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Abstract

Model checking verifies that a model of a system satisfies a given property,
and otherwise produces a counter-example explaining the violation. The verified
properties are formally expressed in temporal logics. Some temporal logics, such
as CTL, are branching: they allow to express facts about the whole computation
tree of the model, rather than on each single linear computation. This branching
aspect is even more critical when dealing with multi-modal logics, i.e. logics
expressing facts about systems with several transition relations. A prominent
example is CTLK, a logic that reasons about temporal and epistemic properties
of multi-agent systems. In general, model checkers produce linear counter-
examples for failed properties, composed of a single computation path of the
model. But some branching properties are only poorly and partially explained by
a linear counter-example. This paper proposes richer counter-example structures
called tree-like annotated counter-examples (TLACEs), for properties in Action-
Restricted CTL (ARCTL), an extension of CTL quantifying paths restricted in t[...]
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Model checking verifies that a model of a system satisfies a given property, and otherwise produces a
counter-example explaining the violation. The verified properties are formally expressed in temporal
logics. Some temporal logics, such as CTL, are branching: they allow to express facts about the
whole computation tree of the model, rather than on each single linear computation. This branching
aspect is even more critical when dealing with multi-modal logics, i.e. logics expressing facts about
systems with several transition relations. A prominent example is CTLK, a logic that reasons about
temporal and epistemic properties of multi-agent systems. In general, model checkers produce linear
counter-examples for failed properties, composed of a single computation path of the model. But
some branching properties are only poorly and partially explained by a linear counter-example.

This paper proposes richer counter-example structures called tree-like annotated counter-examples
(TLACEs), for properties in Action-Restricted CTL (ARCTL), an extension of CTL quantifying
paths restricted in terms of actions labeling transitions of the model. These counter-examples have
a branching structure that supports more complete description of property violations. Elements of
these counter-examples are annotated with parts of the property to give a better understanding of their
structure. Visualization and browsing of these richer counter-examples become a critical issue, as the
number of branches and states can grow exponentially for deeply-nested properties.

This paper formally defines the structure of TLACEs, characterizes adequate counter-examples
w.r.t. models and failed properties, and gives a generation algorithm for ARCTL properties. It also
illustrates the approach with examples in CTLK, using a reduction of CTLK to ARCTL. The proposed
approach has been implemented, first by extending the NuSMV model checker to generate and export
branching counter-examples, secondly by providing an interactive graphical interface to visualize and
browse them.

1 Introduction

Model checking is a verification technique that performs an exhaustive search among states of a given
finite-state machine to verify that this model satisfies a given property, expressed in temporal or richer
modal logics [6]. Some of these logics, such as CTL [5], are branching: they express facts about the
computation tree of the model. This branching aspect is even more critical when dealing with multi-modal
logics. The most common example is CTLK, a temporal-epistemic logic reasoning about time and
knowledge in multi-agent systems [18]. Both temporal and epistemic information are captured as different
relations over states of the model and properties express facts about all these relations.

A major benefit of model checking is the capability to generate a counter-example when a property
is not satisfied. Unfortunately, most of the current state-of-the-art model checkers only return linear
counter-examples while, in general, branching logics need branching counter-examples [2].
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Let’s take the example of Alice and Bob, where Alice randomly picks a number N between 10 and
100 and Bob has to guess whether the number is prime or not. At each step, Bob can ask Alice whether N
is divisible by another number m. Based on Alice’s answers, Bob has to say whether N is prime or not.

This problem can be modeled into a multi-agent system with Alice and Bob as agents; in such a model,
N would be undisclosed to Bob. Such a model can then be model checked to verify that Bob always finally
knows whether N is prime or not; this property can be expressed in CTLK as AF (KBob PN ∨KBob ¬PN),
where PN is true in a state in which N is prime. We say that Bob knows p, written KBob p, in a state s if p
is true in all states that are undistinguishable from s for Bob.

