Computer and System Sciences, 62(3):463 – 515, 2001.

[Bel14] Francesco Belardinelli. Reasoning about knowledge and
strategies: Epistemic strategy logic. In Proceedings 2nd
International Workshop on Strategic Reasoning, SR 2014,
Grenoble, France, April 5-6, 2014., pages 27–33, 2014.

[BJ10] Nils Bulling and Wojciech Jamroga. Verifying agents with
memory is harder than it seemed. In 9th International
Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2010), Toronto, Canada, May 10-14, 2010, Volume
1-3, pages 699–706, 2010.

[BJ11] Nils Bulling and Wojciech Jamroga. Alternating epistemic
mu-calculus. In IJCAI 2011, Proceedings of the 22nd Interna-
tional Joint Conference on Artificial Intelligence, Barcelona,
Catalonia, Spain, July 16-22, 2011, pages 109–114, 2011.

[BJP14a] Nils Bulling, Wojciech Jamroga, and Matei Popovici. Agents
with truly perfect recall in alternating-time temporal logic. In
International conference on Autonomous Agents and Multi-
Agent Systems, AAMAS ’14, Paris, France, May 5-9, 2014,
pages 1561–1562, 2014.

[BJP14b] Nils Bulling, Wojciech Jamroga, and Matei Popovici. ATL*
with truly perfect recall: Expressivity and validities. In ECAI

REFERENCES 265

2014 - 21st European Conference on Artificial Intelligence,
18-22 August 2014, Prague, Czech Republic, pages 177–182,
2014.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of Model
Checking. The MIT Press, 2008.

[BNR03] Thomas Ball, Mayur Naik, and Sriram K Rajamani. From
symptom to cause: localizing errors in counterexample traces.
In ACM SIGPLAN Notices, volume 38, pages 97–105. ACM,
2003.

[BP12] Simon Busard and Charles Pecheur. Rich counter-examples
for temporal-epistemic logic model checking. In Proceedings
Second International Workshop on Interactions, Games and
Protocols, IWIGP 2012, Tallinn, Estonia, 25th March 2012,
pages 39–53, 2012.

[BP13] Simon Busard and Charles Pecheur. PyNuSMV: NuSMV
as a Python library. In Guillaume Brat, Neha Rungta, and
Arnaud Venet, editors, Nasa Formal Methods 2013, volume
7871 of LNCS, pages 453–458. Springer-Verlag, 2013.

[BPQR13] Simon Busard, Charles Pecheur, Hongyang Qu, and Franco
Raimondi. Reasoning about strategies under partial observ-
ability and fairness constraints. In Fabio Mogavero, Aniello
Murano, and Moshe Y. Vardi, editors, Proceedings 1st Inter-
national Workshop on Strategic Reasoning, SR 2013, Rome,
Italy, March 16-17, 2013, volume 112 of EPTCS, pages
71–79, 2013.

[BPQR14] Simon Busard, Charles Pecheur, Hongyang Qu, and Franco
Raimondi. Improving the model checking of strategies under
partial observability and fairness constraints. In Stephan
Merz and Jun Pang, editors, Formal Methods and Software
Engineering, volume 8829 of Lecture Notes in Computer Sci-
ence, pages 27–42. Springer International Publishing, 2014.

[BPQR15] Simon Busard, Charles Pecheur, Hongyang Qu, and Franco
Raimondi. Reasoning about memoryless strategies under
partial observability and unconditional fairness constraints.
Information and Computation, 242:128 – 156, 2015.

[Bry86] Randal E Bryant. Graph-based algorithms for boolean
function manipulation. IEEE Transactions on Computers,
100(8):677–691, 1986.

266 REFERENCES

[CCG+02] Alessandro Cimatti, Edmund Clarke, Enrico Giunchiglia,
Fausto Giunchiglia, Marco Pistore, Marco Roveri, Roberto
Sebastiani, and Armando Tacchella. NuSMV 2: An open-
source tool for symbolic model checking. In Ed Brinksma
and Kim Guldstrand Larsen, editors, Computer Aided Veri-
fication, volume 2404 of Lecture Notes in Computer Science,
pages 359–364. Springer Berlin Heidelberg, 2002.

[CCJ+] Roberto Cavada, Alessandro Cimatti, Charles Arthur
Jochim, Gavin Keighren, Emanuele Olivetti, Marco Pis-
tore, Marco Roveri, and Andrei Tchaltsev. NuSMV 2.5 user
manual.

[CE81] Edmund M. Clarke and E. Allen Emerson. Design and
synthesis of synchronization skeletons using branching-time
temporal logic. In Logics of Programs, Workshop, Yorktown
Heights, New York, May 1981, pages 52–71, 1981.

[CES86] Edmund M. Clarke, E. Allen Emerson, and A. Prasad Sistla.
Automatic verification of finite-state concurrent systems
using temporal logic specifications. ACM Trans. Program.
Lang. Syst., 8(2):244–263, 1986.

[CG05] Marsha Chechik and Arie Gurfinkel. A framework for coun-
terexample generation and exploration. In International
Conference on Fundamental Approaches to Software Engi-
neering, pages 220–236. Springer, 2005.

[CG07] Marsha Chechik and Arie Gurfinkel. A framework for coun-
terexample generation and exploration. International Jour-
nal on Software Tools for Technology Transfer, 9(5-6):429–
445, 2007.

[CGMZ95] E. M. Clarke, O. Grumberg, K. L. McMillan, and X. Zhao.
Efficient generation of counterexamples and witnesses in
symbolic model checking. In Proceedings of the 32Nd Annual
ACM/IEEE Design Automation Conference, DAC ’95, pages
427–432, New York, NY, USA, 1995. ACM.

[CGP99] E. M. Clarke, O. Grumberg, and D. Peled. Model Checking.
MIT Press, 1999.

[CHP10] Krishnendu Chatterjee, Thomas A. Henzinger, and Nir
Piterman. Strategy logic. Information and Computation,
208(6):677 – 693, 2010.

REFERENCES 267

[CJLV02] E. M. Clarke, S. Jha, Y. Lu, and H. Veith. Tree-like coun-
terexamples in model checking. In Proc. of the 17th IEEE
Symposium on Logic in Computer Science (LICS 2002),
pages 19–29, 2002.

[CLW13] Sjoerd Cranen, Bas Luttik, and Tim AC Willemse. Proof
graphs for parameterised boolean equation systems. In Inter-
national Conference on Concurrency Theory, pages 470–484.
Springer, 2013.

[CLW15] Sjoerd Cranen, Bas Luttik, and Tim AC Willemse. Evidence
for fixpoint logic. In LIPIcs-Leibniz International Proceedings
in Informatics, volume 41. Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, 2015.

[CSS10] Jan Calta, Dmitry Shkatov, and Holger Schlingloff. Finding
uniform strategies for multi-agent systems. In Jürgen Dix,
João Leite, Guido Governatori, and Wojtek Jamroga, editors,
Computational Logic in Multi-Agent Systems, volume 6245 of
Lecture Notes in Computer Science, pages 135–152. Springer
Berlin / Heidelberg, 2010.

[DEG10] Catalin Dima, Constantin Enea, and Dimitar P. Guelev.
Model-checking an alternating-time temporal logic with
knowledge, imperfect information, perfect recall and com-
municating coalitions. In Proceedings First Symposium on
Games, Automata, Logic, and Formal Verification, GAN-
DALF 2010, Minori (Amalfi Coast), Italy, 17-18th June
2010, pages 103–117, 2010.

[DJ10] Mehdi Dastani and Wojciech Jamroga. Reasoning about
strategies of multi-agent programs. In Proceedings of AA-
MAS 10, pages 997–1004, 2010.

[DRS03a] Y. Dong, C. R. Ramakrishnan, and S. A. Smolka. Model
checking and evidence exploration. In Proc. of the 10th IEEE
International Conference on Engineering of Computer-Based
Systems (ECBS 2003), pages 214–223, 2003.

[DRS03b] Yifei Dong, CR Ramakrishnan, and Scott A Smolka. Evi-
dence explorer: A tool for exploring model-checking proofs.
In International Conference on Computer Aided Verification,
pages 215–218. Springer, 2003.

268 REFERENCES

[DT11] Catalin Dima and Ferucio Laurentiu Tiplea. Model-checking
ATL under imperfect information and perfect recall seman-
tics is undecidable. CoRR, abs/1102.4225, 2011.

[FHMV95] Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and
Moshe Y. Vardi. Reasoning about Knowledge. MIT Press,
Cambridge, 1995.

[GC03a] A. Gurfinkel and M. Chechik. Proof-like counter-examples.
In Hubert Garavel and John Hatcliff, editors, Tools and
Algorithms for the Construction and Analysis of Systems,
volume 2619 of Lecture Notes in Computer Science, pages
160–175. Springer Berlin / Heidelberg, 2003.

[GC03b] Arie Gurfinkel and Marsha Chechik. Generating coun-
terexamples for multi-valued model-checking. In Interna-
tional Symposium of Formal Methods Europe, pages 503–521.
Springer, 2003.

[GCKS06] Alex Groce, Sagar Chaki, Daniel Kroening, and Ofer Strich-
man. Error explanation with distance metrics. International
Journal on Software Tools for Technology Transfer (STTT),
8(3):229–247, 2006.

[GJ04] Valentin Goranko and Wojciech Jamroga. Comparing seman-
tics of logics for multi-agent systems. Synthese, 139(2):241–
280, 2004.

[GK05] Alex Groce and Daniel Kroening. Making the most of BMC
counterexamples. Electronic Notes in Theoretical Computer
Science, 119(2):67–81, 2005.

[GKL04] Alex Groce, Daniel Kroening, and Flavio Lerda. Under-
standing counterexamples with explain. In International
Conference on Computer Aided Verification, pages 453–456.
Springer, 2004.

[GMZ04] Paul Gastin, Pierre Moro, and Marc Zeitoun. Minimization
of counterexamples in SPIN. In International SPIN Work-
shop on Model Checking of Software, pages 92–108. Springer,
2004.

[GN00] Emden R Gansner and Stephen C North. An open graph
visualization system and its applications to software engineer-
ing. Software Practice and Experience, 30(11):1203–1233,
2000.

REFERENCES 269

[Grä04] Erich Grädel. Positional determinacy of infinite games. In
Volker Diekert and Michel Habib, editors, STACS 2004,
volume 2996 of Lecture Notes in Computer Science, pages
4–18. Springer Berlin Heidelberg, 2004.

[GRR01] Hai-Feng Guo, CR Ramakrishnan, and IV Ramakrishnan.
Speculative beats conservative justification. In International
Conference on Logic Programming, pages 150–165. Springer,
2001.

[GV03] Alex Groce and Willem Visser. What went wrong: Explain-
ing counterexamples. In International SPIN Workshop on
Model Checking of Software, pages 121–136. Springer, 2003.

[GvdM04] P. Gammie and R. van der Meyden. MCK: Model checking
the logic of knowledge. In Proceedings of 16th International
Conference on Computer Aided Verification (CAV’04), vol-
ume 3114 of LNCS, pages 479–483. Springer-Verlag, 2004.

[HG08] Henri Hansen and Jaco Geldenhuys. Cheap and small coun-
terexamples. In Software Engineering and Formal Methods,
2008. SEFM’08. Sixth IEEE International Conference on,
pages 53–62. IEEE, 2008.

[HKQ98] Thomas A. Henzinger, Orna Kupferman, and Shaz Qadeer.
From pre-historic to post-modern symbolic model checking.
In Alan J. Hu and Moshe Y. Vardi, editors, Computer Aided
Verification: 10th International Conference, CAV’98 Van-
couver, BC, Canada, June 28 – July 2, 1998, pages 195–206,
Berlin, Heidelberg, 1998. Springer Berlin Heidelberg.

[HR14] Martin Hofmann and Harald Ruess. Certification for
µ-calculus with winning strategies. arXiv preprint
arXiv:1401.1693, 2014.

[Hua15] Xiaowei Huang. Bounded model checking of strategy ability
with perfect recall. Artif. Intell., 222:182–200, 2015.

[HvdM09] Xiaowei Huang and Ron van der Meyden. Model checking
games for a fair branching-time temporal epistemic logic.
In Australasian Joint Conference on Artificial Intelligence,
pages 11–20. Springer, 2009.

[HvdM14a] Xiaowei Huang and Ron van der Meyden. An epistemic strat-
egy logic (extended abstract). In Fabio Mogavero, Aniello

270 REFERENCES

Murano, and Moshe Y. Vardi, editors, Proceedings 2nd
International Workshop on Strategic Reasoning, Grenoble,
France, April 5-6, 2014, volume 146 of Electronic Proceed-
ings in Theoretical Computer Science, pages 35–41. Open
Publishing Association, 2014.

[HvdM14b] Xiaowei Huang and Ron van der Meyden. Symbolic model
checking epistemic strategy logic. In Proceedings of the
Twenty-Eighth AAAI Conference on Artificial Intelligence,
July 27 -31, 2014, Québec City, Québec, Canada, pages
1426–1432, 2014.

[INH96] H. Iwashita, T. Nakata, and F. Hirose. CTL model checking
based on forward state traversal. In IEEE/ACM Interna-
tional Conference on Computer-Aided Design, pages 82–87,
Nov 1996.

[JÅ07] W. Jamroga and T. Ågotnes. Constructive knowledge: what
agents can achieve under imperfect information. Journal of
Applied Non-Classical Logics, 17(4):423–475, 2007.

[JB11] Wojciech Jamroga and Nils Bulling. Comparing variants of
strategic ability. In Proceedings of the Twenty-Second inter-
national joint conference on Artificial Intelligence, IJCAI’11,
pages 252–257. AAAI Press, 2011.

[JD06] Wojciech Jamroga and Jürgen Dix. Model checking abilities
under incomplete information is indeed ∆P

2 -complete. In
EUMAS’06, 2006.

[JD08] Wojciech Jamroga and Jürgen Dix. Model checking abilities
of agents: A closer look. Theory of Computing Systems,
42(3):366–410, 2008.

[JKK15] Wojciech Jamroga, Michal Knapik, and Damian Kurpiewski.
Approximating strategic abilities under imperfect informa-
tion: a naive approach. CoRR, abs/1510.06587, 2015.

[JKK16] Wojciech Jamroga, Michal Knapik, and Damian Kurpiewski.
An approach to model checking ATLir. CoRR,
abs/1612.02684, 2016.

[JRS04] HoonSang Jin, Kavita Ravi, and Fabio Somenzi. Fate and
free will in error traces. International Journal on Software
Tools for Technology Transfer (STTT), 6(2):102–116, 2004.

REFERENCES 271

[JvdH04] Wojciech Jamroga and Wiebe van der Hoek. Agents that
know how to play. Fundamenta Informaticae, Volume
63(2):185–219, 2004.

[JZP15] Guifei Jiang, Dongmo Zhang, and Laurent Perrussel. Knowl-
edge sharing in coalitions. In AI 2015: Advances in Artificial
Intelligence - 28th Australasian Joint Conference, Canberra,
ACT, Australia, November 30 - December 4, 2015, pages
249–262, 2015.

[KÅJ14] Piotr Kaźmierczak, Thomas Ågotnes, and Wojciech Jamroga.
Multi-agency is coordination and (limited) communication.
In HoaKhanh Dam, Jeremy Pitt, Yang Xu, Guido Gover-
natori, and Takayuki Ito, editors, PRIMA 2014: Principles
and Practice of Multi-Agent Systems, volume 8861 of Lec-
ture Notes in Computer Science, pages 91–106. Springer
International Publishing, 2014.

[KB08] Sascha Klüppelholz and Christel Baier. Alternating-time
stream logic for multi-agent systems. In Coordination Models
and Languages, LNCS 5052, pages 184–198. Springer, 2008.

[Kic95a] Alexander Kick. Generation of witnesses for global µ-calculus
model checking. Technical report, Universität Karlsruhe,
Germany, 1995.

[Kic95b] Alexander Kick. Tableaux and witnesses for the µ-calculus.
Technical report, Universität Karlsruhe, Germany, 1995.

[Koz83] Dexter Kozen. Results on the propositional mu-calculus.
Theor. Comput. Sci., 27:333–354, 1983.

[KVW00] Orna Kupferman, Moshe Y Vardi, and Pierre Wolper. An
automata-theoretic approach to branching-time model check-
ing. Journal of the ACM (JACM), 47(2):312–360, 2000.

[Lin11] Charl A.P. Linssen. Diagnostics for model checking. Master’s
thesis, Eindhoven University of Technology, 2011.

[LMO08] François Laroussinie, Nicolas Markey, and Ghassan Oreiby.
On the expressiveness and complexity of ATL. CoRR,
abs/0804.2435, 2008.

[LMS15] François Laroussinie, Nicolas Markey, and Arnaud Sangnier.
ATLsc with partial observation. In Proceedings Sixth In-
ternational Symposium on Games, Automata, Logics and

272 REFERENCES

Formal Verification, GandALF 2015, Genoa, Italy, 21-22nd
September 2015, pages 43–57, 2015.

[LPR07] Alessio Lomuscio, Charles Pecheur, and Franco Raimondi.
Automatic verification of knowledge and time with NuSMV.
In IJCAI 2007, Proceedings of the 20th International Joint
Conference on Artificial Intelligence, Hyderabad, India, Jan-
uary 6-12, 2007, pages 1384–1389, 2007.

[LQR09] A. Lomuscio, H. Qu, and F. Raimondi. MCMAS: A model
checker for the verification of multi-agent systems. In Pro-
ceedings of CAV 2009, volume 5643 of LNCS, pages 682–688.
Springer, 2009.

[LQR15] Alessio Lomuscio, Hongyang Qu, and Franco Raimondi.
MCMAS: an open-source model checker for the verification
of multi-agent systems. International Journal on Software
Tools for Technology Transfer, pages 1–22, 2015.

[LR06a] Alessio Lomuscio and Franco Raimondi. MCMAS: A model
checker for multi-agent systems. In International Conference
on Tools and Algorithms for the Construction and Analysis
of Systems, pages 450–454. Springer, 2006.

[LR06b] Alessio Lomuscio and Franco Raimondi. Model checking
knowledge, strategies, and games in multi-agent systems. In
5th International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2006), Hakodate, Japan,
May 8-12, 2006, pages 161–168, 2006.

[LS02] Martin Lange and Colin Stirling. Model checking games for
branching time logics. Journal of Logic and Computation,
12(4):623–639, 2002.

[Mat00] Radu Mateescu. Efficient diagnostic generation for boolean
equation systems. In International Conference on Tools and
Algorithms for the Construction and Analysis of Systems,
pages 251–265. Springer, 2000.

[MFG04] R. Meolic, A. Fantechi, and S. Gnesi. Witness and counterex-
ample automata for ACTL. In David de Frutos-Escrig and
Manuel Núñez, editors, Formal Techniques for Networked
and Distributed Systems – FORTE 2004, volume 3235 of
Lecture Notes in Computer Science, pages 259–275. Springer
Berlin / Heidelberg, 2004.

REFERENCES 273

[MMV10] Fabio Mogavero, Aniello Murano, and Moshe Y. Vardi. Rea-
soning about strategies. In IARCS Annual Conference on
Foundations of Software Technology and Theoretical Com-
puter Science, FSTTCS 2010, December 15-18, 2010, Chen-
nai, India, pages 133–144, 2010.

[MP92] Zohar Manna and Amir Pnueli. The Temporal Logic of
Reactive and Concurrent Systems. Springer-Verlag New
York, Inc., New York, NY, USA, 1992.

[MT98] Christoph Meinel and Thorsten Theobald. Algorithms and
Data Structures in VLSI Design: OBDD - Foundations and
Applications. Springer, 1998.

[Nam01] Kedar S Namjoshi. Certifying model checkers. In Interna-
tional Conference on Computer Aided Verification, pages
2–13. Springer, 2001.

[Pau02] Marc Pauly. A modal logic for coalitional power in games.
Journal of Logic and Computation, 12(1):149–166, 2002.

[PBJ14] Jerzy Pilecki, Marek A. Bednarczyk, and Wojciech Jam-
roga. Synthesis and verification of uniform strategies for
multi-agent systems. In Nils Bulling, Leendert van der Torre,
Serena Villata, Wojtek Jamroga, and Wamberto Vasconce-
los, editors, Computational Logic in Multi-Agent Systems,
volume 8624 of Lecture Notes in Computer Science, pages
166–182. Springer International Publishing, 2014.

[PGD+04] Giridhar Pemmasani, Hai-Feng Guo, Yifei Dong, CR Ra-
makrishnan, and IV Ramakrishnan. Online justification
for tabled logic programs. In International Symposium on
Functional and Logic Programming, pages 24–38. Springer,
2004.

[PL03] W. Penczek and A. Lomuscio. Verifying epistemic properties
of multi-agent systems via bounded model checking. In
Proceedings of the Second International Joint Conference on
Autonomous Agents and Multiagent Systems, AAMAS ’03,
pages 209–216, New York, NY, USA, 2003. ACM.

[PR06] Charles Pecheur and Franco Raimondi. Symbolic model
checking of logics with actions. In Model Checking and
Artificial Intelligence, 4th Workshop, MoChArt IV, Riva del
Garda, Italy, August 29, 2006, pages 113–128, 2006.

274 REFERENCES

[Ras92] A. Rasse. Error diagnosis in finite communicating systems.
In Kim Larsen and Arne Skou, editors, Computer Aided Ver-
ification, volume 575 of Lecture Notes in Computer Science,
pages 114–124. Springer Berlin / Heidelberg, 1992.

[RCDH07] Jean-François Raskin, Krishnendu Chatterjee, Laurent
Doyen, and Thomas A. Henzinger. Algorithms for omega-
regular games with imperfect information. Logical Methods
in Computer Science, 3(3), 2007.