This property is not verified by a model that allows Bob to ask only three questions, and a model
checker checking this property would return a counter-example. An adequate counter-example for this
property is not a single computation path: it has to show a path composed of states in which Bob does
not know whether N is prime, i.e. it also has to show, for each state of this path, another reachable
undistinguishable state where N is prime and another one where N is not.

Figure 1 gives a tree-like annotated counter-example explaining why the given property is violated. It
corresponds to a scenario where N = 19, Bob asks whether N is divisible by the three first prime numbers
(2, 3 and 5) and Alice answers negatively each time. The state labels are the values of N, which Bob does
not know. The memory of Bob, used to remember Alice’s answers, is not shown. The wavy transitions
link together states that are undistinguishable by Bob and arrowed transitions are temporal ones. States
are annotated with the properties they satisfy and transitions are annotated with properties they explain.

The main branch, composed of bold states, explains how Bob asks his three questions and does not
know whether N is prime or not. For each state of this main path, two states that are undistinguishable by
Bob from the main state are given to show that Bob does not know that N is prime (right state) nor that it
is not (left state). Furthermore, dashed states show that each of these states are reachable from an initial
one. The highlighted path corresponds to the linear counter-example that a standard model checker would
provide.
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Figure 1: A tree-like annotated counter-example for AF (KBob PN ∨KBob ¬PN).

This paper proposes branching structures, called tree-like annotated counter-examples (TLACEs),
that are suitable for explaining violations of branching logic properties. Furthermore, each state of
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these counter-examples is annotated with the part of the (negated) property that it satisfies. These
counter-examples are defined in the framework of Action-Restricted CTL (ARCTL), a branching-time
logic with action-labelled transitions [17], and their utility is illustrated in the framework of CTLK, a
temporal-epistemic logic that can be reduced to ARCTL [14].

Tree-like annotated counter-examples are built upon tree-like counter-examples as defined by Clarke
et al. [7], which provide full counter-examples for the universal fragment of ω-regular logics. These
counter-examples combine cycles and finite paths in a specific, tree-like structure. Our tree-like annotated
counter-examples extend the notion of tree-like counter-examples to ARCTL and annotate the states with
formulas they satisfy to give a better understanding of the violation.

TLACEs take inspiration from the work of Rasse [20]. Rasse presents branching counter-examples for
CTL interpreted over states of LTSs. Furthermore, the states of the counter-examples are annotated with
the sub-formulas they explain. This notion of counter-examples is close to tree-like annotated counter-
examples. Nevertheless, Rasse does not provides a way to generate counter-examples and TLACEs for
ARCTL are more general since they are applicable to richer modal logics.

We have extended the state-of-the-art symbolic model checker NuSMV [4] to generate and export
tree-like annotated counter-examples for ARCTL properties. One of the drawbacks of these richer counter-
examples is their size and complexity, which can be polynomial in the number of states of the system and
exponential in the length of the checked formula in the worst case. We have developed a tool that takes
TLACEs generated by our extended NuSMV and provides a graphical interface to visualize and browse
them. These tools have been used to provide a first assessment of the approach. They have been designed
to generate and visualize TLACEs. Thanks to their parameters and functionalities, they allow the user to
limit and manage the size of the counter-example.

The contributions of this paper are:
• the definition of tree-like annotated counter-examples;

• the design of an algorithm generating these counter-examples;

• the implementation of this algorithm in NuSMV;

• the design and implementation of an interactive visualization tool for browsing these counter-
examples.

This paper is structured as follows. Section 2 reminds the syntax and semantics of ARCTL and CTLK.
Section 3 defines tree-like annotated counter-examples and explains how to generate them. Section 4
illustrates the approach with the example of the dining cryptographers. Section 5 describes the extension
of NuSMV and the visualization tool. Section 6 presents the evaluation of these tools. Finally, Section 7
presents related work.

2 Temporal and Epistemic Logics

This section presents the logics used in this work, ARCTL and CTLK. It first presents the syntax and
semantics of ARCTL [17], then presents CTLK, a temporal-epistemic logic, and describes a reduction of
CTLK to ARCTL.