[RRR00] Abhik Roychoudhury, CR Ramakrishnan, and IV Ramakr-
ishnan. Justifying proofs using memo tables. In Interna-
tional Conference on Principles and Practice of Declarative
Programming: Proceedings of the 2 nd ACM SIGPLAN inter-
national conference on Principles and practice of declarative
programming, pages 178–189, 2000.

[RRS+00] CR Ramakrishnan, IV Ramakrishnan, Scott A Smolka,
Yifei Dong, Xiaoqun Du, Abhik Roychoudhury, and
VN Venkatakrishnan. XMC: A logic-programming-based
verification toolset. In International Conference on Com-
puter Aided Verification, pages 576–580. Springer, 2000.

[RS04] Kavita Ravi and Fabio Somenzi. Minimal assignments for
bounded model checking. In International Conference on
Tools and Algorithms for the Construction and Analysis of
Systems, pages 31–45. Springer, 2004.

[Sch04] Pierre-Yves Schobbens. Alternating-time logic with imper-
fect recall. Electronic Notes in Theoretical Computer Science,
85(2):82 – 93, 2004.

[SG07] Sharon Shoham and Orna Grumberg. A game-based frame-
work for CTL counterexamples and 3-valued abstraction-
refinement. ACM Transactions on Computational Logic
(TOCL), 9(1):1, 2007.

[SQL05a] Shengyu Shen, Ying Qin, and Sikun Li. Counterexample
minimization for ACTL. In CHARME, volume 5, pages
393–397, 2005.

[SQL05b] ShengYu Shen, Ying Qin, and SiKun Li. Minimizing coun-
terexample of ACTL property. In Advanced Research Work-
ing Conference on Correct Hardware Design and Verification
Methods, pages 393–397. Springer, 2005.

REFERENCES 275

[SS98] Perdita Stevens and Colin Stirling. Practical model-checking
using games. In International Conference on Tools and
Algorithms for the Construction and Analysis of Systems,
pages 85–101. Springer, 1998.

[Sti95] Colin Stirling. Local model checking games. In International
Conference on Concurrency Theory, pages 1–11. Springer,
1995.

[SW91] Colin Stirling and David Walker. Local model checking
in the modal mu-calculus. Theoretical Computer Science,
89(1):161–177, 1991.

[Tan04] Li Tan. PlayGame: A platform for diagnostic games. In
International Conference on Computer Aided Verification,
pages 492–495. Springer, 2004.

[TC02] Li Tan and Rance Cleaveland. Evidence-based model check-
ing. In International Conference on Computer Aided Verifi-
cation, pages 455–470. Springer, 2002.

[Tho95] Wolfgang Thomas. On the synthesis of strategies in infinite
games. In Ernst W. Mayr and Claude Puech, editors, STACS
95, volume 900 of Lecture Notes in Computer Science, pages
1–13. Springer Berlin Heidelberg, 1995.

[vdHW02] Wiebe van der Hoek and Michael Wooldridge. Tractable
multiagent planning for epistemic goals. In The First Interna-
tional Joint Conference on Autonomous Agents & Multiagent
Systems, AAMAS 2002, July 15-19, 2002, Bologna, Italy,
Proceedings, pages 1167–1174, 2002.

[vdHW03] Wiebe van der Hoek and Michael Wooldridge. Cooperation,
knowledge, and time: Alternating-time temporal epistemic
logic and its applications. Studia Logica, 75:125–157, 2003.

[vDK14] Hans van Ditmarsch and Sophia Knight. Partial information
and uniform strategies. In Nils Bulling, Leendert van der
Torre, Serena Villata, Wojtek Jamroga, and Wamberto Vas-
concelos, editors, Computational Logic in Multi-Agent Sys-
tems, volume 8624 of Lecture Notes in Computer Science,
pages 183–198. Springer International Publishing, 2014.

[vDK15] Hans van Ditmarsch and Barteld Kooi. One hundred prison-
ers and a light bulb. In One Hundred Prisoners and a Light
Bulb, pages 83–94. Springer International Publishing, 2015.

276 REFERENCES

[vdMS99] Ron van der Meyden and Nikolay V Shilov. Model checking
knowledge and time in systems with perfect recall. In Foun-
dations of Software Technology and Theoretical Computer
Science, pages 432–445. Springer, 1999.

[vOJ05] Sieuwert van Otterloo and Geert Jonker. On epistemic
temporal strategic logic. Electr. Notes Theor. Comput. Sci.,
126:77–92, 2005.

[WN10] Franz Weitl and Shin Nakajima. Incremental construction
of counterexamples in model checking web documents. In
WWV, pages 34–50, 2010.

[WNF10] Franz Weitl, Shin Nakajima, and Burkhard Freitag. Struc-
tured counterexamples for the temporal description logic
alcctl. In 2010 8th IEEE International Conference on Soft-
ware Engineering and Formal Methods, pages 232–243. IEEE,
2010.

[ZJC11] Yang Zhao, Xiaoqing Jin, and Gianfranco Ciardo. A sym-
bolic algorithm for shortest EG witness generation. In Fifth
International Symposium on Theoretical Aspects of Software
Engineering (TASE), 2011, pages 68–75. IEEE, 2011.

Appendix A

Model checking
uniform strategies:

correctness of the approaches

This appendix proves the correctness of the model-checking approaches
for ATLKirF presented in Chapters 5 and 6. Its structure follows the
structure of the two chapters.

A.1 Checking individual strategies

This section proves the correctness of the filter⟪Γ⟫ algorithms described
in Section 5.1. First, let

Pre⟪Γ⟫(Q′,MΓ) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
q′ ∈ Q

RRRRRRRRRRRRRR

∃⟨q, aΓ⟩ ∈MΓ s.t.
q′ = q ∧ ∀a ∈ EAg(q),
aΓ ⊑ a Ô⇒ δ(q, a) ∈ Q′

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

P re⟪Γ⟫(Q′,MΓ)∩MΓ∣Q computes the states q ∈MΓ∣Q such that there
exists a strategy fΓ compatible with MΓ s.t. ∀π ∈ out(fΓ, q), π(1) ∈ Q′.
In the sequel, we say that a strategy fΓ forces X from a state q ∈ Q,
for a given path condition X, iff ∀π ∈ out(fΓ, q), π satisfies X. Thus,
Pre⟪Γ⟫(Q′,MΓ) ∩MΓ∣Q computes the states of MΓ∣Q such that there
exists a strategy fΓ compatible with MΓ forcing to reach Q′ in one step.
This is captured by the following lemma.

Lemma A.1. Given an iCGSf S = ⟨Ag,Q,Q0,Act, e, δ,∼, V,FC⟩, a sub-
set of agents Γ ⊆ Ag, a subset of states Q′ ⊆ Q, and a closed set of
Γ-moves MΓ, Pre⟪Γ⟫(Q′,MΓ) ∩MΓ∣Q is the subset of states q ∈ MΓ∣Q

278 Appendix A. Model checking ATLKirF : correctness

such that there exists a strategy fΓ compatible with MΓ forcing to reach
Q′ in one step from q.

Proof. First, suppose that q ∈ Pre⟪Γ⟫(Q′,MΓ) ∩MΓ∣Q. So there exists
⟨q, aΓ⟩ ∈ MΓ such that ∀a ∈ EAg(q), aΓ ⊑ a Ô⇒ δ(q, a) ∈ Q′. So there
exists fΓ such that fΓ(q) = aΓ and that forces to reach Q′ in one step.
So there exists a strategy fΓ compatible with MΓ—fΓ(q) = aΓ and it can
make any compatible decision in other states—that forces to reach Q′ in
one step from q, and this direction is proved.

Second, suppose that q ∈MΓ∣Q is such that there exists fΓ compatible
with MΓ that forces to reach Q′ in one step from q. Then fΓ is such
that ∀a ∈ EAg(q), fΓ(q) ⊑ a Ô⇒ δ(q, a) ∈ Q′ by definition of out, and
⟨q, fΓ(q)⟩ ∈ MΓ as q ∈ MΓ∣Q and fΓ is compatible with MΓ. So there
exists ⟨q, aΓ⟩ ∈ MΓ s.t. q′ = q ∧ ∀a ∈ EAg(q), aΓ ⊑ a Ô⇒ δ(q, a) ∈ Q′,
thus q ∈ Pre⟪Γ⟫(Q′,MΓ) ∩MΓ∣Q, and the proof is done.

Second, let

Stay⟪Γ⟫(Q1,Q2,MΓ) = νQ′. Q2 ∪ (Q1 ∩ Pre⟪Γ⟫(Q′,MΓ)) .

Stay⟪Γ⟫(Q1,Q2,MΓ) ∩MΓ∣Q returns the states q ∈MΓ∣Q such that there
exists fΓ compatible with MΓ forcing, from q, to reach Q2 through Q1 or
staying in Q1 forever. Its correctness is captured by the following lemma.

Lemma A.2. Given an iCGSf S = ⟨Ag,Q,Q0,Act, e, δ,∼, V,FC⟩, a sub-
set of agents Γ ⊆ Ag, two subsets of states Q1,Q2 ⊆ Q, and a closed
set of Γ-moves MΓ, Stay⟪Γ⟫(Q1,Q2,MΓ) ∩MΓ∣Q is the subset of states
q ∈MΓ∣Q such that there exists fΓ compatible with MΓ forcing, from q,
to reach Q2 through Q1 or to stay in Q1 forever.

Proof. Let τ(Z) = Q2∪(Q1∩Pre⟪Γ⟫(Z,MΓ)). Let us prove, by induction

on i, that, for all i ≥ 0, τ i(Q)∩MΓ∣Q is the subset of states q ∈MΓ∣Q such
that there exists fΓ compatible with MΓ forcing to reach Q2 through Q1

in at most i − 1 steps, or to stay in Q1 for at least i steps, from q.

Base case τ0(Q)∩MΓ∣Q =MΓ∣Q and all strategies fΓ compatible with
MΓ trivially force to stay in Q1 for at least 0 steps. Thus the base case
is proved.

Inductive case Let us suppose that τ i(Q) ∩MΓ∣Q is the subset of
states q ∈MΓ∣Q such that there exists fΓ compatible with MΓ forcing to
reach Q2 through Q1 in at most i − 1 steps, or to stay in Q1 for at least
i steps, from q.

A.1. Checking individual strategies 279

Let us show that τ i+1(Q)∩MΓ∣Q is the subset of states q ∈MΓ∣Q such
that there exists fΓ compatible with MΓ forcing to reach Q2 through Q1

in at most i steps, or to stay in Q1 for at least i + 1 steps, from q.

τ i+1(Q) ∩MΓ∣Q = (Q2 ∪ (Q1 ∩ Pre⟪Γ⟫(τ i(Q),MΓ))) ∩MΓ∣Q
= (Q2 ∩MΓ∣Q) ∪ (Q1 ∩MΓ∣Q ∩ Pre⟪Γ⟫(τ i(Q),MΓ))
= (Q2 ∩MΓ∣Q) ∪ (Q1 ∩MΓ∣Q ∩ Pre⟪Γ⟫(τ i(Q) ∩MΓ∣Q,MΓ)).

The last step is correct because MΓ is closed, so only the states of MΓ∣Q
influence the result of Pre⟪Γ⟫(τ i(Q),MΓ).

Let us suppose that q ∈ τ i+1(Q) ∩MΓ∣Q. Then q ∈MΓ∣Q, and either
q ∈ Q2 ∩MΓ∣Q or q ∈ Q1 ∩MΓ∣Q ∩ Pre⟪Γ⟫(τ i(Q) ∩MΓ∣Q,MΓ). In the
former case, any strategy compatible with fΓ forces to reach Q2 through
Q1 in 0 steps.

In the latter case, q ∈ Q1∩ ∈MΓ∣Q∩Pre⟪Γ⟫(τ i(Q)∩MΓ∣Q,MΓ). Thus
q ∈ Q1, q ∈ MΓ∣Q and there exists fΓ compatible with MΓ that forces
to reach τ i(Q) ∩MΓ∣Q in one step from q, by Lemma A.1. So, q ∈ Q1,
q ∈MΓ∣Q and, by the inductive hypothesis, there exists fΓ compatible
with MΓ that forces to reach states q′ ∈MΓ∣Q such that there exists f ′Γ
compatible with MΓ forcing to reach Q2 through Q1 in at most i − 1
steps, or to stay in Q1 for at least i steps, from q′. This means that
q ∈MΓ∣Q and there exists f ′′Γ compatible with MΓ forcing to reach Q2

through Q1 in at most i steps, or to stay in Q1 for at least i + 1 steps,
from q: f ′′Γ follows the choice of fΓ in q, then f ′Γ. As q ∈ Q1, all paths
enforced by f ′′Γ reach Q2 through Q1 in at most i steps, or stay in Q1 for
at least i + 1 steps, and this direction is proved.

For the other direction, let us suppose that q ∈ MΓ∣Q is such that
there exists fΓ compatible with MΓ forcing to reach Q2 through Q1 in
at most i steps, or to stay in Q1 for at least i + 1 steps, from q. Thus
either q ∈ Q2, or q /∈ Q2, q ∈ Q1, and there exists fΓ compatible with MΓ

forcing to reach Q2 through Q1 in at least one and at most i steps, or to
stay in Q1 for at least i + 1 steps, from q.

In the former case, q ∈ Q2 ∩MΓ∣Q, thus q ∈ τ i+1(Q) ∩MΓ∣Q. In the
latter case, q ∈ Q1 ∩MΓ∣Q and fΓ reaches in one step, from q, states
q′ ∈MΓ∣Q (because MΓ is closed) such that there exists f ′Γ compatible
with MΓ—f ′Γ follows fΓ—forcing to reach Q2 through Q1 in at most i−1
steps, or to stay in Q1 for at least i steps, from q′. So, q belongs to
Q1 ∩MΓ∣Q and, by induction hypothesis, there exists fΓ compatible with
MΓ forcing to reach states of τ i(Q) ∩MΓ∣Q in one step from q. Thus
q ∈ Q1 ∩MΓ∣Q ∩ Pre⟪Γ⟫(τ i(Q) ∩MΓ∣Q,MΓ) by Lemma A.1, and this
direction is proved, too.

Finally, Stay⟪Γ⟫(Q1,Q2,MΓ)∩MΓ∣Q = ⋃i τ i(Q)∩MΓ∣Q. This implies

280 Appendix A. Model checking ATLKirF : correctness

that Stay⟪Γ⟫(Q1,Q2,MΓ) ∩MΓ∣Q is the subset of states q ∈MΓ∣Q such
that there exists fΓ compatible with MΓ forcing to reach Q2 through Q1

or to stay in Q1 forever, from q.

From Pre⟪Γ⟫ and Stay⟪Γ⟫, the NFair⟪Γ⟫ function is defined as

NFair⟪Γ⟫(MΓ) = µQ′. ⋃
fc∈FC

Pre⟪Γ⟫ (Stay⟪Γ⟫(Q′ ∪ fc,∅,MΓ),MΓ) .

It returns the set of states q such that there exists a strategy fΓ compatible
with MΓ that forces unfair paths from q. To prove its correctness, we
need the following lemma. It says that in every state q′ reached by a
strategy fΓ forcing unfair paths from some state q, fΓ forces unfair paths
from q′, too.

Lemma A.3. Given an iCGSf S = ⟨Ag,Q,Q0,Act, e, δ,∼, V,FC⟩, a sub-
set of agents Γ ⊆ Ag, a closed set of Γ-moves MΓ, a state q ∈MΓ∣Q, and
a strategy fΓ compatible with MΓ that forces unfair paths from q, then

∀π ∈ out(fΓ, q),∀i ≥ 0,∀π′ ∈ out(π(i), fΓ), π′ is unfair.

Proof. Let us suppose that fΓ forces unfair paths from q, and that

∃π ∈ out(fΓ, q),∃i ≥ 0,∃π′ ∈ out(π(i), fΓ), s.t. π′ is fair.

Then the outcomes of fΓ contain a path π′′ that is fair: π′′ follows π up
to π(i), then follows π′ that is fair. Thus fΓ does not force unfair paths,
and we reach a contradiction.

The correctness of NFair is then captured by the following lemma.

Lemma A.4. Given an iCGSf S = ⟨Ag,Q,Q0,Act, e, δ,∼, V,FC⟩, a sub-
set of agents Γ ⊆ Ag, and a closed set of Γ-moves MΓ, the result of
NFair⟪Γ⟫(MΓ) ∩MΓ∣Q is the subset of states q ∈MΓ∣Q such that there
exists a strategy fΓ compatible with MΓ that forces unfair paths from q.

Proof. To prove this lemma, let

τ(Z) = ⋃
fc∈FC

Pre⟪Γ⟫ (Stay⟪Γ⟫(Z ∪ fc,∅,MΓ),MΓ) .

Let also NF be the subset of states q ∈MΓ∣Q such that there exists a
strategy fΓ compatible with MΓ that forces unfair paths from q.

Let us prove that

1. NF is a fixpoint of τ .

2. NF is contained in any fixpoint of τ .

This leads to the fact that NF is the least fixpoint of τ , and the proof is
done.

A.1. Checking individual strategies 281

NF is a fixpoint of τ Let us suppose that q ∈ NF . That is, there
exists a strategy fΓ compatible with MΓ that forces unfair paths from
q. By Lemma A.3, all states reached by fΓ from q are in NF . Thus
fΓ forces to stay in NF . So, there exists fc ∈ FC such that fΓ forces
to stay in NF ∪ fc. So q ∈ Stay⟪Γ⟫(NF ∪ fc,∅,MΓ). Furthermore, by

definition of Stay⟪Γ⟫, q ∈ Pre⟪Γ⟫ (Stay⟪Γ⟫(NF ∪ fc,∅,MΓ),MΓ). So

q ∈ ⋃fc∈FC Pre⟪Γ⟫ (Stay⟪Γ⟫(NF ∪ fc,∅,MΓ),MΓ).

For the other direction, let us suppose that q ∈ τ(NF). That is,
q ∈ ⋃fc∈FC Pre⟪Γ⟫ (Stay⟪Γ⟫(NF ∪ fc,∅,MΓ),MΓ). Thus there exists

fc ∈ FC such that q ∈ Pre⟪Γ⟫ (Stay⟪Γ⟫(NF ∪ fc,∅,MΓ),MΓ), that is,
there exists fc ∈ FC such that there exists fΓ compatible with MΓ that
forces to stay in fc∪NF forever. Furthermore, in every state q′ reached
by fΓ that belongs to NF , there exists a strategy f ′Γ that forces unfair
paths from q′. Thus, the strategy f ′′Γ that follows fΓ up to a state of
NF , then follows f ′Γ afterwards forces paths that (1) either stay in fc if
NF is never reached, or (2) are unfair as they end with a unfair path
forced by f ′Γ from q′. Thus there exists a strategy f ′′Γ that forces unfair
paths from q, and q ∈ NF .

NF is contained in any fixpoint of τ . Let Z be a fixpoint of τ ,
that is, Z = τ(Z). Let us show that Z ⊇ NF by showing that Z ⊆ NF .
If q is not in Z, then q /∈ τ(Z), that is,

q /∈ ⋃
fc∈FC

Pre⟪Γ⟫ (Stay⟪Γ⟫(Z ∪ fc,∅,MΓ),MΓ) .

Thus q ∈ ⋂fc∈FC PreJΓK (ReachJΓK(Q,Z ∩ fc,MΓ),MΓ), by duality.

Thus, every strategy fΓ compatible with MΓ cannot avoid a path,
from q, that reaches q′ ∈ fc ∩ Z, for any fc ∈ FC. As q′ ∈ Z, every
strategy f ′Γ compatible with MΓ—including fΓ above—cannot avoid a
path, from q′, that reaches q′′ ∈ fc′ ∩ Z, for any other fc′ ∈ FC. This
argument can be repeated indefinitely, thus every fΓ compatible with
MΓ cannot avoid a path that go through all fairness constraints infinitely
often, that is, a fair path. So there is no strategy fΓ that can forces
unfair paths from q, so q /∈ NF . Thus Z ⊆ NF , and NF ⊆ Z.

Finally, as Z is any fixpoint of τ , its least fixpoint is contained in
NF , so NF is the least fixpoint of τ and the proof is done.

The filter⟪Γ⟫ algorithms are defined as

filter⟪Γ⟫X(Q′,MΓ) = Pre⟪Γ⟫(Q′ ∪NFair⟪Γ⟫(MΓ),MΓ),

282 Appendix A. Model checking ATLKirF : correctness

filter⟪Γ⟫U(Q1,Q2,MΓ) =
µQ′. Q1,2,N ∩ (Q2∪
⋃

fc∈FC
Pre⟪Γ⟫(Stay⟪Γ⟫(Q1,2,N ∩ (Q′ ∪ fc),Q2 ∩ (Q′ ∪ fc),MΓ),MΓ)),

filter⟪Γ⟫W(Q1,Q2,MΓ) = Stay⟪Γ⟫(Q1,2,N ,Q2,MΓ),

where

Q1,2,N = Q1 ∪Q2 ∪NFair⟪Γ⟫(MΓ).

They return the set of states q such that there exists a strategy fΓ

such that all fair paths forced from q have the second state in Q′, reach
Q2 through Q1, or either reach Q2 through Q1 or stay in Q1 forever,
respectively. This is captured by the three following theorems.

Theorem A.5. Given an iCGSf S = ⟨Ag,Q,Q0,Act, e, δ,∼, V,FC⟩, a
subset of agents Γ ⊆ Ag, a subset of states Q′ ⊆ Q, and a closed set of
Γ-moves MΓ, filter⟪Γ⟫X(Q′,MΓ)∩MΓ∣Q is the subset of states q ∈MΓ∣Q
such that there exists a strategy fΓ compatible with MΓ such that all
fair paths enforced by fΓ from q have their second state in Q′, that is,
∀π ∈ out(fΓ, q), π is fair Ô⇒ π(1) ∈ Q′.

Proof. The proof is trivial by definition of Pre⟪Γ⟫ and Lemma A.4.

To prove the correctness of the filter⟪Γ⟫U algorithm, we need an
intermediate result, given by the following lemma.

Lemma A.6. Given an iCGSf S = ⟨Ag,Q,Q0,Act, e, δ,∼, V,FC⟩, a sub-
set of agents Γ ⊆ Ag, two subsets of states Q1,Q2 ⊆ Q, and a closed set
of Γ-moves MΓ, if, for some strategy fΓ compatible with MΓ and state
q ∈MΓ∣Q, for all paths π ∈ out(fΓ, q), π is unfair or π reaches a state of
Q2 through states of Q1, then for all paths π ∈ out(fΓ, q), π reaches Q2

through Q1 ∪NFair⟪Γ⟫ or stays in Q1 ∪NFair⟪Γ⟫.

Proof. Let q ∈ MΓ∣Q and fΓ a strategy compatible with MΓ. Let us
suppose that there exists a path π ∈ out(fΓ, q) and an index j ≥ 0 such that
there is no index j′ ≤ j such that π(j′) ∈ Q2, and π(j) /∈ Q1 ∪NFair⟪Γ⟫.
That is, π(j) ∈ Q1∩FairJΓK. So π does not reach Q2 through Q1 or stays
in Q1 forever. Furthermore, as π(j) ∈ FairJΓK, fΓ cannot avoid a fair
path. Thus fΓ cannot avoid a fair path that does not reach Q2 through
Q1 or stays in Q1, and the proof is done.

Then, the correctness of filter⟪Γ⟫U is given by the following theorem.

A.1. Checking individual strategies 283

Theorem A.7. Given an iCGSf S = ⟨Ag,Q,Q0,Act, e, δ,∼, V,FC⟩, a
subset of agents Γ ⊆ Ag, two subsets of states Q1,Q2 ⊆ Q, and a closed
set of Γ-moves MΓ, filter⟪Γ⟫U(Q1,Q2,MΓ)∩MΓ∣Q is the subset of states
q ∈MΓ∣Q such that there exists a strategy fΓ compatible with MΓ such
that all fair paths forced from q by fΓ reach a state of Q2 through states
of Q1, that is, ∀π ∈ out(fΓ, q), π is fair Ô⇒ ∃i ≥ 0 s.t. π(i) ∈ Q2 and
∀j,0 ≤ j < i, π(j) ∈ Q1.

Proof. To prove this lemma, let

τ(Z) = Q1,2,N ∩ (Q2∪
⋃

fc∈FC
Pre⟪Γ⟫(Stay⟪Γ⟫(Q1,2,N ∩ (Z ∪ fc),Q2 ∩ (Z ∪ fc),MΓ),MΓ)),

where

Q1,2,N = Q1 ∪Q2 ∪NFair⟪Γ⟫(MΓ).

Let also NFU be the subset of states q ∈MΓ∣Q such that there exists a
strategy fΓ compatible with MΓ such that all fair paths forced from q
by fΓ reach a state of Q2 through states of Q1.

Let us prove that

1. NFU is a fixpoint of τ .

2. NFU is contained in any fixpoint of τ .

This leads to the fact that NFU is the least fixpoint of τ , and the proof
is done.

NFU is a fixpoint of τ First, let us suppose that q ∈ NFU . So there
exists fΓ compatible with MΓ s.t. ∀π ∈ out(fΓ, q), if π is fair, then π
reaches Q2 through Q1.

If q ∈ Q2, then q ∈ τ(NFU). Also, if ∀π ∈ out(fΓ, q) π is not fair,
then q ∈ NFair⟪Γ⟫(MΓ). In this case, fΓ forces to reach in one step
states in which fΓ forces paths that stay in NFair⟪Γ⟫(MΓ) by definition
of NFair⟪Γ⟫(MΓ), that is,

q ∈ Pre⟪Γ⟫(Stay⟪Γ⟫(NFair⟪Γ⟫(MΓ),∅,MΓ),MΓ).

Thus q belongs to

⋃
fc∈FC

Pre⟪Γ⟫ (Stay⟪Γ⟫ (
Q1,2,N ∩ (NFU ∪ fc),
Q2 ∩ (NFU ∪ fc),MΓ

) ,MΓ) ,

284 Appendix A. Model checking ATLKirF : correctness

by monotonicity. We can conclude that q ∈ τ(NFU).
If q misses the two cases above, then q ∈ Q1 and ∀π ∈ out(fΓ, q), if

π is fair then it reaches Q2 through Q1. By Lemma A.6, q belongs to
Stay⟪Γ⟫(Q1 ∪NFair⟪Γ⟫,Q2,MΓ), thus q belongs to

⋃
fc∈FC

Pre⟪Γ⟫ (Stay⟪Γ⟫ (
Q1,2,N ∩ (NFU ∪ fc),
Q2 ∩ (NFU ∪ fc),MΓ

) ,MΓ) ,

by definition of Stay and monotonicity. So q ∈ τ(NFU), and this
direction is proved.

For the other direction, let us suppose that q ∈ τ(NFU). If q ∈ Q2,
then q ∈ NFU . Otherwise, if q belongs to

NFair⟪Γ⟫(MΓ)∩

⋃
fc∈FC

Pre⟪Γ⟫ (Stay⟪Γ⟫ (
Q1,2,N ∩ (NFU ∪ fc),
Q2 ∩ (NFU ∪ fc),MΓ

) ,MΓ) ,

then it belongs to NFair⟪Γ⟫(MΓ). Thus it belongs to

Pre⟪Γ⟫(Stay⟪Γ⟫(NFair⟪Γ⟫,∅,MΓ),MΓ)

by definition of NFair⟪Γ⟫(MΓ), and so it belongs to

⋃
fc∈FC

Pre⟪Γ⟫ (Stay⟪Γ⟫ (
Q1,2,N ∩ (NFU ∪ fc),
Q2 ∩ (NFU ∪ fc),MΓ

) ,MΓ) ,

by monotonicity. Thus q ∈ NFU .
Finally, if q /∈ Q2 and q /∈ NFair⟪Γ⟫, then q belongs to

Q1 ∩ ⋃
fc∈FC

Pre⟪Γ⟫ (Stay⟪Γ⟫ (
Q1,2,N ∩ (NFU ∪ fc),
Q2 ∩ (NFU ∪ fc),MΓ

) ,MΓ) .

So there exist fc ∈ FC and fΓ compatible with MΓ such that all
paths π forced by fΓ from q reach Q2 ∩ (NFU ∪ fc) through Q1,2,N ∩
(NFU ∪ fc), or stay in Q1,2,N ∩ (NFU ∪ fc) forever. That is, π reaches
Q2 ∩(NFU ∪fc) through (Q1 ∪NFair⟪Γ⟫(MΓ))∩(NFU ∪fc), or stays

in (Q1 ∪NFair⟪Γ⟫(MΓ)) ∩ (NFU ∪ fc) forever.
Let π be such a path forced by fΓ from q, j ≥ 0 be the smallest index

such that π(j) ∈ Q2 ∪NFair⟪Γ⟫(MΓ) ∪NFU . ∀j′ < j, π(j′) ∈ Q1 ∩ fc.
As π(j) ∈ Q2 ∪NFair⟪Γ⟫(MΓ) ∪NFU , π(j) ∈ NFU , so there exists a
strategy f ′Γ compatible with MΓ that forces, from π(j), paths that are
either unfair or that reach Q2 through Q1. Furthermore, if there is no
such index j, π stays in Q1∩fc, so π is unfair. Thus the strategy f ′′Γ that
follows fΓ until reaching some state of Q2 ∪NFair⟪Γ⟫(MΓ) ∪NFU , in
which it follows f ′Γ, results in paths that are either unfair or that reach
Q2 through Q1. So q ∈ NFU and this other direction is proved.

A.1. Checking individual strategies 285

NFU is contained in any fixpoint of τ . Let Z be a fixpoint of τ ,
that is, Z = τ(Z). Let us show that Z ⊇ NFU by showing that Z ⊆ NFU .
If q /∈ Z, then q /∈ τ(Z), that is,

q /∈ Q1,2,N ∩ (Q2∪
⋃

fc∈FC
Pre⟪Γ⟫ (Stay⟪Γ⟫(Q1,2,N ∩ (Z ∪ fc),Q2 ∩ (Z ∪ fc),MΓ) ,MΓ)).

Thus

q ∈ Q1,2,F ∪ (Q2∩
⋂

fc∈FC
PreJΓK(ReachJΓK(Q2,Q1,2,F ∪ (Z ∩ fc),MΓ),MΓ)),

where

Q1,2,F = (Q1 ∩Q2 ∩ FairJΓK(MΓ)),

by duality.
If q ∈ Q1,2,F , then q ∈ Q1 ∩ Q2 and q ∈ FairJΓK(MΓ), so for all

strategies fΓ compatible with MΓ, ∃π ∈ out(fΓ, q) s.t. π is fair and π
reaches Q1 ∩Q2 through Q2 as the first state of π is already in Q1 ∩Q2.
So q /∈ NFU .

Otherwise, q ∈ Q2 and

q ∈ ⋂
fc∈FC

PreJΓK (ReachJΓK (Q2,Q1,2,F ∪ (Z ∩ fc),MΓ) ,MΓ) .

So, for all fΓ compatible with MΓ, ∃π ∈ out(fΓ, q) s.t. π reaches Q1,2,F ∪
(Z ∩ fc) through Q2, for any fc ∈ FC, in at least one step. If π reaches
Q1,2,F through Q2, the arguments just above also apply, so q /∈ NFU . In

the other case, π reaches q′ ∈ fc∩Z for some fc ∈ FC, so q′ ∈ Z. We can
thus repeat this argument indefinitely, up to reaching Q1 ∩Q2 through
Q2, or reaching every fc ∈ FC infinitely often through Q2. So for every
strategy fΓ compatible with MΓ, there exists π ∈ out(fΓ, q) such that π is
fair and reaches Q1 ∩Q2 through Q2, or stays in Q2 forever, so q /∈ NFU .

Thus Z ⊆ NFU , and NFU ⊆ Z.
Finally, as Z is any fixpoint of τ , its least fixpoint is contained in

NFU , so NFU is the least fixpoint of τ and the proof is done.

The correctness of filter⟪Γ⟫W is given by the following theorem.

Theorem A.8. Given an iCGSf S = ⟨Ag,Q,Q0,Act, e, δ,∼, V,FC⟩, a
subset of agents Γ ⊆ Ag, two subsets of states Q1,Q2 ⊆ Q, and a closed
set of Γ-moves MΓ, filter⟪Γ⟫W(Γ,Q1,Q2,MΓ) ∩MΓ∣Q is the subset of

286 Appendix A. Model checking ATLKirF : correctness

states q ∈MΓ∣Q such that there exists a strategy fΓ compatible with MΓ

such that all fair path forced by fΓ from q reach a state of Q2 through states
of Q1, or stay in Q1 forever, that is, ∀π ∈ out(fΓ, q), π is fair Ô⇒ ∃i ≥ 0
s.t. π(i) ∈ Q2 and ∀j,0 ≤ j < i, π(j) ∈ Q1, or ∀i ≥ 0, π(i) ∈ Q1.

Proof. This theorem is easily proved thanks to Lemmas A.2 and A.4.
Indeed, let us suppose that q ∈ filter⟪Γ⟫W(Γ,Q1,Q2,MΓ) ∩MΓ∣Q, that
is, q belongs to Stay⟪Γ⟫(Q1 ∪Q2 ∪NFair⟪Γ⟫(MΓ),Q2,MΓ) ∩MΓ∣Q. By
Lemma A.2, q is such that there exists a strategy fΓ compatible with
MΓ such that, ∀π ∈ out(fΓ, q), π reaches Q2 through Q1,2,N , or stays in
Q1,2,N forever.

First, let us suppose that π stays in Q1,2,N forever. Let j ≥ 0 be the
first index such that π(j) ∈ Q2 ∪NFair⟪Γ⟫(MΓ). Because π stays in
Q1,2,N forever, this means that, ∀j′ < j, π(j′) ∈ Q1. Furthermore, either
π(j) ∈ Q2, so π reaches Q2 through Q1, or π(j) ∈ NFair⟪Γ⟫(MΓ) and, in
this case, there exists f ′Γ compatible with MΓ to forces only unfair paths
from π(j). Also, if there exists no such index j, π stays in Q1 forever.

Second, let us suppose that π reaches Q2 through Q1,2,N . Let j ≥ 0
be the first index such that π(j) ∈ Q2 ∪ NFair⟪Γ⟫(MΓ). The argu-
ments above also apply. We can thus conclude that if q belongs to
filter⟪Γ⟫W(Γ,Q1,Q2,MΓ) ∩MΓ∣Q, then there exists a strategy f ′′Γ com-
patible with MΓ that forces, from q, that every fair path reaches Q2

through Q1 or stays in Q1 forever. f ′′Γ follows the strategy to stay in
Q1,2,N or to reach Q2 through Q1,2,N , and switches to the strategy that
forces unfair paths whenever it reaches a state of NFair⟪Γ⟫(MΓ).

For the other direction, let us suppose that q does not belong to
filter⟪Γ⟫W(Γ,Q1,Q2,MΓ)∩MΓ∣Q, that is, q does not belong to the result
of Stay⟪Γ⟫(Q1 ∪Q2 ∪NFair⟪Γ⟫(MΓ),Q2,MΓ)∩MΓ∣Q. This means that,

for all fΓ compatible with MΓ, ∃π ∈ out(fΓ, q) s.t. π reaches Q1,2,N ∩Q2

through Q2.

Let π such a path. Let j the first index such that π(j) ∈ Q1,2,N ∩Q2.

That is, π(j) ∈ Q1 ∩ Q2 ∩ NFair⟪Γ⟫(MΓ). Because π(j) belongs to

NFair⟪Γ⟫(MΓ), it can be extended with a fair path forced by fΓ, by
Lemma A.4. Furthermore, as j is the smallest index filling the conditions
above, all the previous j′ < j are such that π(j′) ∈ Q2. This means that
there exists a fair path π′ ∈ out(fΓ, q) that reaches Q1 ∩Q2 through Q2.
In other words, it is false that there exists fΓ compatible with MΓ that
forces, from q, paths that are either unfair, reach Q2 through Q1, or stay
in Q1 forever.

In the sequel, we sometimes abbreviate the three filter⟪⟫ algorithms
with the notation filterop(Q1,Q2,MΓ), that depends on the operator

A.2. Enumerating all strategies 287

op ∈ {⟪Γ⟫X,⟪Γ⟫U,⟪Γ⟫W}.

A.2 Enumerating all strategies

This section proves the correctness of the evalATLKirF algorithm defined
in Section 5.2. Before proving its correctness, we need to prove that the
Split algorithms are correct. These proofs are given by the two following
theorems.

Theorem A.9. Given an iCGSf S = ⟨Ag,Q,Q0,Act, e, δ,∼, V,FC⟩, a
subset of agents Γ ⊆ Ag, an agent ag ∈ Γ, and a set of Γ-moves MΓ,
SplitAgent(ag,Γ,MΓ) is the set of largest subsets of non-ag-conflicting
moves of MΓ.

Proof. We can prove the correctness of SplitAgent by induction over the
number of ag-conflicting equivalence classes of MΓ. Indeed, conflicting
contains the ag-conflicting moves of MΓ. If conflicting is empty, MΓ

does not contain any conflicting equivalence classes, and MΓ is its own
single largest subset in which no conflicts appear for ag.

Otherwise, equivalent is a set of conflicting moves of MΓ correspond-
ing to a set of states indistinguishable for ag. Furthermore, actions are
the possible actions for ag proposed by moves of equivalent.

Let us assume that SplitAgent(ag,Γ,MΓ/equivalent) returns the set
of all the largest non-ag-conflicting subsets of MΓ/equivalent. Then, the
result of SplitAgent(ag,Γ,MΓ) is the cartesian product between all the
largest non-ag-conflicting subsets of equivalent—that is, the equivsubset
subsets—and all the largest non-ag-conflicting subsets ofMΓ/equivalent—
the ncsubset subsets. Because these cannot be conflicting as they belong
to different equivalence classes of ag observations, we can conclude that
SplitAgent returns the set of the largest non-ag-conflicting subsets of
MΓ.

From the proof of correctness of the SplitAgent algorithm, we can
prove the correctness of the Split one, given by the following theorem.

Theorem A.10. Given an iCGSf S = ⟨Ag,Q,Q0,Act, e, δ,∼, V,FC⟩, a
subset of agents Γ ⊆ Ag, and a set of Γ-moves MΓ, Split(Γ,MΓ) returns
the set of largest subsets of non-Γ-conflicting moves of MΓ.

Proof. We can prove the correctness of the Split algorithm by showing
that the invariant of the for loop is that subsets is the set of largest
subsets of non-Γ′-conflicting moves of MΓ, where Γ′ is the subset from
which ag has already taken the value.

288 Appendix A. Model checking ATLKirF : correctness

First, the invariant is true before entering the loop the first time.
Indeed, in this case subsets = {MΓ}, Γ′ = ∅ as the algorithm has not
passed in the loop yet. {MΓ} is effectively the set of largest subsets of
non-Γ′-conflicting as MΓ is trivially non-∅-conflicting.

Second, suppose that the invariant is true before executing the loop
body, and that there exists an agent ag ∈ Γ that has not been chosen in
the loop. Let Γ′ ⊂ Γ be the set of agents ag′ for which ag has already
taken the value. Since the invariant is true before executing the loop
body, subsets is the set of largest subsets of non-Γ′-conflicting moves of
MΓ.

Then, the body of the loop splits in subsets′ each subset of subsets
thanks to SplitAgent. After executing the loop body, subsets′—and
thus subsets—is the set of all the largest subsets of non-(Γ′ ∪ {ag})-
conflicting moves of MΓ. Indeed, they are all non-conflicting subsets of
MΓ: each subset ∈ subsets is non-Γ′-conflicting by hypothesis, thus each
subset of SplitAgent(ag,Γ, subset) is non-Γ′-conflicting as it is a subset
of subset. Furthermore, each subset of SplitAgent(ag,Γ, subset) is non-
ag-conflicting, thus each subset′ ∈ subsets′ is non-(Γ′ ∪ {ag})-conflicting.

Furthermore, each subset′ ∈ subsets′ is a largest subset of non-
(Γ′ ∪ {ag})-conflicting moves of MΓ. Indeed, let suppose that some
subset′ in subsets′ is not a largest subset of non-(Γ′ ∪ {ag})-conflicting
moves of MΓ. So there exists a move ⟨q, aΓ⟩ ∈MΓ s.t. subset′ ∪ {⟨q, aΓ⟩}
is non-(Γ′ ∪ {ag})-conflicting. subset′ is a subset of some subset in
subsets since SplitAgent(ag,Γ, subset) returns subsets of subset. As
SplitAgent(ag,Γ, subset) returns all the largest non-ag-conflicting sub-
sets of subset, ⟨q, aΓ⟩ should be outside subset, otherwise SplitAgent
would not miss it. But if ⟨q, aΓ⟩ is outside subset, this means that subset
is not a largest non-Γ′-conflicting subset of MΓ, and this leads to a
contradiction with the invariant hypothesis.

Also, subsets′ does not miss any largest non-Γ′-conflicting subset
of MΓ. Indeed, suppose there exists a subset subset′ /∈ subsets′ that
is a largest subset of non-(Γ′ ∪ {ag})-conflicting moves of MΓ. By
construction, it cannot be a subset of some subset ∈ subsets otherwise
SplitAgent(ag,Γ, subset) would have returned it. Since it is not a subset
of some subset ∈ subsets and it is non-Γ′-conflicting, it is a largest subset
of non-Γ′-conflicting moves of MΓ, and it should be in subsets, leading
to a contradiction with the invariant hypothesis. So, after executing the
loop body, subsets′—and thus subsets—contains the set of all the largest
subsets of non-(Γ′ ∪ {ag})-conflicting moves of MΓ, and the invariant is
preserved.

Finally, when the loop is done, the invariant is still true and Γ′ = Γ,
thus subsets is the set of largest subsets of non-Γ-conflicting moves of

A.2. Enumerating all strategies 289

MΓ, and the proof is done.

Finally, the correctness of the evalATLKirF algorithm is given by the
following theorem.

Theorem A.11. Given an iCGSf S = ⟨Ag,Q,Q0,Act, e, δ,∼, V,FC⟩,
and an ATLKirF strategic formula ⟪Γ⟫ ψ, evalATLKirF (S,⟪Γ⟫ ψ) re-
turns the states of S satisfying ⟪Γ⟫ ψ.

Proof. We can prove this theorem by induction over the syntactic struc-
ture of the checked formula. Given the strategic formula ⟪Γ⟫ ψ, we
suppose that for all sub-formulas φ′ of ψ, evalATLKirF (S,φ′) returns
the states of S satisfying φ′, and we prove that evalATLKirF (S,⟪Γ⟫ ψ)
returns the states satisfying ⟪Γ⟫ ψ.

First, Split(Γ,EΓ) returns the set of uniform strategies for Γ. This
is a corollary of Theorem A.10.

Second, let F ′
Γ be the set of strategies of which fΓ has already taken

the value. Let us show that the invariant of the for loop is that sat is
the set of states q such that there exists a strategy fΓ in F ′

Γ such that,

∀ag ∈ Γ,∀q′ ∼ag q,∀π ∈ out(fΓ, q
′), π ⊧ ψ.