2.1 Action-Restricted CTL

Action-Restricted CTL is an extension of CTL applied to systems with labelled states and actions, where
temporal operators are augmented with propositional expressions over actions, expressing properties of
particular paths of the system.



42 Rich Counter-Examples for Temporal-Epistemic Logic Model Checking

In addition to the usual logical connectives (¬, ∨, ∧, =⇒ and ⇐⇒ ), ARCTL provides temporal
operators, composed of an action-restricted path quantifier Eα or Aα immediately followed by a path
operator (X, G, F, U and W). Path operators define path formulas while path quantifiers and logical
connectives define state formulas. Actions expressions α are composed of actions and logical connectives.
For example, EaX φ means that there exists a successor reachable through the action a that satisfies φ ;
AbG ψ means that all states reachable through b actions satisfy ψ .

ARCTL properties are interpreted over the states of a Mixed Transition System (MTS). An MTS is a
tuple M = (S,S0,A,T,VS,VA) over two sets of atomic propositions PS and PA, where S is a set of states,
S0 ⊆ S are initial states, A is a set of actions, T ⊆ S×A×S is a transition relation, and VS : S→ 2PS and
VA : A→ 2PA are two functions labeling states with subsets of PS, and labeling actions with subsets of PA,
respectively. These two functions represent the propositions that are interpreted over states and actions,
respectively. We write s a−→ s′ for (s,a,s′) ∈ T .

A path of M starting at s0 is a (finite or infinite) sequence of states and actions w= 〈s0,a1,s1,a2,s2, ...〉
such that si

ai+1−−→ si+1; w(i) denotes si. Π(M ,s) is the set of maximal paths in M starting at s. M |α =
(S,S0,A,T |α ,VS,VA) is the α-restriction of M where T |α = {(s,a,s′) ∈ T |M ,a |= α} is the transition
relation T where only actions a satisfying α are considered.

We write M ,s |= φ when a state s of an MTS M satisfies an ARCTL property φ . Logical connectives
are interpreted in the natural way. For temporal operators, s satisfies Eα π (resp. Aα π), where π is a path
formula, if and only if there exists a path (resp. all paths) in Π(M |α ,s) satisfying π .

A path w of M satisfies X φ if and only if w(1) satisfies φ ; w satisfies F φ (resp. G φ ) iff w(i) satisfies
φ for some (resp. for all) i. Finally, w satisfies φ U ψ iff w(i) satisfies ψ for some i and w( j) satisfies φ

for all j < i. φ W ψ is equivalent to (φ U ψ)∨ (G φ).
In the remainder of this paper, all given ARCTL formulas are considered as reduced to their negative

normal form: negations are distributed over all operators so that they are only applied to atomic proposi-
tions. Furthermore, equivalences can be applied to reduce formulas to the following base cases: b, ¬b (for
atomic propositions b), φ ∧ψ , φ ∨ψ , EαX φ , EαG φ , Eα [φ U ψ] and Aα π . This allows a more concise
presentation of concepts without loss of generality.

2.2 CTLK

CTLK is a branching-time epistemic logic mixing knowledge relations and temporal ones [18]. This logic
is designed to express facts about time and knowledge of agents in a multi-agent system. This section
presents the syntax and semantics of CTLK.

CTLK provides the usual logical connectives together with CTL operators (EX, AG, EF, etc.) and
the knowledge operator Kag where ag is an agent. It also provides some other epistemic operators for the
group knowledge Eg, the distributed knowledge Dg and the common knowledge Cg, where g is a group of
agents, but they are not developed here. Nevertheless, they also can be reduced to ARCTL [14].

CTLK is interpreted over multi-agent systems, where each agent is aware of the possible behaviors of
the system and of its own local state but not of the local state of other agents. Formally, a multi-agent
system composed of n agents is a Kripke structure MA = (S,S0,T,∼1, ...,∼n,V ) where T ⊆ S×S is a
(temporal) transition relation and ∼i ⊆ S×S are epistemic relations. (s,s′) ∈ ∼i, written s∼i s′, iff s and
s′ are reachable states that share the same local state for agent agi.