The loop invariant is trivially satisfied before entering the loop for
the first time as F ′

Γ and sat are empty. Furthermore, we can show that
the loop body preserves the invariant by considering the three cases for
ψ.

ψ = X φ′ The loop body computes Φ′ = evalATLKirF (S,φ′). By induc-
tion hypothesis, this is the set of states satisfying φ′. Then it computes
the set of states winning such that all fair paths enforced by the strategy
fΓ satisfy X φ′, by Theorem A.5. The last statement of the for loop
then adds in sat the set of states q such that

∀ag ∈ Γ,∀q′ ∼ag q,∀π ∈ out(fΓ, q
′), π ⊧X φ′,

and the invariant is still satisfied after the loop body.

ψ = φ1 U φ2 The loop body computes Φi = evalATLKirF (S,φi), for i = 1
and i = 2. By induction hypothesis, these are the sets of states satisfying
φ1 (resp. φ2). Then it computes the set of states winning such that all
fair paths enforced by fΓ satisfy φ1 U φ2, by Theorem A.7. The last
statement of the for loop then adds in sat the set of states q such that

∀ag ∈ Γ,∀q′ ∼ag q,∀π ∈ out(fΓ, q
′), π ⊧ φ1 U φ2,

and the invariant is still satisfied after the loop body.

290 Appendix A. Model checking ATLKirF : correctness

ψ = φ1 W φ2 This case is similar to the two others. The loop body
computes Φi = evalATLKirF (S,φi), for i = 1 and i = 2. By induction
hypothesis, these are the sets of states satisfying φ1 (resp. φ2). Then it
computes the set of states winning such that all fair paths enforced by
fΓ satisfy φ1 W φ2, by Theorem A.8. The last statement of the for loop
then adds in sat the set of states q such that

∀ag ∈ Γ,∀q′ ∼ag q,∀π ∈ out(fΓ, q
′), π ⊧ φ1 W φ2,

and the invariant is still satisfied after the loop body.

Finally, after the execution of the for loop, the invariant is satisfied
and all uniform strategies for Γ have been treated. Thus,

sat = {q ∈ Q ∣ ∃fΓ s.t. ∀ag ∈ Γ,∀q′ ∼ag q,∀π ∈ out(fΓ, q
′), π ⊧ ψ},

and that is exactly the set of states satisfying ⟪Γ⟫ ψ.

A.3 Partial strategies

This section proves the correctness of the evalPartialATLKirF
algorithm de-

scribed in Section 5.3. To prove its correctness, we need to prove that the
algorithms it depends on are correct. The correctness of the ReachSplit
algorithm is captured by the following theorem.

Theorem A.12. Given an iCGSf S = ⟨Ag,Q,Q0,Act, e, δ,∼, V,FC⟩, a
group of agents Γ ⊆ Ag, and a set MΓ ⊆ EΓ of non-Γ-conflicting Γ-moves,
ReachSplit(Γ,MΓ) return the set of all the smallest uniform partial
strategies extending MΓ.

Proof. If new is empty, then MΓ is already closed and thus is its own
smallest uniform extension, as it is non-Γ-conflicting.

If new is not empty, MΓ ∪M ′
Γ extends MΓ and is part of a closed

extension since it contains moves reachable from MΓ. Also, MΓ ∪M ′
Γ is

non-Γ-conflicting as MΓ is non-Γ-conflicting, M ′
Γ is composed of moves

compatible with MΓ, and contains no conflicting moves because it is the
result of Split. So, since MΓ∪M ′

Γ extends MΓ, ReachSplit(Γ,MΓ∪M ′
Γ)

contains some smallest uniform partial strategies extending MΓ ∪M ′
Γ.

Finally, ReachSplit(Γ,MΓ) contains all the smallest uniform strate-
gies extending MΓ. Otherwise, a missing strategy fΓ would make a
choice not taken into account by Split, and this is impossible since Split
returns all the possible largest non-Γ-conflicting subsets of compatible,
thus all combinations of uniform choices of compatible.

A.3. Partial strategies 291

Second, the correctness of the PartialStrats function is captured by
the following theorem.

Theorem A.13. Given an iCGSf S = ⟨Ag,Q,Q0,Act, e, δ,∼, V,FC⟩, a
set of agents Γ, and a set of states Q′ ⊆ Q, PartialStrats(Γ,Q′) is the
set of smallest uniform partial strategies for Γ adequate for Q′.

Proof. Let us consider a smallest uniform partial strategy adequate for
Q′ that is not in PartialStrats(Γ,Q′). Either this strategy proposes
a choice for a state of Q′ that is not considered in any strategies of
PartialStrats(Γ,Q′), thus Split should be incorrect, leading to a con-
tradiction.

Or this strategy proposes a choice for a state outside Q′ that is not
considered in any strategies PartialStrats(Γ,Q′), thus, for MΓ being
the moves proposed by this strategy for states of Q′, the strategy is a
smallest uniform partial strategy extending MΓ, and thus ReachSplit
should be incorrect since we found a smallest uniform partial strategy
extending fΓ that is not in ReachSplit, leading to a contradiction.

Finally, we can prove the correctness of evalPartialATLKirF
with the following

theorem.

Theorem A.14. Given an iCGSf S = ⟨Ag,Q,Q0,Act, e, δ,∼, V,FC⟩, a
subset of states Q′ ⊆ Q, and an ATLKirF strategic formula ⟪Γ⟫ ψ,
evalPartialATLKirF

(S,Q′,⟪Γ⟫ ψ) returns the subset of states of Q′ satisfying
⟪Γ⟫ ψ.

Proof. First, Theorems 5.1 and A.13 show that Line 3 of Algorithm 5.5
enumerates all uniform partial strategies fΓ that have to be checked to
know which states of Q′ satisfy ⟪Γ⟫ ψ.

Second, let F ′
Γ be the set of partial strategies of which fΓ has already

taken the value during the for loop. Let us show that the invariant of
this loop is that sat is the set of states q such that there exists a uniform
partial strategy fΓ in F ′

Γ such that,

∀ag ∈ Γ,∀q′ ∼ag q,∀π ∈ out(fΓ, q
′), π ⊧ ψ.

This loop invariant is trivially satisfied before entering the loop for
the first time as sat and F ′

Γ are empty. Furthermore, we can show that
the loop body preserves this invariant. Indeed, Lines 4 to 14 compute
the set of states of Q′ for which fΓ is winning. Let us consider each case
separately.

292 Appendix A. Model checking ATLKirF : correctness

ψ = X φ′ Line 6 computes the set of states for which the fair paths
enforced by fΓ have their second state is a successor of some state in [Q′]EΓ
that satisfies φ′. Restricting the states satisfying φ′ to the successors of
[Q′]EΓ is sufficient because no state that is not a successor of [Q′]EΓ can
make states of [Q′]EΓ satisfy ⟪Γ⟫X φ′. So, winning is the states such
that all fair paths enforced by fΓ satisfy X φ′, that is, the states q such
that

∀ag ∈ Γ,∀q′ ∼ag q,∀π ∈ out(fΓ, q
′), π ⊧X φ′.

ψ = φ1 U φ2 Line 10 computes the set of states for which the fair paths
enforced by fΓ reach a state satisfying φ2 through states satisfying φ1.
Again, restricting the states satisfying φi (for i = 1 and i = 2) to the ones
in the domain of fΓ is sufficient. So, winning is the states such that all
fair paths enforced by fΓ satisfy φ1 U φ2, that is, the states q such that

∀ag ∈ Γ,∀q′ ∼ag q,∀π ∈ out(fΓ, q
′), π ⊧ φ1 U φ2.

ψ = φ1 W φ2 Line 14 computes the set of states for which the fair paths
enforced by fΓ reach a state satisfying φ2 through states satisfying φ1,
or stay in states satisfying φ1 forever. Restricting the states satisfying
φi (for i = 1 and i = 2) to the ones in the domain of fΓ is sufficient.
So, winning is the states such that all fair paths enforced by fΓ satisfy
φ1 W φ2, that is, the states q such that

∀ag ∈ Γ,∀q′ ∼ag q,∀π ∈ out(fΓ, q
′), π ⊧ φ1 W φ2.

We showed that Lines 4 to 14 compute the set of states winning for
which the strategy is winning, so sat accumulates states of Q′ for which
all states indistinguishable by some agent of Γ is in winning, that is, the
states of Q′ satisfying ⟪Γ⟫ ψ. So, the last statement of the for loop adds
in sat the set of states q such that

∀ag ∈ Γ,∀q′ ∼ag q, q′ ∈ winning,

and the invariant is still satisfied after the loop body.

Finally, after the execution of the for loop, the invariant is satisfied
and all uniform partial strategies adequate for [Q′]EΓ have been treated.
Thus, sat is exactly the set of states of Q′ for which there exists a uniform
partial strategy that is winning for all indistinguishable states, and that
is exactly the set of states of Q′ satisfying ⟪Γ⟫ ψ.

A.4. Pre-filtering 293

A.4 Pre-filtering

This section presents the proofs of correctness of the naive and partial
approaches with pre-filtering described in Section 5.4.

A.4.1 Computing the winning moves

The filterM algorithms do not ensure that the result is a closed set of
Γ-moves anymore. Indeed, let us take the example of the card game with
a cheating player, and let us consider the formula

⟪player⟫[¬end U (player wins ∧ player = Q)]
saying that the player can win the current game with the Q. Pre-filtering
the Γ-moves of the structure with the filterM⟪Γ⟫U algorithm gives the
moves illustrated in Figure A.1. Only three moves are kept because in all
other states, there is no general strategy that wins the objective. Indeed,
the only way for the player to win the current game with Q is that the
dealer has A. In this case, the player can swap his card with Q if he has
K and keep it otherwise. Nevertheless, this subset of pre-filtered moves
is not closed; indeed, the (only) successor of the bottom state is not in
the resulting set of Γ-moves.

Nevertheless, we can still show that the proposed model-checking
algorithms are correct. First, we need to prove that, given a closed set
of moves MΓ, reducing it to the pre-filtered moves does not change the
result of the verification. In other words, if a strategy fΓ is compatible
with MΓ and is winning for a state q, fΓ reduced to the pre-filtered
moves will still be winning for q (according to the corresponding filter
algorithm). This is captured by the following theorem.

Theorem A.15. Given an iCGSf S = ⟨Ag,Q,Q0,Act, e, δ,∼, V,FC⟩, a
group of agents Γ ⊆ Ag, three sets of states Q′,Q1,Q2 ⊆ Q, and a closed
set MΓ ⊆ EΓ of Γ-moves,

filter⟪Γ⟫X(Q′,MΓ) = filter⟪Γ⟫X(Q′,MΓ ∩ filterM⟪Γ⟫X(Q′,EΓ)),
filter⟪Γ⟫U(Q1,Q2,MΓ) =
filter⟪Γ⟫U(Q1,Q2,MΓ ∩ filterM⟪Γ⟫U(Q1,Q2,EΓ)),
filter⟪Γ⟫W(Q1,Q2,MΓ) =
filter⟪Γ⟫W(Q1,Q2,MΓ ∩ filterM⟪Γ⟫W(Q1,Q2,EΓ)).

In terms of the abbreviations for the filter and filterM algorithms,
this theorem says that,

filterop(Q1,Q2,MΓ) = filterop(Q1,Q2,MΓ ∩ filterMop(Q1,Q2,EΓ)).

294 Appendix A. Model checking ATLKirF : correctness

−,−

K,Q

FC

K,Q

fc1

A,Q

fc2

A,K

fc3

Q,K

fc4

Q,A

fc5

K,A

fc6

K,Q A,Q A,K Q,K Q,A K,A

−,−

⟨che
at,
∗⟩

player player

player

Figure A.1: The graph of the card game with a cheating player. The
dashed states and transitions do not belong to a strategy of the player
to win the current game with a Q, the bold ones are the remaining ones.

To prove that Theorem A.15 is correct, we can show the following
properties:

1. Let MΓ be a closed set of Γ-moves, the set of important moves of
MΓ for a given objective ψ is defined as

{⟨q, aΓ⟩ ∈MΓ ∣ ∃fΓ compatible with MΓ s.t. ∀π ∈ out(fΓ, q), π ⊧ ψ}.

That is, the important moves are the decisions of MΓ made by
strategies in states in which they are winning.

2. The filter⟪⟫ algorithms do not need MΓ to compute their result,
but only its important moves for the corresponding objective. In
other words, let Mψ

Γ be the important moves of MΓ for the objective
ψ, and let op be the operator of the objective ψ,

filterop(Q1,Q2,MΓ) = filterop(Q1,Q2,M
ψ
Γ).

3. The filterM⟪⟫ algorithms return all the important moves of MΓ for
the corresponding objective. That is,

filterMop(Q1,Q2,MΓ) ⊇Mψ
Γ .

It remains to formally prove that these properties are correct.

A.4. Pre-filtering 295

A.4.2 The naive approach with pre-filtering

Theorem A.15 showed that we can reduce any strategy fΓ to its pre-
filtered moves, we do not need to check them all. Indeed, let fΓ and f ′Γ
be two strategies for Γ, if they share the same pre-filtered moves, then
the result of the filter algorithms on these pre-filtered moves will be the
same. We can then check only one of the two strategies. Furthermore, by
splitting the pre-filtered moves into non-conflicting moves, we get subsets
of moves that are sufficient to determine the states in which there exists
a winning uniform startegy. This is captured by the following lemma.

Lemma A.16. Given an iCGSf S = ⟨Ag,Q,Q0,Act, e, δ,∼, V,FC⟩, a
group of agents Γ ⊆ Ag, two sets of states Q1,Q2 ⊆ Q, and a strategic
operator op ∈ {⟪Γ⟫X,⟪Γ⟫U,⟪Γ⟫W}, for all uniform strategies fΓ for Γ,
there exists a set MΓ of non-Γ-conflicting Γ-moves in

Split(Γ, filterMop(Q1,Q2,EΓ))

such that

filterop(Q1,Q2, fΓ) ⊆ filterop(Q1,Q2,MΓ).

Proof. Let fΓ be a uniform strategy for Γ. First, the set

fΓ ∩ filterMop(Q1,Q2,EΓ)

is a non-Γ-conflicting subset of filterMop(Q1,Q2,EΓ), as fΓ is a uni-

form strategy. Thus, the set fΓ ∩ filterMop(Q1,Q2,EΓ) is a subset of

filterMop(Q1,Q2,EΓ) composed of non-Γ-conflicting moves. So there
exists a set MΓ in

Split(Γ, filterMop(Q1,Q2,EΓ))

such that

fΓ ∩ filterMop(Q1,Q2,EΓ) ⊆MΓ.

Furthermore, the filterop algorithms are monotone since the Pre⟪Γ⟫
function is monotone. Thus,

filterop(Q1,Q2, fΓ ∩ filterMop(Q1,Q2,EΓ)) ⊆ filterop(Q1,Q2,MΓ),

and by Theorem A.15,

filterop(Q1,Q2, fΓ) = filterop(Q1,Q2, fΓ ∩ filterMop(Q1,Q2,EΓ))
⊆ filterop(Q1,Q2,MΓ).

296 Appendix A. Model checking ATLKirF : correctness

Thanks to this lemma, we know that, if there exists a winning strategy
for a state q, then there exists a set of moves in the split pre-filtered
moves for which q is winning. To prove the correctness of the evalPFATLKirF
algorithm, we still need to show that, for any set of split pre-filtered
moves, there effectively exists a winning strategy in the states the set of
moves is winning for. This is captured by the following lemma.

Lemma A.17. Given an iCGSf S = ⟨Ag,Q,Q0,Act, e, δ,∼, V,FC⟩, a
group of agents Γ ⊆ Ag, two sets of states Q1,Q2 ⊆ Q, and a strate-
gic operator op ∈ {⟪Γ⟫X,⟪Γ⟫U,⟪Γ⟫W}, for all sets of moves MΓ in
Split(Γ, filterMop(Q1,Q2,EΓ)), there exists a uniform strategy fΓ such
that

filterop(Q1,Q2,MΓ) = filterop(Q1,Q2, fΓ).

Proof. Let MΓ be a set in Split(Γ, filterMop(Q1,Q2,EΓ)). By definition

of Split, MΓ is a subset of filterMop(Q1,Q2,EΓ), thus

MΓ =MΓ ∩ filterMop(Q1,Q2,EΓ).

So, for all M ′
Γ ⊆ EΓ such that

M ′
Γ ∩ filterMop(Q1,Q2,EΓ) =MΓ,

we have, by Theorem A.15,

filterop(Q1,Q2,M
′
Γ) = filterop(Q1,Q2,M

′
Γ ∩ filterMop(Q1,Q2,EΓ)),

= filterop(Q1,Q2,MΓ).

Furthermore, there exists a uniform strategy fΓ for Γ such that

fΓ ∩ filterMop(Q1,Q2,EΓ) =MΓ.

Indeed, such a strategy makes the same choices as MΓ in states of
MΓ∣Q—this is possible since MΓ is a non-Γ-conflicting set—, and choices
conflicting with filterMop(Q1,Q2,EΓ) elsewhere. It is always possible

to make choices conflicting with filterMop(Q1,Q2,EΓ) in some state in
Q/MΓ∣Q because, otherwise, such a choice would be in MΓ since MΓ is
a largest subset of non-conflicting moves. Thus, there exists a uniform
strategy fΓ such that

filterop(Q1,Q2, fΓ) = filterop(Q1,Q2, fΓ ∩ filterMop(Q1,Q2,EΓ)),
= filterop(Q1,Q2, fΓ),

and the proof is done.

A.4. Pre-filtering 297

Finally, we can show that the evalPFATLKirF algorithm is correct. This
is captured by the following theorem.

Theorem A.18. Given an iCGSf S = ⟨Ag,Q,Q0,Act, e, δ,∼, V,FC⟩,
and an ATLKirF strategic formula ⟪Γ⟫ ψ, evalPFATLKirF (S,⟪Γ⟫ ψ) re-
turns the set of states of S satisfying ⟪Γ⟫ ψ.

Proof. We can prove this theorem by induction over the structure
of the formula. Let op be the strategic operator of ⟪Γ⟫ ψ. First,
evalPFATLKirF (S,⟪Γ⟫ ψ) computes the filtered set as

filtered = filterMop(Q1,Q2,EΓ),

where Q1 (resp. Q2) is the set of states of S satisfying φ1 (resp. φ2), by
the induction hypothesis. Then, if filtered = ∅, there exists no state q
satisfying ⟪Γ⟫ ψ. Indeed, for all uniform strategies fΓ for Γ,

filterop(Q1,Q2, fΓ) = filterop(Q1,Q2, fΓ ∩ filtered),
= filterop(Q1,Q2,∅),
= ∅.

Thus, there exists no strategy fΓ such that all fair paths enforced by fΓ

from q satisfy ψ, and there is no uniform strategy that is winning for all
states indistinguishable from q.

Otherwise, the algorithm iterates over the elements MΓ of

Split(Γ, filtered) = Split(Γ, filterMop(Q1,Q2,EΓ)).

Let MΓ be the set of elements of Split(Γ, filtered) of which MΓ has
already taken the value. Let us show that the invariant of the for loop
is that sat is the set of states q ∈ Q such that there exists MΓ ∈ MΓ, and
a uniform strategy fΓ such that

filterop(Q1,Q2,MΓ) = filterop(Q1,Q2, fΓ),

and

∀ag ∈ Γ,∀q′ ∼ag q,∀π ∈ out(fΓ, q
′), π ⊧ ψ.

This invariant is trivially verified before entering the loop for the
first time as sat and MΓ are both empty. Then, let us suppose that
the invariant is true before any iteration of the loop. By Lemma A.17,
winning is the set of states q for which there exists a uniform strategy
fΓ such that

filterop(Q1,Q2,MΓ) = filterop(Q1,Q2, fΓ),

298 Appendix A. Model checking ATLKirF : correctness

and

∀π ∈ out(fΓ, q), π ⊧ ψ.

sat is thus augmented with the set of states q such that there exists a
uniform strategy fΓ such that

filterop(Q1,Q2,MΓ) = filterop(Q1,Q2, fΓ),

and

∀ag ∈ Γ,∀q′ ∼ag q,∀π ∈ out(fΓ, q
′), π ⊧ ψ.

The invariant is thus verified after the iteration.

Finally, let us suppose thatMΓ = Split(Γ, filterMop(Q1,Q2,EΓ)) and
that the loop is done. The invariant says that for all states q ∈ sat,
q ⊧ ⟪Γ⟫ ψ. Furthermore, Lemma A.16 ensures that we forgot no winning
state, and the proof is done.

A.4.3 The partial approach with pre-filtering

Proving the correctness of the evalPartial,PFATLKirF
algorithm is more com-

plex than for the naive approach with pre-filtering. We have to show
that ReachSplitPF (Γ,MΓ, filtered) returns the set of largest non-Γ-
conflicting extensions of MΓ with moves of filtered reachable from MΓ.
In other words, given a set of agents Γ, a set of non-Γ-conflicting Γ-moves
MΓ, and a set of Γ-moves filtered, ReachSplitPF (Γ,MΓ, filtered) re-
turns the set of largest subsets M ′

Γ of Γ-moves such that

• MΓ ⊆M ′
Γ,

• M ′
Γ ⊆MΓ ∪ filtered,

• M ′
Γ is non-Γ-conflicting,

• for all ⟨q′, a′Γ⟩ ∈M ′
Γ, ⟨q′, a′Γ⟩ is reachable from some m ∈MΓ, that

is,

∀⟨q′, a′Γ⟩ ∈M ′
Γ,∃⟨q, aΓ⟩ ∈MΓ,∃q0

a1Ð→ q1
a2Ð→ ...

anÐ→ qn s.t.

q0 = q ∧ qn = q′ ∧ ∀1 ≤ i ≤ n,∃⟨qi1 , aiΓ⟩ ∈M ′
Γ s.t. aiΓ ⊑ ai.

This is captured by the following theorem.

A.4. Pre-filtering 299

Theorem A.19. Given an iCGSf S = ⟨Ag,Q,Q0,Act, e, δ,∼, V,FC⟩, a
group of agents Γ ⊆ Ag, a set of non-Γ-conflicting Γ-moves MΓ ⊆ EΓ, and
another set of Γ-moves filtered ⊆ EΓ, ReachSplitPF (Γ,MΓ, filtered)
returns the set of largest subsets M ′

Γ of Γ-moves such that

MΓ ⊆M ′
Γ, (A.1)

M ′
Γ ⊆MΓ ∪ filtered, (A.2)

M ′
Γ is non-Γ-conflicting, (A.3)

{ ∀⟨q′, a′Γ⟩ ∈M ′
Γ,∃⟨q, aΓ⟩ ∈MΓ,∃q0

a1Ð→ q1
a2Ð→ ...

anÐ→ qn s.t.
q0 = q ∧ qn = q′ ∧ ∀1 ≤ i ≤ n,∃⟨qi1 , aiΓ⟩ ∈M ′

Γ s.t. aiΓ ⊑ ai.
(A.4)

Proof. By definition of the Post function, new states is the set of states
reachable in one step from a move of MΓ for which MΓ does not define
a move. new moves is the set of moves of filtered defined for states of
new states. compatible is the set of moves of new moves that are not
Γ-conflicting with some move of MΓ. compatible is thus the set of moves
of filtered for states reachable in one step from moves of MΓ, that are
not in MΓ but that are compatible with it.

If this set of compatible moves reachable in one step is empty, then
MΓ is its own single largest extension with reachable moves of filtered.
Indeed, MΓ ⊆MΓ and MΓ ⊆MΓ∪filtered. Furthermore, by pre-condition
of ReachSplitPF , MΓ is a non-Γ-conflicting set of moves. Equation A.4
is also satisfied by MΓ since, for each move m′ of MΓ, there exists a path
of length 0 from a move of MΓ reaching m′. Finally, MΓ is a largest
subset. Indeed, if there was a larger subset, there would by a move
outside MΓ reachable in one step through moves of filtered from a move
of MΓ, that would be non-Γ-conflicting with MΓ, and compatible would
be not empty. Furthermore, there are no other largest subset, otherwise
compatible would be not empty, too.

If compatible is not empty, this means that there exist some moves
of filtered compatible with MΓ and reachable from MΓ. compatible
contains all such moves that are compatible. Splitting them into largest
non-conflicting subsets and extending MΓ with each such subset leads to
non-Γ-conflicting subsets M ′

Γ such that MΓ ⊆M ′
Γ, M ′

Γ ⊆MΓ ∪ filtered,
and for which all new moves are moves of filtered reachable (in one
step) from some moves of MΓ. Such M ′

Γ satisfy the pre-conditions of
ReachSplitPF , thus it can be recursively called.

The resulting subsets are the sets of largest non-Γ-conflicting exten-
sions of M ′

Γ with moves of filtered reachable from M ′
Γ, thus are also

non-Γ-conflicting extensions of MΓ with moves of filtered reachable from
MΓ. Furthermore, these are largest subsets, otherwise CompatibleM or
Post should be incorrect.

300 Appendix A. Model checking ATLKirF : correctness

Finally, there are no other largest subsets, otherwise such a subset
would either contain an incompatible move, or a move out of filtered,
or a move that is not reachable from some move in MΓ. Thus, the proof
is done.

Given a set of agents Γ ⊆ Ag, a set of states Q′ ⊆ Q and a set of
Γ-moves MΓ ⊆ EΓ, PartialStratsPF (Γ,Q′,MΓ) returns the set of largest
non-Γ-conflicting subsets of MΓ reachable from states of Q′. These
subsets are smaller than the largest subsets of non-Γ-conflicting subsets
of MΓ, as used by evalPartial,PFATLKirF

, because they are restricted to the
moves reachable from states of Q′. Nevertheless, restricting the search of
winning strategies to these ones is sufficient, as captured by the following
lemma.

Lemma A.20. Given an iCGSf S = ⟨Ag,Q,Q0,Act, e, δ,∼, V,FC⟩, a
group of agents Γ ⊆ Ag, three sets of states Q′,Q1,Q2 ⊆ Q, and a strategic
operator op ∈ {⟪Γ⟫X,⟪Γ⟫U,⟪Γ⟫W}, for all uniform partial strategies fΓ

adequate for Q′, there exists a set MΓ in

PartialStratsPF (Γ,Q′, filterMop(Q1,Q2,EΓ))

such that

filterop(Q1,Q2, fΓ) ∩Q′ ⊆ filterop(Q1,Q2,MΓ) ∩Q′.

Proof. Let fΓ be a uniform partial strategy adequate for Q′. First, the
set

fΓ ∩ filterMop(Q1,Q2,EΓ)

is a non-Γ-conflicting subset of filterMop(Q1,Q2,EΓ) as fΓ is a uni-

form strategy. Thus, the set fΓ ∩ filterMop(Q1,Q2,EΓ) is a subset of

filterMop(Q1,Q2,EΓ) composed of non-Γ-conflicting moves. So there
exists a set MΓ in

PartialStratsPF (Γ,Q′, filterMop(Q1,Q2,EΓ))

such that MΓ can be augmented with non-conflicting moves of the set
filterMop(Q1,Q2,EΓ) that are not reachable from MΓ to get a set M ′

Γ

such that

fΓ ∩ filterMop(Q1,Q2,EΓ) ⊆M ′
Γ.

Finding such a M ′
Γ is possible as MΓ is a non-Γ-conflicting set of

moves, and because M ′
Γ ∈ Split(Γ, filterMop(Q1,Q2,EΓ)). Furthermore,

A.4. Pre-filtering 301

the moves of M ′
Γ/MΓ are not reachable from moves of MΓ, otherwise

PartialStratsPF would be incorrect.
The filterop algorithms are monotone since the Pre⟪Γ⟫ function is

monotone. Thus,

filterop(Q1,Q2, fΓ ∩ filterMop(Q1,Q2,EΓ)) ⊆ filterop(Q1,Q2,M
′
Γ),

and by Theorem A.15,

filterop(Q1,Q2, fΓ) = filterop(Q1,Q2, fΓ ∩ filterMop(Q1,Q2,EΓ))
⊆ filterop(Q1,Q2,M

′
Γ).

Finally, the following is true:

filterop(Q1,Q2,MΓ) ∩Q′ = filterop(Q1,Q2,M
′
Γ) ∩Q′.

Indeed, as M ′
Γ is MΓ augmented with moves that are unreachable from

MΓ, and because Q′ ⊆MΓ∣Q, the result of the filter algorithm, for the
states of Q′, cannot be influenced by moves that they cannot reach.

Thus,

filterop(Q1,Q2, fΓ) ∩Q′ ⊆ filterop(Q1,Q2,MΓ) ∩Q′.

Thanks to this lemma we know that, if there exists a winning par-
tial strategy for a state q ∈ Q′, then there exists a set of moves in
PartialStratsPF for which q is winning. To prove the correctness of
the evalPartial,PFATLKirF

algorithm, we still need to show that, for any set of

PartialStratsPF , there effectively exists a winning strategy in the states
the set of moves is winning for. This is captured by the following lemma.

Lemma A.21. Given an iCGSf S = ⟨Ag,Q,Q0,Act, e, δ,∼, V,FC⟩, a
group of agents Γ ⊆ Ag, three sets of states Q′,Q1,Q2 ⊆ Q, and a
strategic operator op ∈ {⟪Γ⟫X,⟪Γ⟫U,⟪Γ⟫W}, for all sets of moves MΓ

in PartialStratsPF (Γ,Q′, filterMop(Q1,Q2,EΓ)), there exists a uniform
partial strategy fΓ adequate for Q′ such that

filterop(Q1,Q2,MΓ) ∩Q′ = filterop(Q1,Q2, fΓ) ∩Q′.

Proof. Let MΓ be a set in PartialStratsPF (Γ,Q′, filterMop(Q1,Q2,EΓ)).
By definition of PartialStratsPF , MΓ ⊆ filterMop(Q1,Q2,EΓ), thus

MΓ =MΓ ∩ filterMop(Q1,Q2,EΓ).

302 Appendix A. Model checking ATLKirF : correctness

So, for all M ′
Γ ⊆ EΓ such that

M ′
Γ ∩ filterMop(Q1,Q2,EΓ) =MΓ,

we have, by Theorem A.15,

filterop(Q1,Q2,M
′
Γ) = filterop(Q1,Q2,M

′
Γ ∩ filterMop(Q1,Q2,EΓ)),

= filterop(Q1,Q2,MΓ).

Furthermore, there exists a uniform partial strategy fΓ adequate for
Q′ such that MΓ can be augmented with moves of unreachable non-Γ-
conflicting moves of filterMop(Q1,Q2,EΓ) to get a set M ′

Γ such that

fΓ ∩ filterMop(Q1,Q2,EΓ) =M ′
Γ.

Indeed, such a strategy makes the same choices as M ′
Γ in states of

M ′
Γ∣Q—this is possible since MΓ is a non-Γ-conflicting set—, and choices

conflicting with filterMop(Q1,Q2,EΓ) elsewhere. It is always possible

to make choices conflicting with filterMop(Q1,Q2,EΓ) in some state in
Q/M ′

Γ∣Q because, otherwise, such a choice would be in M ′
Γ since M ′

Γ

extends MΓ with moves of filterMop(Q1,Q2,EΓ).
Furthermore, because moves added to MΓ to get M ′

Γ are unreachable
from moves of MΓ, and because MΓ contains moves for Q′, the following
is true:

filterop(Q1,Q2,MΓ) ∩Q′ = filterop(Q1,Q2,M
′
Γ) ∩Q′.

Thus, there exists a uniform partial strategy fΓ adequate for Q′ such
that

filterop(Q1,Q2, fΓ) = filterop(Q1,Q2, fΓ ∩ filterMop(Q1,Q2,EΓ)),
= filterop(Q1,Q2,M

′
Γ).

Thus,

filterop(Q1,Q2, fΓ) ∩Q′ = filterop(Q1,Q2,M
′
Γ) ∩Q′

= filterop(Q1,Q2,MΓ) ∩Q′.

We also need a last lemma to ensure that we can stop searching
for winning strategies if no state of Q′ appears in filtered∣Q. This is
captured by the following lemma.

A.4. Pre-filtering 303

Lemma A.22. Given an iCGSf S = ⟨Ag,Q,Q0,Act, e, δ,∼, V,FC⟩, an
ATLKirF strategic formula φ = ⟪Γ⟫ ψ with operator op, the two sets
Q1,Q2 ⊆ Q of states satisfying the sub-formulas φ1, φ2 of φ (resp.), and a
set of states Q′ ⊆ Q, if filterMop(Q1,Q2,EΓ)∣Q ∩Q′ = ∅, then there exists
no state of Q′ satisfying ⟪Γ⟫ ψ.

Proof. Suppose that filterMop(Q1,Q2,EΓ)∣Q ∩Q′ = ∅ but there exists a
state q ∈ Q′ that satisfies ⟪Γ⟫ ψ. Then, there exists a strategy fΓ such
that q ∈ filterop(Q1,Q2, fΓ). Furthermore, by Theorem A.15,

filterop(Q1,Q2, fΓ) = filterop(Q1,Q2, fΓ ∩ filterMop(Q1,Q2,EΓ)),

and

q ∈ filterop(Q1,Q2, fΓ ∩ filterMop(Q1,Q2,EΓ)).

Let us show that it is impossible, by definition of the filter and filterM

algorithms.

ψ = X φ1 If q ∈ filter⟪Γ⟫X(Q1, fΓ ∩ filterM⟪Γ⟫X(Q1,EΓ)), then there

exists a move ⟨q, aΓ⟩ ∈ fΓ ∩ filterM⟪Γ⟫X(Q1,EΓ) that enforces to reach

Q1 ∪ NFair⟪Γ⟫(fΓ ∩ filterM⟪Γ⟫X(Q1,EΓ)). But there cannot be such

a move as q /∈ filterM⟪Γ⟫X(Q1,EΓ)∣Q by hypothesis. This leads to a
contradiction, and prove the lemma for this case.

ψ = φ1 U φ2 If q ∈ filter⟪Γ⟫U(Q1,Q2, fΓ ∩ filterM⟪Γ⟫U(Q1,Q2,EΓ)),
then either

q ∈ Q1,2,N ∩Q2 = Q2,

or

q ∈ Q1,2,N ∩ Pre⟪Γ⟫ (Stay⟪Γ⟫ (
Q1,2,N ∩ (f⟪Γ⟫U ∪ fc),
Q2 ∩ (f⟪Γ⟫U ∪ fc), fM⟪Γ⟫U

) , fM⟪Γ⟫U) ,

for some fc ∈ FC, where

f⟪Γ⟫U = filter⟪Γ⟫U(Q1,Q2, fΓ ∩ filterM⟪Γ⟫U(Q1,Q2,EΓ)),
fM⟪Γ⟫U = fΓ ∩ filterM⟪Γ⟫U(Q1,Q2,EΓ),
Q1,2,N = Q1 ∪Q2 ∪Nfair⟪Γ⟫(fΓ ∩ filterM⟪Γ⟫U(Q1,Q2,EΓ)).

In the former case, there would be a move ⟨q, aΓ⟩ for q in the setfM⟪Γ⟫U
as MovesΓ(Q2) ∈ filterM⟪Γ⟫U(Q1,Q2,EΓ), leading to a contradiction and

304 Appendix A. Model checking ATLKirF : correctness

proving the lemma. In the latter case, there would be a move ⟨q, aΓ⟩ in
filterM⟪Γ⟫U(Q1,Q2,EΓ) enforcing to reach the set

Stay⟪Γ⟫(Q1,2,N ∩ (f⟪Γ⟫U ∪ fc),Q2 ∩ (f⟪Γ⟫U ∪ fc), fM⟪Γ⟫U)

in one step, thus a move for q in filterM⟪Γ⟫U(Q1,Q2,EΓ), leading to a
contradiction and proving the lemma.

ψ = φ1 W φ2 This case is similar to the previous one. If q belongs to
filter⟪Γ⟫W(Q1,Q2, fΓ ∩ filterM⟪Γ⟫W(Q1,Q2,EΓ)), then either

q ∈ Q2,

or

q ∈ Q1,2,N ∩ Pre⟪Γ⟫(Stay(Q1,2,N ,Q2, f
M
⟪Γ⟫W), fM⟪Γ⟫W),

where

fM⟪Γ⟫W = fΓ ∩ filterM⟪Γ⟫W(Q1,Q2,EΓ),
Q1,2,N = Q1 ∪Q2 ∪Nfair⟪Γ⟫(fΓ ∩ filterM⟪Γ⟫W(Q1,Q2,EΓ)).

In the former case, there would be a move ⟨q, aΓ⟩ for q in the set
filterM⟪Γ⟫W(Q1,Q2,EΓ) as MovesΓ(Q2) ∈ filterM⟪Γ⟫W(Q1,Q2,EΓ), lead-
ing to a contradiction and proving the lemma. In the latter case, there
would be a move ⟨q, aΓ⟩ ∈ filterM⟪Γ⟫W(Q1,Q2,EΓ) enforcing to reach the
set

Stay(Q1,2,N ,Q2, f
M
⟪Γ⟫W)

in one step, thus a move for q in filterM⟪Γ⟫W(Q1,Q2,EΓ), leading to a
contradiction and proving the lemma.

Finally, thanks to these theorem and lemmas, we can prove the
correctness of the evalPartial,PFATLKirF

algorithm.

Theorem A.23. Given an iCGSf S = ⟨Ag,Q,Q0,Act, e, δ,∼, V,FC⟩,
an ATLKirF strategic formula ⟪Γ⟫ ψ, and a set of states Q′ ⊆ Q,
evalPartial,PFATLKirF

(S,Q′,⟪Γ⟫ ψ) returns the set of states of Q′ satisfying
⟪Γ⟫ ψ.

Proof. We can prove this theorem by induction over the structure of the
formula. Let op be the strategic operator of ⟪Γ⟫ ψ.

A.5. Backward generation of strategies 305

First, evalPartial,PFATLKirF
(S,⟪Γ⟫ ψ) computes the filtered set as

filtered = filterMop(Q1,Q2,EΓ),
where Q1 and Q2 are the sets of states satisfying φ1 (resp. φ2), by the
induction hypothesis. Then, if filtered∣Q ∩Q′ = ∅, there exists no state
q ∈ Q′ satisfying ⟪Γ⟫ ψ, by Lemma A.22. Otherwise, the algorithm
iterates over the elements MΓ of

PartialStratsPF (Γ, [Q′]EΓ , filtered) =
PartialStratsPF (Γ, [Q′]EΓ , filterMop(Q1,Q2,EΓ)).

Let MΓ be the set of elements of PartialStratsPF (Γ, [Q′]EΓ , filtered)
of which MΓ has already taken the value. Let us show that the invariant
of the for loop is that sat is the set of states q′ ∈ Q′ such that there
exists MΓ ∈ MΓ, and a uniform strategy fΓ such that

filterop(Q1,Q2,MΓ) ∩ [Q′]EΓ = filterop(Q1,Q2, fΓ) ∩ [Q′]EΓ ,
and

∀ag ∈ Γ,∀q ∼ag q′,∀π ∈ out(fΓ, q), π ⊧ ψ.
This invariant is trivially verified before entering the loop for the first

time as sat and MΓ are both empty. Then, suppose that the invariant
is true before any iteration of the loop. By Lemma A.21, winning is the
set of states q ∈ [Q′]EΓ for which there exists a uniform strategy fΓ such
that

filterop(Q1,Q2,MΓ) ∩ [Q′]EΓ = filterop(Q1,Q2, fΓ) ∩ [Q′]EΓ ,
and

∀π ∈ out(fΓ, q), π ⊧ ψ.
sat is thus augmented with the set of states q ∈ Q′ such that there exists
a uniform strategy fΓ such that

filterop(Q1,Q2,MΓ) ∩ [Q′]EΓ = filterop(Q1,Q2, fΓ) ∩ [Q′]EΓ ,
and

∀ag ∈ Γ,∀q′ ∼ag q,∀π ∈ out(fΓ, q
′), π ⊧ ψ.

The invariant is thus verified after the iteration.
Finally, let us suppose that

MΓ = PartialStratsPF (Γ, [Q′]EΓ , filterMop(Q1,Q2,EΓ))
and that the loop is done. The invariant says that for all states q ∈ sat,
q ⊧ ⟪Γ⟫ ψ. Furthermore, Lemma A.20 ensures that we forgot no winning
state, and the proof is done.

306 Appendix A. Model checking ATLKirF : correctness

A.5 Backward generation of strategies

This section proves the correctness of the backward approach described
in Section 5.5, through the following lemma and theorems.

Lemma A.24. Given an iCGSf S = ⟨Ag,Q,Q0,Act, e, δ,∼, V,FC⟩ such
that FC = {Q}, two subsets of states Q1,Q2 ⊆ Q, and a state q ∈ Q, there
exists a uniform strategy fΓ such that all fair outcomes from all states
indistinguishable from q by Γ reach a state of Q2 through states of Q1

if and only if there exists a set of non-Γ-conflicting Γ-moves M ′
Γ that

enforces to reach Q2 through Q1 such that [q]EΓ ⊆M ′
Γ∣Q and fΓ ⊇M ′

Γ.

Proof. First, let us assume the existence of a uniform strategy fΓ such
that all fair outcomes from all states indistinguishable from q by Γ reach
a state of Q2 trough states of Q1. As S has only one fairness constraint
Q, all paths of the structure are fair, thus all outcomes from [q]EΓ reach
Q2 through Q1.

From fΓ, we can build a non-Γ-conflicting set of Γ-moves M ′
Γ that

enforces to reach Q2 through Q1 such that [q]EΓ ⊆ M ′
Γ∣Q and M ′

Γ ⊆ fΓ.
Indeed, let M ′

Γ be the moves defined by the prefixes of the paths enforced
by fΓ from states of [q]EΓ and ending in the first encountered state of Q2,
that is, the set

M ′
Γ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⟨q′, fΓ(q′)⟩

RRRRRRRRRRRRRR

∃q0 ∈ [q]EΓ ,∃π ∈ out(fΓ, q0),∃n ≥ 0 s.t.
π(n) ∈ Q2 ∧ ∀j,0 ≤ j ≤ n − 1, π(j) ∈ Q1/Q2∧
∃i s.t. 0 ≤ i ≤ n ∧ qi = q′

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

M ′
Γ is a non-Γ-conflicting set of Γ-moves as they are defined by the

uniform strategy fΓ. Furthermore, M ′
Γ enforces to reach Q2 through

Q1 because all outcomes of M ′
Γ are finite paths reaching a state of Q2

through states of Q1/Q2, by definition. The proof is thus done for this
direction.

For the other direction, let us assume the existence of a non-Γ-
conflicting set of Γ-moves M ′

Γ that enforces to reach Q2 through Q1 such
that [q]EΓ ⊆M ′

Γ∣Q. From M ′
Γ, we can build a uniform strategy fΓ such

that all fair outcomes from all states of [q]EΓ reach a state of Q2 through
states of Q1.