An agent agi knows φ in a state s iff φ holds in all reachable states that are undistinguishable from s
by agi. Formally, MA ,s |= Kagi φ if and only if ∀s′ ∈ S : s′ ∼i s⇒MA ,s′ |= φ . Note that ∼i must be
restricted to reachable states (i.e. T ∗(S0)), capturing the fact that agi knows the global system behavior. A
witness for a reachable state is thus a reverse execution path back to an initial state.
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2.3 From CTLK to ARCTL

Some multi-modal branching logics, i.e. logics dealing with more than one transition relation, can be
reduced to ARCTL. CTLK is such a logic: a multi-agent system and a CTLK formula can be reduced to
an MTS and an ARCTL formula, respectively [14]. Given a multi-agent system, the corresponding MTS
has the same set of states. The set of actions contains actions RUN and BACK, used to label temporal
and reverse temporal transitions, and one action per agent, to label epistemic transitions. The transition
relation is an aggregation of the temporal relation, the reverse temporal relation and the epistemic ones,
using corresponding actions. The labeling of states is augmented with the proposition Init to label initial
states. Init is used to express the reachability of states: a state is reachable from an initial state iff it
satisfies E{BACK}F Init.

Formally, given a multi-agent system MA = (S,S0,T,∼1, ...,∼n,V ) composed of n agents, the
corresponding MTS is given by M = (S,S0,A,T ′,VS,VA) where

• A = 2{RUN,BACK,Agt1,...,Agtn}1

• for all states s,s′ ∈ S : (i) (s,{RUN},s′) ∈ T ′ iff (s,s′) ∈ T ; (ii) (s,{BACK},s′) ∈ T ′ iff (s′,s) ∈ T ;
(iii) (s,{Agti},s′) ∈ T ′ iff s∼i s′; (iv) (s,{Agti | agi ∈ g},s′) ∈ T ′ iff ∀agi ∈ g : s∼i s′.

• VS(s) = V (s)∪{Init} if s ∈ S0,V (s) otherwise; VA is the identity function.

To reduce a CTLK formula into an ARCTL one, we use the labels RUN, BACK and Agti to represent
a temporal transition, a reverse temporal transition and an epistemic transition of agent agi, respectively.
Formally, let the function R reduce CTLK formulas into their ARCTL form, R is inductively defined as

• R(b) = b if b is a propositional formula;

• R(EX φ) = E{RUN}X R(φ); R(EG φ) = E{RUN}G R(φ); R(E[φ U ψ]) = E{RUN}[R(φ) U R(ψ)];

• R(Kai φ) = A{Agti}X (Reachable =⇒ R(φ)), where Reachable is a shortcut for E{BACK}F Init.

3 Tree-Like Annotated Counter-Examples

This section presents generic structures called tree-like annotated counter-examples, or TLACEs for short,
for explaining why a state s of a system does not satisfy an ARCTL property φ . A counter-example
explaining a violation of φ in s amounts to a witness explaining satisfaction of ¬φ in s. From now on,
this paper will discuss TLACEs as witnesses of properties rather than counter-examples to avoid carrying
negations all through.

A TLACE witnessing φ is a node composed of a state annotated with the direct sub-formulas of φ

that it satisfies. Furthermore, for each existential temporal sub-formula it satisfies (i.e. Eα formulas), the
node contains a branch explaining the formula. A branch is a list of nodes and actions representing a path
in the model and witnessing the temporal formula. Formally, tree-like annotated counter-examples are
defined based on the following grammar of nodes n and paths p:

n ::= node(s,{(b | ¬b)∗},{(Eα π : p)∗},{(Aα π)∗})
p ::= 〈n,(a,n)∗〉 | 〈n,(a,n)∗,a, loop(n)〉

where s are states, b are atomic propositions, a are actions, α are boolean expressions over actions and
π are ARCTL path formulas. The loop marker is used to represent a looping path, the marked node is