Indeed, we can add to M ′
Γ Γ-moves for states outside M ′

Γ∣Q with any
non-conflicting action; there exist such moves as M ′

Γ is non-Γ-conflicting.
Adding these moves extends the finite paths from states of [q]EΓ to infinite
paths. Nevertheless, these paths still reach a state of Q2 through states
of Q1, by definition of M ′

Γ. As S has only one fairness constraint Q, all
these paths are fair, and the proof is done.

A.5. Backward generation of strategies 307

Theorem A.25. Given an iCGSf S = ⟨Ag,Q,Q0,Act, e, δ,∼, V,FC⟩ with
FC = {Q}, a set of states Q′ ⊆ Q such that Q′ = [Q′]EΓ , a non-Γ-
conflicting set of Γ-moves MΓ, and two subsets of states Q1,Q2 ⊆ Q such
that MΓ enforces to reach Q2 through Q1, evalBackward⟪Γ⟫U (Q′,MΓ,Q1,Q2)
returns the set of states q ∈ Q′ such that there exists a strategy f ′Γ ⊇MΓ

such that all outcomes of f ′Γ from all states indistinguishable from q reach
a state of Q2 through states of Q1.

Proof. The algorithm starts by computing the lose and win sets of states.
First notlose is the set of states such that there exists a general strategy
to reach MΓ∣Q through Q1. Thus, lose is the set of states q of Q′ such
that there does not exist a strategy to reach MΓ∣Q through Q1 for some
state indistinguishable from q. There exists no uniform strategy f ′Γ ⊇MΓ

that is winning for the objective in all indistinguishable states of lose as
if there were such a strategy, then it would first reach MΓ through Q1,
and then act as MΓ.

Second, win is the set of states for which all indistinguishable states
are in MΓ∣Q. win are thus the states q of Q′ such that [q]EΓ ⊆ MΓ∣Q
and MΓ enforces to reach Q2 through Q1. By Lemma A.24, there exists
a strategy f ′Γ ⊇ MΓ such that all fair outcomes of f ′Γ from all states
indistinguishable from q reach a state of Q2 through states of Q1.

If Q′/(lose∪win) = ∅, then all states of Q′ are covered and the states
for which there exists a winning strategy are effectively the states of
win. Otherwise, there are states of interest that are not in lose ∪win.
In this case, the algorithm removes from Q′ the states of lose ∪win for
which we already can conclude. As lose and win contain entire classes
of indistinguishable states by definition, Q′ is still such that Q′ = [Q′]EΓ
after execution of Line 6.

Then the algorithm computes new moves, the set of moves that
enforce to reach states of MΓ in one step from states of Q1, and not
already in MΓ. compatible is thus the moves from states of Q1 that
enforce to reach MΓ in one step but are not already in MΓ.

If compatible is empty, then MΓ cannot be extended with moves that
will allow the remaining states of Q′ to reach Q2 through Q1 with moves
of MΓ. Thus there exists no M ′

Γ ⊇ MΓ such that [q]EΓ ⊆ M ′
Γ∣Q for any

state q ∈ Q′ and M ′
Γ enforces to reach Q2 through Q1, and there exists no

strategy f ′′Γ ⊇M ′
Γ ⊇MΓ such that all fair outcomes of f ′′Γ from all states

indistinguishable from states of Q′ reach a state of Q2 through states of
Q1. The states q ∈ Q′ such that there exists a uniform strategy M ′

Γ ⊇MΓ

such that all outcomes of M ′
Γ from all states indistinguishable from q

reach a state of Q2 through states of Q1 are thus the states of win.

If compatible is not empty, the algorithm enumerates the greatest

308 Appendix A. Model checking ATLKirF : correctness

non-conflicting subsets M ′
Γ of compatible and accumulates in win the

states such that there exists a uniform strategy f ′′Γ ⊇ (M ′
Γ ∪MΓ) ⊇MΓ

such that all fair outcomes of f ′′Γ from all states indistinguishable from
some state q in Q′ reach a state of Q2 through states of Q1. This loop is
terminated when there are no such M ′

Γ anymore, or when all states of
interest are covered by win.

In both cases, win is returned, and these are effectively the states
q of Q′ such that there exists a uniform strategy f ′′Γ ⊇MΓ such that all
fair paths enforced by f ′′Γ from all states indistinguishable from q reach
a state of Q2 through states of Q1. Indeed, no state q is missing from
the returned set because, otherwise, either [q]EΓ ⊆MΓ∣Q and q would be
in win at Line 3, or the corresponding strategy would choose an action
enforcing to reach MΓ in one step in some state of Q1, and this choice
would be in some M ′

Γ ∈ Split(Γ, compatible).

Theorem A.26. Given an iCGSf S = ⟨Ag,Q,Q0,Act, e, δ,∼, V,FC⟩ such
that FC = {Q}, a set of states Q′ ⊆ Q, and an ATLKirF strategic
formula φ = ⟪Γ⟫ ψ with top-level operator ⟪Γ⟫X or ⟪Γ⟫U, the result of
evalBackwardATLKirF

(S,Q′, φ) is the set of states of Q′ satisfying ⟪Γ⟫ ψ.

Proof. This theorem can be proved by induction over the structure of
the formula φ = ⟪Γ⟫ ψ.

ψ = X φ′ First, the algorithm computes the set Q′′′ of successors of
Q′′ satisfying φ′, by induction hypothesis. Then the for loop accu-
mulates in sat the set of states q ∈ Q′′ for which there exists MΓ in
Split(Γ, P reM⟪Γ⟫(MovesΓ(Q′′′),EΓ)) such that all states indistinguish-
able from q are in MΓ.

First, any state q ∈ sat effectively satisfies φ. Indeed, if there exists
MΓ ∈ Split(Γ, P reM⟪Γ⟫(MovesΓ(Q′′′),EΓ)) such that all states indistin-
guishable from q are in MΓ, then there exists an action that will surely
lead to states of Q′′′ in one step, for all states indistinguishable from q.
Thus, all (fair) outcomes of any uniform strategy that makes the same
choice will have their second state in Q′′′, that is, their second state will
satisfy φ′.

Second, for any state q of Q′′ satisfying φ, there exists an element
MΓ ∈ Split(Γ, P reM⟪Γ⟫(MovesΓ(Q′′′),EΓ)) such that all states indistin-

guishable from q are in MΓ. Indeed, if q ∈ Q′′ satisfies φ, there ex-
ists a strategy such that all outcomes from all states indistinguishable
from q have their second state satisfying φ′, that is, in Q′′′. Thus,
there exists an action in the states that are indistinguishable from q
that enforces to reach states of Q′′′ in one step. The corresponding

A.6. Interleaving strategy generation and verification 309

moves must belong to PreM⟪Γ⟫(MovesΓ(Q′′′),EΓ), as they enforce to

reach Q′′′ in one step. Furthermore, they are non-Γ-conflicting as they
give the same action for indistinguishable states. Thus there exists
MΓ ∈ Split(Γ, P reM⟪Γ⟫(MovesΓ(Q′′′),EΓ)) such that all states indistin-
guishable from q are in MΓ, and the proof is done.

ψ = φ1 U φ2 Qi is the set of states of S satisfying φi (for i ∈ {1, 2}), by
induction hypothesis. Thus, after Line 14, sat contains the set of states
q of Q′′ such that all states indistinguishable from q satisfy φ2. These
states effectively satisfy φ as any strategy would be winning in these
states as all paths enforced from these states would have already reached
Q2.

Then the for loop accumulates in sat the states q ∈ Q′′ such that
there exists a uniform strategy f ′Γ ⊇MΓ such that all fair outcomes of
f ′Γ from all states indistinguishable from q reach a state of Q2 through
states of Q1, for some MΓ ∈ Split(Γ,MovesΓ(Q2)).

First, these states q ∈ sat satisfy φ, as there exists a strategy f ′Γ such
that all fair outcomes of f ′Γ from all states indistinguishable from q reach
a state of Q2 through states of Q1.

Second, for any state q of Q′′ satisfying φ, there exists some set of
Γ-moves MΓ ∈ Split(Γ,MovesΓ(Q2)) such that there exists a uniform
strategy f ′Γ ⊇ MΓ such that all fair outcomes of f ′Γ from all states
indistinguishable from q reach a state of Q2 through states of Q1.

Indeed, Split(Γ,MovesΓ(Q2)) covers all possible choices of actions
in all states of Q2. Thus, if q ∈ Q′′ satisfies φ, there exists a strategy f ′Γ
such that all fair outcomes of f ′Γ from all states indistinguishable from
q reach a state satisfying φ2 through states satisfying φ1. Furthermore,
as Split(Γ,MovesΓ(Q2)) covers all possible choices, there exists MΓ in
Split(Γ,MovesΓ(Q2)) such that f ′Γ ⊇MΓ, and q is in sat.

A.6 Interleaving strategy generation
and verification

This section proves the correctness of the early approaches with and
without pre-filtering, described in Section 6.1.

A.6.1 The early model-checking algorithm

First, the correctness of the Complete algorithm is captured by the
following theorem.

310 Appendix A. Model checking ATLKirF : correctness

Theorem A.27. Given an iCGSf S = ⟨Ag,Q,Q0,Act, e, δ,∼, V,FC⟩, a
subset of agents Γ ⊆ Ag, and a set of non-Γ-conflicting Γ-moves MΓ,
Complete(MΓ) returns the set of Γ-moves reachable from some move of
MΓ and compatible with MΓ.

Proof. To prove this theorem, we can show that an invariant of the while
loop is the following: ∃i ≥ 0 s.t. M ′

Γ is the set of Γ-moves reachable from
some move of MΓ in at most i steps, and compatible with all the moves
of MΓ, and new moves is the set of moves compatible with MΓ in the
states reachable in one step from some move of M ′

Γ, for which no move
is given in M ′

Γ.
This invariant is satisfied before the first iteration of the loop because

M ′
Γ =MΓ, thus M ′

Γ is effectively the set of moves reachable from MΓ in
at most 0 step (and compatible with MΓ). Furthermore, new moves is
the set of moves compatible with MΓ defined for the states reachable
in one step from some move of M ′

Γ, and compatible with MΓ, by the
definition of Post and Compatible.

Suppose now that the invariant is satisfied before any iteration and
that the condition of the loop is satisfied, that is, new moves ≠ ∅. We
can show, that, in this case, the invariant is still satisfied after the
execution of the body of the loop.

M ′
Γ already contains all Γ-moves reachable from some move of MΓ in

at most i steps, and compatible with MΓ. new moves contains all the
moves compatible with MΓ that are reachable from some move of MΓ in
i+ 1 steps, but not in i steps. Thus, M ′

Γ ∪new moves contains all moves
reachable from some move of MΓ in at most i + 1 steps, and compatible
with MΓ.

Furthermore, after the execution of the body of the loop, new moves
is the set of moves compatible with MΓ defined for the states reachable
in one step from some move of M ′

Γ, and compatible with MΓ, by the
definition of Post and Compatible, and for which no move is given in
M ′

Γ, as new states is restricted to states for which no move is given in
M ′

Γ. Thus the invariant is effectively satisfied after the execution of the
body of the loop.

Finally, at the end of the algorithm, the invariant and the condition
of the loop are satisfied. In this case, M ′

Γ is the set of Γ-moves reachable
(in any number of steps) from some move of MΓ and compatible with
MΓ. Indeed, because new moves = ∅, M ′

Γ is closed. So there cannot be
missing moves reachable from MΓ and compatible with it, thus M ′

Γ is
the set of Γ-moves reachable from some move of MΓ and compatible with
MΓ, and the proof is done.

The correctness of the evalaltATLKirF and evalEarlyATLKirF
algorithms is

A.6. Interleaving strategy generation and verification 311

captured by the two following theorems.

Theorem A.28. Given an iCGSf S = ⟨Ag,Q,Q0,Act, e, δ,∼, V,FC⟩,
a subset of states Q′ ⊆ Q such that [Q′]EΓ = Q′, an ATLKirF strategic
formula ⟪Γ⟫ ψ, and an incomplete partial strategy fΓ such that Q′ ⊆ fΓ∣Q,
evalaltATLKirF (Q

′,⟪Γ⟫ ψ, fΓ) computes the set of states q ∈ Q′ such that
there exists an extension of fΓ that is winning for ⟪Γ⟫ ψ in all states
indistinguishable from q.

Proof. First, cfΓ is the set of moves reachable from some move of fΓ and
compatible with it. In particular, fΓ ⊆ cfΓ and cfΓ is closed.

Then, notlose is the subset of states q ∈ Q′ such that there exists a
general strategy in cfΓ to win the objective ψ from q. Thus, lose is the
set of states of Q′ such that there exists at least one equivalent state in
Q′—and thus, in [Q′]EΓ , by pre-condition of the algorithm—for which
there exists no general strategy in cfΓ to win ψ. In other words, lose is
the set of states such that there cannot be a winning strategy in cfΓ for
all equivalent states.

Furthermore, win is, before execution of Line 18 of Algorithm 6.3,
the set of states q ∈ Q′ such that all extensions of fΓ satisfy the objective
ψ from q. Thus, after execution of Line 18, win is the set of states of Q′

such that all extensions of fΓ are winning for all indistinguishable states.
If lose and win cover all states—that is, if Q′/(lose ∪ win) = ∅—,

then the computation is done as there exists an extension of fΓ winning
for ψ in states of win, and there cannot be an extension of fΓ winning
for ψ in states of lose. Thus win is effectively the set of states for which
there exists an extension of fΓ winning for ψ, and the proof is done.

If lose and win do not cover all states, then fΓ is not closed. Indeed,
if fΓ is closed, then fΓ = cfΓ, cfΓ is one adequate partial strategy, and,
for states q of cfΓ∣Q, either cfΓ is winning for all indistinguishable states—
and q ∈ win—, or cfΓ is losing for some indistinguishable state—and
q ∈ lose. As fΓ is not closed, it can be extended with compatible moves
to build a larger incomplete partial strategy.

newstrats is the set of sets of compatible moves that can extend fΓ

in one step. Thus, the elements fΓ ∪ f ′Γ, for f ′Γ ∈ newstrats, are all the
one-step extensions of fΓ. Let F ′

Γ be the set of sets of moves f ′Γ has
already taken the value of in the iterations of the loop. Then we can
show that an invariant of the for loop is: win is the set of states q such
that all extensions of fΓ are winning in all states indistinguishable from
q, or such that there exists an f ′Γ ∈ F ′

Γ such that there exists an extension
of fΓ ∪ f ′Γ that is winning for ψ in all states indistinguishable from q.

This invariant is easily proved to be maintained by any iteration of
the loop: suppose that the invariant is satisfied before the execution of

312 Appendix A. Model checking ATLKirF : correctness

the body. Then after its execution, the invariant is still satisfied as F ′
Γ

gained one new f ′Γ, and win has been extended with states q such that
there exists an extension of fΓ ∪ f ′Γ that is winning for ψ in all states
indistinguishable from q.

Finally, at the end of the loop, F ′
Γ contains all f ′Γ ∈ newstrats, thus

all sets of compatible moves that can extend fΓ in one step have been
considered, and win is the set of states q such that there exists an
extension of fΓ that is winning for ψ in all states indistinguishable from
q.

Theorem A.29. Given an iCGSf S = ⟨Ag,Q,Q0,Act, e, δ,∼, V,FC⟩, a
subset of states Q′ ⊆ Q, and an ATLKirF strategic formula ⟪Γ⟫ ψ,
evalEarlyATLKirF

(S,Q′,⟪Γ⟫ ψ) is the set of states of Q′ satisfying ⟪Γ⟫ ψ.

Proof. Split(Γ,Moves([Q′]EΓ)) is the set of one-step incomplete partial
strategies fΓ such that [Q′]EΓ ∈ fΓ∣Q. Thus, all elements of this set satisfy
the pre-conditions of the evalaltATLKirF algorithm.

Then, let F ′
Γ be the set of partial strategies that fΓ has already taken

the value of, in the iterations of the loop. We can show that one invariant
of the for loop is: sat is the set of states q ∈ Q′ such that there exists
some strategy fΓ ∈ F ′

Γ for which there exists an extension that is winning
for ψ in all states indistinguishable from q.

This invariant is easily proved to be maintained by the body of the
loop. Suppose that the invariant is satisfied before one execution of the
body. Then, after its execution, F ′

Γ has been updated with fΓ, and sat
has been updated with states q such that there exists an extension of fΓ

that is winning for ψ in all states indistinguishable from q.
Finally, when the loop is done, the invariant is still satisfied, and

F ′
Γ contains all fΓ ∈ Split(Γ,Moves([Q′]EΓ)). Thus, sat contains all

states q ∈ Q′ such that there exists an extension of some one-step partial
strategy that is winning for ψ in all states indistinguishable from q. Thus,
sat contains only states of Q′ satisfying ⟪Γ⟫ ψ. Furthermore, no state of
Q′ satisfying ⟪Γ⟫ ψ is not in sat. Otherwise there would be a strategy
fΓ that would be winning in all states indistinguishable from q ∈ Q′ and,
either fΓ would not be an extension of some f ′Γ of Split(Γ,MovesΓ(Q′′))
and Split would be incorrect, or fΓ would be an extension of some
f ′Γ ∈ Split(Γ,MovesΓ(Q′′)) and evalaltATLKirF would be incorrect.

A.6.2 Pre-filtering

This section proves the correctness of the early approach with pre-
filtering described in Section 6.1.3. The correctness of evalalt,PFATLKirF

and

evalEarly,PFATLKirF
are captured by the two following theorems.

A.6. Interleaving strategy generation and verification 313

Theorem A.30. Given an iCGSf S = ⟨Ag,Q,Q0,Act, e, δ,∼, V,FC⟩, a
subset of states Q′ ⊆ Q such that [Q′]EΓ = Q′, an ATLKirF strategic
formula ⟪Γ⟫ ψ, a set of Γ-moves filtered such that

filtered = filterMop(Q1,Q2,EΓ),

with Qi be the states satisfying the ith sub-formula of ψ, and an incomplete
partial strategy fΓ such that Q′ ⊆ fΓ∣Q and fΓ ⊆ filtered, the result of

evalalt,PFATLKirF
(Q′,⟪Γ⟫ ψ, fΓ, filtered) is the set of states q ∈ Q′ such that

there exists an extension of fΓ that is winning for ⟪Γ⟫ ψ in all states
indistinguishable from q.

Proof. This proof is similar to the one of Theorem A.28 for evalaltATLKirF .
First, cfΓ is the set of moves reachable from some move of fΓ and
compatible with it. In particular, fΓ ⊆ cfΓ and cfΓ is closed.

Then, lose is the set of states such that there cannot be a winning
strategy in cfΓ for all equivalent states, and win is the set of states of
Q′ such that all extensions of fΓ are winning for all indistinguishable
states. If lose and win cover all states, win is the set of states q ∈ Q′

such that there exists an extension of fΓ winning for ψ in all states
indistinguishable from q, and the proof is done.

If lose and win do not cover all states of Q′, then evalalt,PFATLKirF
computes the set of moves of filtered, compatible with fΓ and reachable
in one step from some move of fΓ. If there are no such move, then
Q′/lose is the set of states q ∈ Q′ such that there exists an extension of
fΓ winning for ψ in all states indistinguishable from q. Indeed, if there
are no such move, then for any extension f ′Γ of fΓ,

filterop(Q1,Q2, fΓ) ∩Q′

= filterop(Q1,Q2, fΓ ∩ filterMop(Q1,Q2,EΓ)) ∩Q′

= filterop(Q1,Q2, f
′
Γ ∩ filterMop(Q1,Q2,EΓ)) ∩Q′

= filterop(Q1,Q2, f
′
Γ) ∩Q′,

by the fact that f ′Γ ∩ filterMop(Q1,Q2,EΓ) reaches no more moves from
fΓ than fΓ—otherwise there would be some moves in compatible—and
by Theorem A.15. Furthermore,

filterop(Q1,Q2, f
′
Γ) ∩Q′

= filterop(Q1,Q2, f
′
Γ ∩ filterMop(Q1,Q2,EΓ)) ∩Q′

= filterop(Q1,Q2, cfΓ ∩ filterMop(Q1,Q2,EΓ)) ∩Q′

= filterop(Q1,Q2, cfΓ) ∩Q′,

314 Appendix A. Model checking ATLKirF : correctness

by the fact that cfΓ ∩filterMop(Q1,Q2,EΓ) and f ′Γ ∩filterMop(Q1,Q2,EΓ)
reach the same moves as fΓ ∩ filterMop(Q1,Q2,EΓ) from the moves of fΓ,
and by Theorem A.15. Thus, Q′/lose contains all the states q ∈ Q′ such
that all extensions are winning in all states indistinguishable from q.

If the set compatible is not empty, newstrats is the set of sets of
compatible moves that can extend fΓ in one step with moves of filtered.
Thus, the elements fΓ ∪ f ′Γ, for f ′Γ ∈ newstrats, are all the one-step
extensions of fΓ with moves of filtered. Let F ′

Γ be the set of sets of
moves f ′Γ has already taken the value of in the iterations of the loop.
We can show that an invariant of the for loop is: win is the set of
states q ∈ Q′ such that all extensions of fΓ are winning in all states
indistinguishable from q, or such that there exists an f ′Γ ∈ F ′

Γ such that
there exists an extension of fΓ ∪ f ′Γ that is winning for ψ in all states
indistinguishable from q.

This invariant is easily proved to be maintained by any iteration of
the loop. Suppose that the invariant is satisfied before the execution of
the body. Then after its execution, the invariant is still satisfied as F ′

Γ

gained one new f ′Γ, and win has been extended with the states q ∈ Q′

such that there exists an extension of fΓ ∪ f ′Γ that is winning for ψ in all
states indistinguishable from q.

Finally, at the end of the loop, F ′
Γ contains all f ′Γ ∈ newstrats, thus

all sets of compatible moves that can extend fΓ in one step with moves
of filtered have been considered. In this case, win is the set of states
q ∈ Q′ such that there exists an extension of fΓ that is winning for ψ in
all states indistinguishable from q.

Indeed, for all states q of win, there exists an extension of fΓ that
is winning for ψ in all states indistinguishable from q, as either all
extensions of fΓ are winning, or there exists an element f ′Γ of newstrats
such that there is an extension of fΓ ∪ f ′Γ that is winning for ψ in all
states indistinguishable from q.

Furthermore, any state q from Q′ such that there exists an extension
of fΓ that is winning for ψ in all states indistinguishable from q is in
win. Let us suppose that it is not true, and let q be a state outside win
such that there exists an extension of fΓ that is winning for ψ in all
states indistinguishable from q. If all extensions of fΓ are winning for ψ
in q, then q must be in the win set computed at Line 18, otherwise the
filterA algorithms would be incorrect.

Thus, there are some extensions of fΓ that are not winning in q, but
there is at least one extension of fΓ that is winning in q. Let fextΓ be such
an extension. Then fextΓ must extend some partial strategy corresponding
to fΓ ∪ f ′Γ, where f ′Γ is an element of newstrats, and q should be in win,
leading to a contradiction. Indeed, let Qext be the states for which fextΓ is

A.6. Interleaving strategy generation and verification 315

winning, and Qcf the states for which cfΓ is winning. Because q belongs
to Qext but not to Qcf , we have

Qcf ⊊ Qext,

that is,

filterop(Q1,Q2, cfΓ) ⊊ filterop(Q1,Q2, f
ext
Γ),

where op is the top-level operator of ψ, and Qi is the set of states
satisfying the ith sub-formula of ψ. By Theorem A.15, we also have

filterop(Q1,Q2, cfΓ ∩ filtered) ⊊ filterop(Q1,Q2, f
ext
Γ ∩ filtered),

where filtered = filterMop(Q1,Q2,EΓ). As the filterM algorithms are
monotone, this means that

cfΓ ∩ filtered ⊊ fextΓ ∩ filtered,

that is, fextΓ has more moves of filtered than cfΓ. Furthermore, for these
additional moves to be significant in the fact that q belongs to Qext but
not to Qcf , they must be reachable from q, and thus reachable from
fΓ. Thus fextΓ extends fΓ with some moves of filtered, and these moves
must belong to some f ′Γ of newstrats. Thus, q must belong to win, and
this ends the proof.

Theorem A.31. Given an iCGSf S = ⟨Ag,Q,Q0,Act, e, δ,∼, V,FC⟩, a
subset of states Q′ ⊆ Q, and an ATLKirF strategic formula ⟪Γ⟫ ψ,
evalEarly,PFATLKirF

(S,Q′,⟪Γ⟫ ψ) is the set of states of Q′ satisfying ⟪Γ⟫ ψ.

Proof. The proof is exactly the same as for Theorem A.29 that proves
the correctness of the evalEarlyATLKirF

algorithm. The only differences are:
(1) the computation of filtered, (2) Lines 15 to 17, that stop the process
if filtered contains no move for states of Q′′, and (3) the limitation of
the split moves to the ones of filtered.

The computation of filtered trivially respects the pre-conditions of
the evalalt,PFATLKirF

algorithm. Furthermore, stopping the process if filtered
does not cover any state of Q′′ is correct: if filtered∣Q ∩Q′′ = ∅, there
exists no state q ∈ Q′′ satisfying ⟪Γ⟫ ψ by Lemma A.22 and the proof is
done in this case.

Finally, any partial strategy fΓ adequate for Q′′ that chooses a move
of MovesΓ(Q′′)/filtered for some state q cannot be winning for q. This
can be shown for the three possible top-level operators of ψ.

316 Appendix A. Model checking ATLKirF : correctness

ψ = X φ1 If fΓ is winning for q, then q ∈ filter⟪Γ⟫X(Q1, fΓ), where Q1

is the set of states satisfying φ1. By Theorem A.15,

filter⟪Γ⟫X(Q1, fΓ) = filter⟪Γ⟫X(Q1, fΓ ∩ filterM⟪Γ⟫X(Q1,EΓ)).

If q ∈ filter⟪Γ⟫X(Q1, fΓ ∩ filterM⟪Γ⟫X(Q1,EΓ)), there exists a move

⟨q, aΓ⟩ ∈ fΓ ∩ filterM⟪Γ⟫X(Q1,EΓ) that enforces to reach

Q1 ∪NFair⟪Γ⟫(fΓ ∩ filterM⟪Γ⟫X(Q1,EΓ)).

But there cannot be such a move as the move ⟨q, aΓ⟩ ∈ fΓ does not belong
to filterM⟪Γ⟫X(Q1,EΓ) by hypothesis. This leads to a contradiction, and

proves that q /∈ filter⟪Γ⟫X(Q1, fΓ), and fΓ is not winning for q.

ψ = φ1 U φ2 If fΓ is winning for q, q ∈ filter⟪Γ⟫U(Q1,Q2, fΓ), where
Qi is the set of states satisfying φi. By Theorem A.15,

filter⟪Γ⟫U(Q1,Q2, fΓ) =
filter⟪Γ⟫U(Q1,Q2, fΓ ∩ filterM⟪Γ⟫U(Q1,Q2,EΓ)).

If q ∈ filter⟪Γ⟫U(Q1,Q2, fΓ ∩ filterM⟪Γ⟫U(Q1,Q2,EΓ)), then either

q ∈ Q1,2,N ∩Q2 = Q2,

or

q ∈ Q1,2,N ∩ Pre⟪Γ⟫ (Stay⟪Γ⟫ (
Q1,2,N ∩ (f⟪Γ⟫U ∪ fc),
Q2 ∩ (f⟪Γ⟫U ∪ fc), fM⟪Γ⟫U

) , fM⟪Γ⟫U) ,

for some fc ∈ FC, where

f⟪Γ⟫U = filter⟪Γ⟫U(Q1,Q2, fΓ ∩ filterM⟪Γ⟫U(Q1,Q2,EΓ)),
fM⟪Γ⟫U = fΓ ∩ filterM⟪Γ⟫U(Q1,Q2,EΓ),
Q1,2,N = Q1 ∪Q2 ∪Nfair⟪Γ⟫(fΓ ∩ filterM⟪Γ⟫U(Q1,Q2,EΓ)).

In the former case, there would be a move ⟨q, aΓ⟩ for q in fM⟪Γ⟫U,
leading to a contradiction as, by hypothesis, there is no move for q in
fΓ ∩ filterM⟪Γ⟫U(Q1,Q2,EΓ). In the latter case, there would be a move

⟨q, aΓ⟩ ∈ fΓ ∩ filterM⟪Γ⟫U(Q1,Q2,EΓ) enforcing to reach the set

Stay⟪Γ⟫(Q1,2,N ∩ (f⟪Γ⟫U ∪ fc),Q2 ∩ (f⟪Γ⟫U ∪ fc), fM⟪Γ⟫U)

in one step, thus a move for q in fΓ ∩ filterM⟪Γ⟫U(Q1,Q2,EΓ), leading to

a contradiction. This proves that q /∈ filter⟪Γ⟫U(Q1,Q2, fΓ), and fΓ is
not winning for q.

A.7. The fully symbolic approach 317

ψ = φ1 W φ2 This case is similar to the previous one. If fΓ is winning
for q, then q ∈ filter⟪Γ⟫W(Q1,Q2, fΓ), where Qi is the set of states
satisfying φi. By Theorem A.15,

filter⟪Γ⟫W(Q1,Q2, fΓ) =
filter⟪Γ⟫W(Q1,Q2, fΓ ∩ filterM⟪Γ⟫W(Q1,Q2,EΓ)).

If q ∈ filter⟪Γ⟫W(Q1,Q2, fΓ ∩ filterM⟪Γ⟫W(Q1,Q2,EΓ)), then either

q ∈ Q2,

or

q ∈ Q1,2,N ∩ Pre⟪Γ⟫(Stay(Q1,2,N ,Q2, f
M
⟪Γ⟫W), fM⟪Γ⟫W),

where

fM⟪Γ⟫W = fΓ ∩ filterM⟪Γ⟫W(Q1,Q2,EΓ),
Q1,2,N = Q1 ∪Q2 ∪Nfair⟪Γ⟫(fΓ ∩ filterM⟪Γ⟫W(Q1,Q2,EΓ)).

In the former case, there would be a move ⟨q, aΓ⟩ for q in the set
fΓ∩filterM⟪Γ⟫W(Q1,Q2,EΓ), leading to a contradiction as the move for q

in fΓ is not in filterM⟪Γ⟫W(Q1,Q2,EΓ) by hypothesis. In the latter case,

there would be a move ⟨q, aΓ⟩ ∈ fΓ ∩ filterM⟪Γ⟫W(Q1,Q2,EΓ) enforcing
to reach the set

Stay(Q1,2,N ,Q2, f
M
⟪Γ⟫W)

in one step, thus a move for q in fΓ ∩ filterM⟪Γ⟫W(Q1,Q2,EΓ), leading

to a contradiction. This proves that q /∈ filter⟪Γ⟫W(Q1,Q2, fΓ), and fΓ

is not winning for q.

A.7 The fully symbolic approach

This section proves the correctness of the symbolic approaches with
and without pre-filtering described in Section 6.2. As for the other
filter algorithms, we sometimes abbreviate the filterES algorithms with
the notation filterESop (ESS,QES1 ,QES2) that depends on the operator
op ∈ {⟪Γ⟫X,⟪Γ⟫U,⟪Γ⟫W}.

To prove the correctness of the evalSymbolicATLKirF
algorithm, we need to

prove an intermediate lemma. This lemma tells that, given two sets
of derived states QES1 and QES2 and a strategic operator op, the result

318 Appendix A. Model checking ATLKirF : correctness

of filterESop (ESS,QES1 ,QES2) is the set of derived states qES such that

all fair paths enforced by the strategy for Γ stored in qES satisfy the
objective defined by op.

Lemma A.32. Given an iCGSf S = ⟨Ag,Q,Q0,Act, e, δ,∼, V,FC⟩, a
group of agents Γ ⊆ Ag, a strategic operator op ∈ {⟪Γ⟫X,⟪Γ⟫U,⟪Γ⟫W},
and two subsets of states of EncStrats(S), QES1 ,QES2 ⊆ QES, such that,
for i ∈ {1,2},

QESi = Qi × ∏
ag∈Ag

F uag,

for some Q1,Q2 ⊆ Q, then

filterESop (ESS,QES1 ,QES2) =
{qES ∈ QES ∣state(qES) ∈ filterop(Q1,Q2, strategy(Γ, qES))} .

Proof. We can prove this lemma by the fact that the fixpoint compu-
tations defining both filter and filterES algorithms are the same, and
by the fact that, by definition of Prestr, q

ES belongs to Prestr(Q′)
if and only if the states enforced in one step by the strategy stored
in qES , and sharing the same strategy, are in Q′. Thus, the states
in filterESop (QES1 ,QES2) are the states for which the stored strategy is
winning for the objective, and this is exactly the states that are in the
set

{qES ∈ QES ∣state(qES) ∈ filterop(Q1,Q2, strategy(Γ, qES))} .

The correctness of the evalSymbolicATLKirF
algorithm is given by the following

theorem.

Theorem A.33. Given an iCGSf S = ⟨Ag,Q,Q0,Act, e, δ,∼, V,FC⟩,
and an ATLKirF formula φ = ⟪Γ⟫ ψ, evalSymbolicATLKirF

(EncStrats(S), φ) is

the set of states QES1 = Q1 ×∏ag∈Ag F
u
ag of EncStrats(S), where Q1 is

the set of states of S satisfying φ.

Proof. We can prove this theorem by induction on the structure of the
formula φ. Let us assume that evalSymbolicATLKirF

(EncStrats(S), φi) is the set

of states QESi = Qi ×∏ag∈Ag F
u
ag of EncStrats(S), where Qi is the set of

states of S satisfying φi, for all sub-formulas φi of φ.

Thus, the hypotheses of Lemma A.32 are satisfied by QES1 and QES2

and, before executing Line 13 of Algorithm 6.13, winning contains the set

A.7. The fully symbolic approach 319

of states filterESop (ESS,QES1 ,QES2), where op is the top-level operator
of φ.

By Lemma A.32, winning contains the states qES such that all fair
paths enforced by the strategy for Γ stored in qES satisfy ψ, as state(qES)
belongs to filterop(Q1,Q2, strategy(Γ, qES)), where Q1 and Q2 are the
states of S satisfying φ1 (resp. φ2), by induction hypothesis.

Thus, the states in EqQ(EquivQEqStr(Γ,winning)) are the states
for which there exists a strategy for Γ (by definition of EqQ) such that
all equivalent states storing this strategy (by definition of EquivQEqStr)
are in winning, that is, the states for which there exists a strategy fΓ

such that all fair paths enforced by fΓ satisfy ψ. These are the states of S
satisfying φ. Furthermore, by definition of EqQ, if, for some q ∈ Q, there
exists qES ∈ evalSymbolicATLKirF

(EncStrats(S), φ) such that state(qES) = q,
then

{q} × ∏
ag∈Ag

F uag ⊆ eval
Symbolic
ATLKirF

(EncStrats(S), φ),

and the proof is done.

A.7.1 Pre-filtering

This section proves the correctness of the symbolic approach with pre-
filtering described in Section 6.2.1. To prove the correctness of the
evalSymbolic,PFATLKirF

algorithm, we need to prove an intermediate lemma simi-

lar to Lemma A.32, but related to EncStratsPF instead of EncStrats.

Lemma A.34. Given an iCGSf S = ⟨Ag,Q,Q0,Act, e, δ,∼, V,FC⟩, a
group of agents Γ ⊆ Ag, an ATLKirF strategic formula ⟪Γ⟫ ψ with
top-level operator op ∈ {⟪Γ⟫X,⟪Γ⟫U,⟪Γ⟫W}, and two subsets of states
of ESS = EncStratsPF (S, filtered), QES1 ,QES2 ⊆ QES, such that, for
i ∈ {1,2},

QESi = Qi × Split(Γ, filtered),

for some Q1,Q2 ⊆ Q, and filtered being defined as

filtered = filterMop(Q1,Q2,EΓ),

filterESop (ESS,QES1 ,QES2) is the set of states qES of QES such that there

exists a winning strategy for ψ in state(qES).

Proof. First, the definition of Prestr implies that, if strategy(Γ, qES) is
not defined for some original state—as it is the case with EncStratsPF

since only the remaining moves are encoded—, then qES belongs to

320 Appendix A. Model checking ATLKirF : correctness

Prestr(QES1) iff either strategy(Γ, qES) is defined for state(qES) and
the states enforced in one step by this strategy, and sharing the same
strategy, are in QES1 , or this strategy is not defined for state(qES) and
all successors of qES sharing the same strategy are in QES1 .

Thus, given a state qES , let MΓ be defined as

strategy(Γ, qES) ∪ (EΓ/(strategy(Γ, qES)∣Q ×ActΓ)),

that is, the strategy strategy(Γ, qES) augmented with all enabled moves
in states in which strategy(Γ, qES) is not defined. MΓ is closed by defi-
nition, as it is defined for all states. qES is in filterESop (ESS,QES1 ,QES2)
if there exists a strategy in MΓ that is winning for the objective in
state(qES), by definition of Prestr and the fact that the fixpoint compu-
tations are the same as the filter algorithms.

Conversely, if there exists a winning strategy fΓ for ψ in some
state q ∈ Q, then there exists qES ∈ filterESop (ESS,QES1 ,QES2) such

that state(qES) = q. Indeed, fΓ ∩ filtered belongs to Split(Γ, filtered),
so MΓ defined as above is such that

filterop(Q1,Q2,MΓ) = filterop(Q1,Q2,MΓ ∩ filtered),
⊇ filterop(Q1,Q2, fΓ ∩ filtered),
= filterop(Q1,Q2, fΓ),

and {q} × {fΓ} belongs to filterESop (ESS,QES1 ,QES2).

The correctness of the evalSymbolic,PFATLKirF
algorithm is given by the

following theorem.

Theorem A.35. Given an iCGSf S = ⟨Ag,Q,Q0,Act, e, δ,∼, V,FC⟩ and
an ATLKirF strategic formula ⟪Γ⟫ ψ such that all sub-formulas are
atomic propositions, evalSymbolic,PFATLKirF

(S,⟪Γ⟫ ψ) is the set of states QES1

such that States(QES1) is the set of states of S satisfying φ.

Proof. This proof is similar to the one of Theorem A.33. We can prove
this theorem by induction on the structure of the formula φ. Let us
assume that the result of evalSymbolic,PFATLKirF

(S,φi) is the set QESi such that

States(QESi) is the set of states of S satisfying φi, for all sub-formulas
φi of φ. First, Algorithm 6.14 computes filtered. If filtered = ∅, there
exists no state satisfying ⟪Γ⟫ ψ.

Otherwise, States(QES1) and States(QES2) satisfy the hypotheses
of Lemma A.34 and, before executing the last line of Algorithm 6.14,
winning contains the set of states filterESop (ESS,QES1 ,QES2), where op
is the top-level operator of φ.

A.7. The fully symbolic approach 321

By Lemma A.34, winning contains the states qES ∈ QES such that
state(qES) belongs to filterop(Q1,Q2, strategy(Γ, qES)), where Q1 and
Q2 are the states of S satisfying φ1 (resp. φ2), by induction hypothesis.
By Lemmas A.16 and A.17, these are the states from which all fair paths
enforced by the strategies for Γ stored in qES satisfy ψ.

Thus, the states in EqQ(EquivQEqStr(Γ,winning)) are the states
for which there exists a strategy for Γ (by definition of EqQ) such that
all equivalent states storing this strategy (by definition of EquivQEqStr)
are in winning, that is, the states for which there exists a strategy fΓ

such that all fair paths enforced by fΓ satisfy ψ. These are the states of
S satisfying φ.

Appendix B

µ-calculus rich explanations:
proofs of theorems

This appendix proves the properties and theorems linked to the µ-calculus
framework described in Chapter 10. The first property says that adequate
explanations are necessary and sufficient proofs for the satisfaction of
µ-calculus formulas.

Property B.1. Given a Kripke structure S = ⟨Q,{Ri ∣ i ∈ Σ}, V ⟩, a
state q ∈ Q, a µ-calculus formula φ and an environment e, q ∈ JφKSe if
and only if there exists an adequate explanation E for q ∈ JφKSe.

Proof. To prove that if q ∈ JφKSe then there exists an adequate expla-
nation E for q ∈ JφKSe, we can simply rely on the proof of correctness
of Algorithm 10.1 presented in Theorem B.2. This algorithm generates
an adequate explanation for q ∈ JφKSe, assuming that q ∈ JφKSe. The
requirements for Algorithm 10.1 are met, thus the algorithm can generate
an adequate explanation, and the point is proved.

Suppose now that there exists an adequate explanation E = ⟨O,T ⟩
for q ∈ JφKSe. Let us consider the well-founded relation defined as the
standard sub-formula relation extended with the fact that, if φ = µv. ψ,
then ψk(false) is a sub-formula of φ, for any integer k ≥ 0. This relation
is still well-founded because φ does not appear as a sub-formula of
ψk(false). Let us thus show by induction over this well-founded relation
that q ∈ JφKSe.

φ = true q ∈ JtrueKSe is always true. The proof is thus trivially done.

φ = false The hypothesis that there exists an adequate explanation E
for q ∈ JφKSe cannot be met in this case as E should be consistent, thus

324 Appendix B. µ-calculus rich explanations: proofs of theorems

⟨q, false, e⟩ cannot belong to O, and E cannot be adequate. This case is
thus trivially proved.

φ = p or φ = ¬p If φ = p, then ⟨q, p, e⟩ ∈ O as E is adequate. Furthermore,
as E matches S, p ∈ V (q), thus q ∈ JpKSe, and the proof is done. The
other case is similar.

φ = v or φ = ¬v If φ = v, then ⟨q, v, e⟩ ∈ O as E is adequate. Further-
more, as E is consistent, q ∈ e(v). Thus q ∈ JvKSe, and the proof is done.
The other case is similar.

φ = φ1 ∧ φ2 succ(⟨q, φ, e⟩) = {o1, o2}, where o1 = ⟨q, φ1, e⟩ ∈ O and
o2 = ⟨q, φ2, e⟩ ∈ O, as E is consistent. As E is consistent and matches
S and o1, o2 ∈ O, we have q ∈ JφjKSe for both j ∈ {1,2} by induction
hypothesis. Thus q ∈ JφKSe and the proof is done.

φ = φ1 ∨ φ2 succ(⟨q, φ, e⟩) = {oj}, where oj = ⟨q, φj , e⟩ ∈ O for some
j ∈ {1,2}, as E is consistent. As E is consistent and matches S, and
oj ∈ O, we have q ∈ JφjKSe by induction hypothesis. Thus q ∈ JφKSe and
the proof is done.

φ = ◇i φ
′ succ(⟨q, φ, e⟩) = {o′}, where o′ = ⟨q′, φ′, e⟩ ∈ O for some q′ ∈ Q,

as E is consistent and matches S. Also, ⟨q, q′⟩ ∈ Ri as E matches S.
By induction hypothesis, q′ ∈ Jφ′KSe as E is consistent, matches S, and
o′ ∈ O. Thus there exists a successor q′ of q through Ri such that q′

belongs to the interpretation of φ′ under e in S, thus q ∈ JφKSe and the
proof is done.