1The use of subsets of labels is needed to handle distributed knowledge. See [14] for details.
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the first one of the loop. Given a node node(s,aps,{Eαi πi : pi},abs), each Eαi πi : pi is called a branch;
aps, {Eαi πi} and abs are annotations. Let State(node(s,aps,ebs,abs)) = s and First(〈n0,a1, ...,nm〉) =
First(〈n0,a1, ...,nm,am+1, loop(n′)〉) = n0.
A TLACE node node(s,aps,{Eαi πi : pi},abs) is consistent iff all its paths pi are consistent and satisfy
s = State(First(pi)); a TLACE path 〈n0,a1, ...,nm〉 is consistent iff all its nodes are consistent; a TLACE
path 〈n0,a1, ...,nm,am+1, loop(n′)〉 is consistent iff 〈n0,a1, ...,nm,am+1,n′〉 is consistent and n′ = n j for
some 0≤ j ≤ m. We will only consider consistent TLACEs in the sequel, and call TLACE, or witness, a
consistent TLACE node.

3.1 Adequate Witnesses

TLACEs ought to be adequate witnesses for a formula φ in a state s of a model M , in a precisely
defined sense. Given a tree-like annotated witness n = node(s,aps,ebs,abs), the witness has to satisfy
the following conditions to be adequate:

• The witness represents a part of the computation tree of M . Its paths are execution paths in M .

• The atomic propositions annotating nodes of the witness are satisfied in the corresponding states of
M and the actions of paths satisfy action formulas of φ .

• The witness is effectively a witness for φ . It represents (generally partially) a computation tree
ensuring φ .

• The annotations of the witness are coherent with φ . Branch annotations are sub-formulas of φ .

The first condition above is formally expressed as n matches M —the witness is part of the model—
while the three last ones are expressed as n explains (M ,φ)—the witness explains the property in the
model. An adequate witness for φ in s of M is a witness in s that matches M and explains φ in M .

The witness n matches M if s is a state of M and each path in ebs corresponds to a path in M such
that the nodes recursively match their respective states.

Formally, let M = (S,S0,A,T,VS,VA). A node n = (s,aps,ebs,abs) matches M iff (i) s ∈ S and
(ii) ∀(Eαi πi : pi) ∈ ebs : pi matches M . A path p = 〈n0,a1, ...,nm〉 matches M iff (i) ∀i,0 ≤ i ≤
m : ni matches M and (ii) ∀i,0 ≤ i < m : State(ni)

ai+1−−→ State(ni+1). A looping path p = 〈n0,a1, ...,
nm,am+1, loop(n′)〉 matches M iff 〈n0,a1, ...,nm,am+1,n′〉 matches M .

The witness n explains φ in M if it has the shape of a witness for φ . This highly depends on the
structure of φ . For example, a witness for φ1∧φ2 is a node composed of the annotations and branches of
two nodes explaining φ1 and φ2, respectively.

Formally, n explains (M ,φ) is defined recursively over the structure of φ . This definition is given for
state formulas φ by the following two tables.

φ n explains (M ,φ) iff. . .
true n = node(s,{},{},{})
b or ¬b n = node(s,{φ},{},{}) and M ,s |= φ

φ1∨φ2 n explains (M ,φ1) or n explains (M ,φ2)
φ1∧φ2 n = node(s,aps1∪aps2,ebs1∪ ebs2,abs1∪abs2)

and node(s,apsi,ebsi,absi) explains (M ,φi)
Aα π n = node(s,{},{},{Aα π})
Eα π n = node(s,{},{Eα π : p},{}) and p explains (M ,φ)
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φ p explains (M ,φ) iff. . .
EαX φ p = 〈node(s,{},{},{}),a,n1〉, n1 explains (M ,φ) and M ,a |= α

Eα [φ1 U φ2] p = 〈n0,a1, ...,nm〉, ∀i,0≤ i < m : ni explains (M ,φ1), nm explains (M ,φ2)
and ∀i,1≤ i≤ m : M ,ai |= α

EαG φ p = 〈n0,a1, ...,nm,am+1, loop(n′)〉, ∀i : ni explains (M ,φ)
and ∀i,1≤ i≤ m+1 : M ,ai |= α

Finally, n is an adequate witness for M ,s |= φ iff State(n) = s, n matches M and n explains (M ,φ).
Note that universal temporal sub-formulas (i.e. Aα formulas) are not explained: elements of abs are

just annotations, i.e. ARCTL formulas. While explaining an Eα formula needs only one path, the whole
system is potentially needed to explain an Aα formula. There is no inherent difficulty in explaining them,
but it would usually result in a huge, unmanageable structure.

Tree-like annotated witnesses are full witnesses for the existential fragment of ARCTL. In this
fragment, only existential path quantifiers are allowed and negations are only applicable to atomic
propositions. TLACEs are full witnesses in the sense that there exists an adequate witness for M ,s |= φ

if and only if φ is satisfied in the state s of M . They adequately describe the satisfaction because they
provide all the reasonably useful information. On the other hand, because tree-like annotated witnesses do
not explain universal operators, they are not full witnesses for full ARCTL.

3.2 Generating Counter-Examples

This section gives an algorithm to generate tree-like annotated witnesses. This algorithm is described by the
function explain given below, which takes as arguments a mixed transition system M =(S,S0,A,T,VS,VA),
a state s∈ S, and a property φ such that M ,s |= φ , and returns a consistent and adequate tree-like annotated
witness for M ,s |= φ . To perform this computation, it works recursively on the structure of φ .

The algorithm uses the sub-algorithms EaGexplain, EaUexplain and EaXexplain, which return paths
in M satisfying EαG, EαU and EαX operators, respectively. More precisely, EaGexplain(M ,s,φ ,α)
returns a path 〈s0,a1, ...,sm〉 where s = s0, ∀i,0≤ i≤ m : M ,si |= φ , ∃k,0≤ k < m : sk = sm and ∀i,1≤
i≤ m : M ,ai |= α . EaUexplain(M ,s,φ ,ψ,α) returns a path 〈s0,a1, ...,sm〉 where s = s0, ∀i,0≤ i < m :
M ,si |= φ , M ,sm |= ψ and ∀i,1≤ i≤m : M ,ai |= α . EaXexplain(M ,s,φ ,α) returns a path 〈s0,a1,s1〉
where s = s0, M ,s1 |= φ and M ,a1 |= α .

This algorithm is correct, i.e. if M ,s |= φ , then explain(M ,s,φ) returns a consistent and adequate
tree-like annotated witness for M ,s |= φ . Its correctness can be proved using induction over the structure
of φ . Due to space limit, the proof is not developed here, but the intuition is given for the EαU case.
First, EaUexplain returns a witness path for Eα [ψ1 U ψ2], so M ,sm |= ψ2, M ,si |= ψ1 for i < m and
M ,ai |= α for all i. The construction of p in the for loop and the following instruction builds a path
composed of nodes witnessing ψ1 with a last node witnessing ψ2, thus altogether p correctly explains
Eα [ψ1 U ψ2] and the result explains Eα [ψ1 U ψ2]. The result clearly belongs to M since EaUexplain
returns a path in M . Finally, by construction, the state of the result is s.
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Function explain(M , s, φ )
Data: M a Mixed Transition System, s a state of M , φ an ARCTL property, s.t. M ,s |= φ .
Result: a tree-like annotated witness n s.t. State(n) = s, n matches M and n explains (M ,φ).

switch φ do
case true

return node(s,{},{},{})
case b, ¬b

return node(s,{φ},{},{})
case ψ1∨ψ2

if M ,s |= ψ1 then return explain(M ,s,ψ1)
else return explain(M ,s,ψ2)

case ψ1∧ψ2
node(s,aps1,ebs1,abs1)← explain(M ,s,ψ1)
node(s,aps2,ebs2,abs2)← explain(M ,s,ψ2)
return node(s,aps1∪aps2,ebs1∪ ebs2,abs1∪abs2)

case Aα π

return node(s,{},{},{Aα π})
case EαX ψ

〈s0,a1,s1〉 ← EaXexplain(M ,s,ψ,α)
return node(s,{},{EαX ψ : 〈node(s0,{},{},{}),a1,explain(M ,s1,ψ)〉},{})