φ = ◻i φ′ For all o′ ∈ succ(⟨q, φ, e⟩), o′ = ⟨q′, φ′, e⟩ ∈ O for some q′ ∈ Q,
as E is consistent and matches S. For all o′ = ⟨q′, φ′, e⟩ ∈ succ(⟨q, φ, e⟩),
as E is consistent and matches S and o′ ∈ O, we have that q′ ∈ Jφ′KSe by
induction hypothesis. Furthermore, as E matches S, all states appearing
in these o′ are the successors of q through Ri. Thus all successors q′

of q through Ri belong to the interpretation of φ′ under e in S, thus
q ∈ JφKSe, and the proof is done.

φ = µv. ψ succ(⟨q, φ, e⟩) = {o′} where o′ = ⟨q,ψk(false), e⟩ ∈ O for some
k ≥ 0, as E is consistent. By induction hypothesis, as E is consistent and
matches S, and o′ ∈ O, q ∈ Jψk(false)KSe. Furthermore, by definition of
the semantics of the µ-calculus, q ∈ JφKSe if and only if there exists k ≥ 0
such that q ∈ Jψk(false)KSe. Thus q ∈ JφKSe and the proof is done.

325

φ = νv. ψ succ(o) = {o′} where o′ = ⟨q,ψ(φ), e⟩ ∈ O, as E is consistent.
Nevertheless, we cannot rely on the induction hypothesis to conclude
that q ∈ Jψ(φ)KSe as ψ(φ) is not a strict sub-formula of φ by the relation
defined at the beginning of this proof.

Let us first consider that o is not a descendant of o′ through T , that
is, there is no path from o′ to o through T . In this case, let us assume
that for all descendants o′′ = ⟨q′′, φ, e⟩ of o′, q′′ ∈ JφKSe. With the same
arguments as for the cases above, we can show that q ∈ Jψ(φ)KSe. Thus
q ∈ JφKSe, and the proof is done.

Let us now consider that o is a descendant of o′ through T . In this
case, using the same arguments as for the cases above, we can show that
q ∈ Jψk(true)KSe, for any k ≥ 0. Indeed, q ∈ JtrueKSe by definition, and
from o′, we can reach o, then o′ as it is the only successor of o, k times.
As q ∈ Jψk(true)KSe for any k ≥ 0, q ∈ JφKSe, and the proof is done.

The following theorem proves the correctness of the algorithm gener-
ating µ-calculus explanations.

Theorem B.2. Given a Kripke structure S = ⟨Q,{Ri ∣ i ∈ Σ}, V ⟩, a state
q ∈ Q, a µ-calculus formula φ and an environment e such that q ∈ JφKSe,
explain(S, q, φ, e) is an adequate explanation E for q ∈ JφKSe.

Proof. We can prove this theorem by showing that an invariant of the
main while loop of the algorithm is

1. ⟨q, φ, e⟩ ∈ O ∪ pending, and

2. for all o ∈ O, o is locally consistent in ⟨O ∪ pending, T ⟩, and

3. for all o ∈ pending, succ(o) = ∅, and

4. for all ⟨q′, φ′, e′⟩ ∈ O ∪ pending, q′ ∈ Q, and

5. for all ⟨q′, φ′, e′⟩ ∈ O ∪ pending, q′ ∈ Jφ′KSe′, and

6. for all ⟨⟨q′, φ′, e′⟩, ⟨q′′, φ′′, e′′⟩⟩ ∈ T , either q′ = q′′, or φ′ belongs to
{◇iφ

′′,◻iφ′′} and ⟨q′, q′′⟩ ∈ Ri, and

7. for all o′ = ⟨q′,◻iφ′, e′⟩ ∈ O,

∃o′′ ∈ succ(o′) s.t. o′′ = ⟨q′′, φ′′, e′′⟩ for some φ′′, e′′

⇐⇒ ⟨q′, q′′⟩ ∈ Ri,

and

8. O ∩ pending = ∅.

326 Appendix B. µ-calculus rich explanations: proofs of theorems

First, the invariant is satisfied before entering the loop for the first
time: O = ∅, T = ∅, and pending = {⟨q, φ, e⟩}. Thus the different points
of the invariant are satisfied:

1. ⟨q, φ, e⟩ ∈ O ∪ pending as o ∈ pending,

2. all obligations of O are locally consistent in ⟨O ∪ pending, T ⟩ as
there are no obligations in O,

3. for all o ∈ pending, succ(o) = ∅ as T = ∅,

4. for all ⟨q′, φ′, e′⟩ ∈ O ∪ pending, q′ ∈ Q as O ∪ pending = {⟨q, φ, e⟩}
and q ∈ Q by pre-condition of the algorithm,

5. for all ⟨q′, φ′, e′⟩ ∈ O ∪ pending, we have that q′ ∈ Jφ′KSe′ as
O ∪ pending = {⟨q, φ, e⟩} and q ∈ JφKSe by pre-condition of the
algorithm,

6. T = ∅, so this point is trivially satisfied, and

7.–8. O = ∅, so these points are trivially satisfied.

Second, suppose that the invariant is satisfied before executing the
body of the loop, and suppose also that pending ≠ ∅. We can show that
the invariant is still satisfied after executing the body. First, it picks one
element o′ = ⟨q′, φ′, e′⟩ from pending, removes it from pending and adds
it to O. Then, depending on the top-level operator of φ′, new obligations
are computed in O′, the newly discovered ones are added to pending,
and new transitions are added to T between o′ and the elements of O′.
Thus, the first point of the invariant is still satisfied by O ∪ pending as
no obligation is removed from this set.

Furthermore, the last point of the invariant is still satisfied after
executing the body of the loop because, by the invariant, o′ is not in O,
and it is transferred from pending to O. Also, the body adds to pending
the elements of O′ that are not in O. Thus this point stays satisfied.

Let us now show that Points 2 to 7 of the invariant are still satisfied
for all possible top-level operators of φ′.

φ′ ∈ {true, p,¬p, v,¬v} The obligation o′ = ⟨q′, φ′, e′⟩ is simply removed
from pending and added to O. The invariant is still satisfied after
execution of the body:

2. All obligations ofO before executing the body stay locally consistent
as they are not modified, nor their successors. Furthermore, o′

is locally consistent in ⟨O ∪ pending, T ⟩ as o′ has no successor by

327

Point 3 of the invariant. Also, if φ′ = v (or φ′ = ¬v), q′ ∈ e′(v)
(q′ /∈ e′(v), resp.) by Point 5 of the invariant.

3. No obligation has been added to pending and no edge to T , so this
point is still satisfied.

4.–5. No obligation has been added to O ∪ pending, so Points 4 and 5
are still satisfied.

6. No edge has been added to T , so this point is still satisfied.

7. No new obligation with a ◻i operator has been added to O—as
φ′ ∈ {true, p,¬p, v,¬v}—so this point is still satisfied.

φ′ = φ1 ∧φ2 The obligation o′ = ⟨q′, φ′, e′⟩ is removed from pending and
added to O, and two new obligations o1 = ⟨q′, φ1, e

′⟩ and o2 = ⟨q′, φ2, e
′⟩

are created. ⟨o′, o1⟩ and ⟨o′, o2⟩ are added to T , and the obligations
that were not already in O are added to pending. The invariant is still
satisfied after execution of the body:

2. All obligations ofO before executing the body stay locally consistent
as they are not modified, nor their successors. o′ is locally consistent
in ⟨O∪pending, T ⟩ as, after execution, o1 and o2 are in O∪pending,
and are the only successors of o′ as o′ had no successor through
T before executing the body (by Point 3 of the invariant and the
fact that o′ was in pending). Also, the three obligations share the
same environment e′.

3. Either o1 was already inO∪pending, and the point remains satisfied,
or it is a new obligation, thus has no successor through T , and the
point remains satisfied, too. The proof for o2 is the same.

4. As the states of o1 and o2 are the same as o′ by construction, this
point is still satisfied.

5. As q′ ∈ Jφ1 ∧ φ2KSe′ by the Point 5, q′ ∈ Jφ1KSe′. Thus this point is
satisfied by o1, too, and all other obligations are not modified. The
proof for o2 is the same.

6. Two new edges are added to T . They satisfy Point 6 of the invariant
as φ′ /∈ {◇i φ

′′,◻i φ′′} and the states of o1 and o2 are the same as
the one of o′.

7. This point is still satisfied as no obligation with ◻i φ′′ has been
added to O.

328 Appendix B. µ-calculus rich explanations: proofs of theorems

φ′ = φ1 ∨ φ2 The obligation o′ = ⟨q′, φ′, e′⟩ is removed from pending
and added to O, and a new obligation o1 = ⟨q′, φ1, e

′⟩ or o2 = ⟨q′, φ2, e
′⟩

is created, depending on whether q′ ∈ Jφ1KSe′ or q′ ∈ Jφ2KSe′. Let us
suppose that q′ ∈ Jφ1KSe′. Thus o1 is created. ⟨o′, o1⟩ is added to T , and
if o1 was not already in O, it is added to pending. The invariant is still
satisfied after execution of the body:

2. All obligations ofO before executing the body stay locally consistent
as they are not modified, nor their successors. o′ is locally consistent
in ⟨O ∪ pending, T ⟩ as, after execution, o1 is in O ∪ pending, and
is the only successor of o′ as o′ had no successor through T before
executing the body (by Point 3 of the invariant and the fact that
o′ was in pending). Also, the two obligations share the same
environment e′.

3. Either o1 was already inO∪pending, and the point remains satisfied,
or it is a new obligation, thus has no successor through T , and the
point remains satisfied, too.

4. As the state of o1 is the same as o′ by construction, this point is
still satisfied.

5. q′ ∈ Jφ1KSe′ by the if condition. Thus this point is satisfied by
o1, too, and all other obligations are not modified. For o2, as
q′ ∈ Jφ′KSe′ and q′ /∈ Jφ1KSe′ as the if condition is not satisfied, we
have that q′ ∈ Jφ2KSe′.

6. One new edge is added to T . It satisfies Point 6 of the invariant as
φ′ /∈ {◇i φ

′′,◻i φ′′} and the state of o1 is the same as the one of o′.

7. This point is still satisfied as no obligation with ◻i φ′′ has been
added to O.

The case for q′ ∈ Jφ2KSe is the same.

φ′ = ◇i φ
′′ The obligation o′ = ⟨q′, φ′, e′⟩ is removed from pending and

added to O, and a new obligation o′′ = ⟨q′′, φ′′, e′⟩ is created, where
q′′ ∈ Jφ′′KSe′ and q′′ is a successor of q′ through Ri. Then ⟨o′, o′′⟩ is
added to T , and if o′′ was not already in O, it is added to pending. The
invariant is still satisfied after execution of the body:

2. All obligations ofO before executing the body stay locally consistent
as they are not modified, nor their successors. o′ is locally consistent
in ⟨O ∪ pending, T ⟩ as, after execution o′′ is in O ∪ pending, and is
the only successor of o′ as o′ had no successor through T before

329

executing the body (by Point 3 of the invariant and the fact that
o′ was in pending). Also, the two obligations share the same
environment e′.

3. Either o′′ was already in O ∪ pending, and the point remains
satisfied, or it is a new obligation, thus has no successor through
T , and the point remains satisfied, too.

4. The state of o′′ is in Q by the pick statement.

5. q′′ ∈ Jφ′′KSe′ by the pick statement. This statement is sure to
succeed as q′ ∈ Jφ′KSe′. Thus this point is satisfied by o′′, and all
other obligations are not modified.

6. One new edge is added to T . It satisfies Point 6 of the invariant
as φ′ = ◇i φ

′′ and the state of o′′ is a successor of the one of o′

through Ri by the pick statement.

7. This point is still satisfied as no obligation with ◻i φ′′ has been
added to O.

φ′ = ◻i φ′′ The obligation o′ = ⟨q′, φ′, e′⟩ is removed from pending and
added to O, and a new obligation o′′ = ⟨q′′, φ′′, e′⟩ is created for each
successor q′′ of q′ through Ri. Then ⟨o′, o′′⟩ are added to T , and all o′′

that were not already in O are added to pending. The invariant is still
satisfied after execution of the body:

2. All obligations of O before executing the body stay locally consis-
tent as they are not modified, nor their successors. o′ is locally
consistent in ⟨O ∪ pending, T ⟩ as o′ had no successor through T
before executing the body (by Point 3 of the invariant and the
fact that o′ was in pending), and all o′′ follow the conditions for
the local consistency of o′. Also, all obligations share the same
environment e′ by construction.

3. For each o′′, either it was already in O ∪ pending, and the point
remains satisfied, or it is a new obligation, thus has no successor
through T , and the point remains satisfied, too.

4. The states of all o′′ are in Q by construction.

5. Because q′ ∈ J◻i φ′′KSe′, the states q′′ of all o′′ are such that
q′′ ∈ Jφ′′KSe′. Thus this point is satisfied by all o′′, and all other
obligations are not modified.

330 Appendix B. µ-calculus rich explanations: proofs of theorems

6. One new edge is added to T for each o′′. They satisfy Point 6 of
the invariant as φ′ = ◻i φ′′ and the state of each o′′ is a successor
of q′ through Ri by construction.

7. This point is still satisfied as the states of the o′′ obligations are
all the successors of q′ through Ri by construction. Furthermore,
all other obligations are not modified.

φ′ = µv. ψ The obligation o′ = ⟨q′, φ′, e′⟩ is removed from pending and
added to O, and a new obligation o′′ = ⟨q′, ψk(false), e′⟩ for some k ≥ 0 is
created, where q′ ∈ Jψk(false)KSe′. Note that such an obligation always
exists as q′ ∈ Jµv. ψKSe. Then ⟨o′, o′′⟩ is added to T , and if o′′ was not
already in O, it is added to pending. The invariant is still satisfied after
execution of the body:

2. All obligations ofO before executing the body stay locally consistent
as they are not modified, nor their successors. o′ is locally consistent
in ⟨O ∪ pending, T ⟩ as, after execution, o′′ is in O ∪ pending, and
is the only successor of o′ as o′ had no successor through T before
executing the body (by Point 3 of the invariant and the fact that
o′ was in pending). Also, the two obligations share the same
environment e′.

3. Either o′′ was already in O ∪ pending, and the point remains
satisfied, or it is a new obligation, thus has no successor through
T , and the point remains satisfied, too.

4. As the state of o′′ is the same as o′ by construction, this point is
still satisfied.

5. q′ ∈ Jψk(false)KSe′ as stated above. Thus this point is satisfied by
o′′, and all other obligations are not modified.

6. One new edge is added to T . It satisfies Point 6 of the invariant
as φ′ = µv. ψ and the state of o′′ is the same as the one of o′ by
construction.

7. This point is still satisfied as no obligation with ◻i φ′′ has been
added to O.

φ′ = νv. ψ The obligation o′ = ⟨q′, φ′, e′⟩ is removed from pending and
added to O, and a new obligation o′′ = ⟨q′, ψ(φ′), e′⟩ is created. Then
⟨o′, o′′⟩ is added to T , and if o′′ was not already in O, it is added to
pending. The invariant is still satisfied after execution of the body:

331

2. All obligations ofO before executing the body stay locally consistent
as they are not modified, nor their successors. o′ is locally consistent
in ⟨O ∪ pending, T ⟩ as, after execution, o′′ is in O ∪ pending, and
is the only successor of o′ as o′ had no successor through T before
executing the body (by Point 3 of the invariant and the fact that
o′ was in pending). Also, the two obligations share the same
environment e′.

3. Either o′′ was already in O ∪ pending, and the point remains
satisfied, or it is a new obligation, thus has no successor through
T , and the point remains satisfied, too.

4. As the state of o′′ is the same as o′ by construction, this point is
still satisfied.

5. q′ ∈ Jψ(φ′)KSe′ as q′ ∈ Jφ′KSe. Thus this point is satisfied by o′′,
and all other obligations are not modified.

6. One new edge is added to T . It satisfies Point 6 of the invariant
as φ′ = νv. ψ and the state of o′′ is the same as the one of o′ by
construction.

7. This point is still satisfied as no obligation with ◻i φ′′ has been
added to O.

Finally, after exiting the loop, E = ⟨O,T ⟩ is an adequate explanation
for q ∈ JφKSe as (1) ⟨q, φ, e⟩ ∈ O by the invariant, (2) E is consistent by
the invariant and the facts that pending = ∅ and all o ∈ O are locally
consistent in E, and (3) E matches S as Points 4 to 7 of the invariant
imply that E matches S when pending = ∅.

The proof above showed that whenever the algorithm terminates, the
result is correct. Let us show now that it always terminates. It is easy to
show that the algorithm builds a finite number of different obligations:
(1) the states of these obligations all belong to the finite set of states
Q by Point 4 of the invariant, (2) the formulas of these obligations are
sub-formulas of the original φ, augmented with ψk(false) for each least
fixpoint sub-formula and some finite k ≥ 0, and ψ(φ′) for each greatest
fixpoint formula φ′, and (3) the environments are all the same as the
explanation is consistent. There are thus at most ∣Q∣ × ∣Sub∣ obligations,
where Sub is the set of sub-formulas discussed above.

Furthermore, a variant of the while loop is (∣Q∣ × ∣Sub∣) − ∣O∣: this
number decreases through every execution of the body of the loop. Indeed,
the body of the loop removes one element o′ of pending and add it to
O. As o′ is not in O before the execution of the loop by Point 8 of the

332 Appendix B. µ-calculus rich explanations: proofs of theorems

invariant, the size of O increases by 1 after every execution. As the size
of O is upper bounded by ∣Q∣ × ∣Sub∣, the variant above cannot be smaller
than 0 and decreases by 1 through every execution of the loop body, thus
there can be only a finite number of iterations and the algorithm always
terminates. This ends to proof of correctness of the algorithm.

	Contents
	Introduction
	Research goals
	Model checking uniform strategies
	Handling rich explanations

	Contributions
	Publications
	Structure of the thesis

	Background
	Rich logics
	Computation tree logic
	Fair computation tree logic
	Alternating-time temporal logic
	Alternating-time temporal logicwith imperfect information
	Propositional µ-calculus

	Symbolic model checking
	Binary decision diagrams
	Encoding models with binary decision diagrams
	Model checking rich logicswith binary decision diagrams

	Tools
	NuSMV
	PyNuSMV

	I Symbolic model checking of uniform strategiesunder fairness constraints
	Logics and algorithms for model checking strategies
	Reasoning about strategies
	Alternating µ-calculus
	Strategy logic
	Alternating-time temporal logicwith strategy contexts
	Coalition logic
	Expressiveness comparison

	Strategies and knowledge
	Alternating temporal epistemic logic
	Alternating-time temporal logicwith imperfect information
	Alternating epistemic µ-calculus
	Epistemic strategy logic
	Strategy contexts and imperfect information
	Epistemic coalition logic
	Other logics

	Strategies and fairness
	Complexities and expressiveness
	Model checking uniform strategies
	Model-checking algorithmsfor alternating-time temporal logicwith imperfect information
	Epistemic strategy logic
	Other algorithms

	Reasoning about uniform strategiesunder fairness constraints
	Syntax
	Models
	Semantics
	Discussion
	Fairness constraints
	Vacuous strategies
	Memory and perfect information

	Comparison with related work

	Model Checking uniform strategiesunder fairness constraints
	Checking individual strategies
	Enumerating all strategies
	Partial strategies
	Optimizations

	Pre-filtering
	Computing the winning moves
	The naive approach with pre-filtering
	The partial approach with pre-filtering

	Backward generation of strategies
	Complexity analysis
	Implementation
	Implementing the algorithmswith binary decision diagrams
	Modeling language

	Existing symbolic approaches
	Interleaving strategy generation and verification
	Checking all extensions of partial strategies
	The model-checking algorithm
	Pre-filtering
	Optimizations
	Implementation

	A fully symbolic approach
	Pre-filtering
	Implementation

	Experimental comparison
	Models and properties
	Tian Ji and the king
	The three castles
	The prisoners and the light bulb

	Measures and comparisons
	Tian Ji and the king
	The three castles
	The prisoners and the light bulb
	BDD variable reordering techniques
	Conclusions on the experiments

	Part I: Conclusion
	Comparison with related work
	Future work

	II Rich diagnostics for multi-modal logics
	Explanations for modal logics
	Explanations for CTL model checking
	Branching explanations for CTL model checking
	Proof-like counter-examples
	CTL and Boolean equation systems
	Other solutions

	Explanations for multi-modal logics
	Tree-like annotated counter-examples for CTLK
	Explanations for the µ-calculus
	Explanation graphs for µ-calculus
	Using games to explain formula violation
	Boolean equation systems and µ-calculus
	Model-checking certificates

	Summary

	A framework for µ-calculus based logic explanations
	µ-calculus explanations
	Translating µ-calculus explanations
	Aliases
	Relational graph algebra
	Obligation and edge attributes
	Local translation
	Choosers and partial explanations
	Markers

	Implementation
	Encoding the model
	Defining µ-calculus formulas
	Implementation of translation features
	Visualization tool

	Application to ATL
	Translating ATL structures
	Translating ATL formulas
	Translating explanations
	Visualizing explanations
	Conclusion

	Part II: Conclusion
	Comparison with related work
	Explanations for CTL model checking
	Explanations for multi-modal logics
	Explanations for the µ-calculus

	Future work

	Conclusion
	References
	Model checking uniform strategies:correctness of the approaches
	Checking individual strategies
	Enumerating all strategies
	Partial strategies
	Pre-filtering
	Computing the winning moves
	The naive approach with pre-filtering
	The partial approach with pre-filtering

	Backward generation of strategies
	Interleaving strategy generation and verification
	The early model-checking algorithm
	Pre-filtering

	The fully symbolic approach
	Pre-filtering

	µ-calculus rich explanations:proofs of theorems