case Eα [ψ1 U ψ2]
〈s0,a1, ...,sm〉 ← EaUexplain(M ,s,ψ1,ψ2,α)
p← 〈〉
for i ∈ 0..m−1 do

p← p+ 〈explain(M ,si,ψ1),ai+1〉
return node(s,{},{Eα [ψ1 U ψ2] : p+ 〈explain(M ,sm,ψ2)〉},{})

case EαG ψ

〈s0,a1, ...,sm〉 ← EGexplain(M ,s,ψ,α)
p← 〈〉
for i ∈ 0..m−1 do

ni← explain(M ,si,ψ)
if si = sm then n′← ni

p← p+ 〈ni,ai+1〉
return node(s,{},{EαG ψ : p+ 〈loop(n′)〉},{})

4 Example: the Dining Cryptographers Protocol

This section uses the dining cryptographers protocol [3], a well-known example in temporal epistemic
logic, to illustrate the applicability of tree-like annotated counter-examples to CTLK and multi-agent
systems. A model of the protocol is given, a CTLK property violated by the system is presented and the
corresponding counter-example is described.

Summarizing [3], the protocol of the dining cryptographers can be described as follows:
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Three cryptographers at restaurant made an arrangement with the waiter for the bill to be paid
anonymously. One of them might be the payer or it might be NSA. The three cryptographers
wonder if NSA is paying but nobody wants to say if she pays. To resolve this problem, the
following protocol is performed. Each cryptographer flips a coin behind his menu such that
her right neighbor and she can see the result. Each one then claims aloud whether the two
coins that she saw are equal or different, stating the opposite if she is the payer. An odd
number of differences indicates a lier, and then a payer; an even number indicates that NSA is
paying, assuming that the dinner was paid once. No not-paying cryptographer can tell which
one of the others is the payer.

We consider a model composed of three agents a, b and c, representing three cryptographers. Each
agent knows whether she paid, the result of the coin flips to her left and right and the claims of all agents.
The protocol is executed in three steps. The initial step determines, for each agent, if she is the payer or
not, making sure that at most one of them is the payer. Then each agent flips her coin. Finally each agent
makes her claim, depending on the results of the coin flips and whether she is the payer or not.

We consider the CTLK property φ ≡¬a.payer =⇒ AF (Ka b.payer∨Ka c.payer). It expresses that
if a is not the payer, then she will eventually either know that b is the payer or that c is. This property is
obviously violated by the system as the protocol ensures anonymity of the payer.

The violation of this property is explained by the tree-like annotated counter-example presented in
Figure 2. It is a witness for ¬φ ≡¬a.payer∧EG (¬Ka b.payer∧¬Ka c.payer), with a path ending with
a loop (the gray states) composed of states satisfying ¬Ka b.payer∧¬Ka c.payer. Each state explains
¬Ka b.payer by giving an equivalent state for a satisfying ¬b.payer and with a backward path to an initial
state (and similarly for ¬Ka c.payer).

s1

¬a.payer

s2

s3

s4

¬b.payer
s5

¬c.payer

s6

¬b.payer

s4

s7

¬c.payer

s5

s8

¬b.payer

s6

s4

s9

¬c.payer

s7

s5

EG (¬Ka b.payer ∧ ¬Ka c.payer)

¬Ka b.payer ¬Ka c.payer

¬Ka b.payer ¬Ka c.payer

¬Ka b.payer ¬Ka c.payer

Figure 2: A counter-example for ¬a.payer =⇒ AF (Ka b.payer∨Ka c.payer) in the model of the dining
cryptographers. Straight arrows are temporal transitions, waived arrows are epistemic equivalences for a.

This counter-example clearly illustrates the need for rich counter-examples. A linear counter-example
would only give the gray part of the presented counter-example, without the annotations, missing a lot of
information, and the understanding of the violation would be very hard for the user. This counter-example
is a good representative of CTLK properties mixing temporal and epistemic operators.

5 Implementation

The principles exposed in the previous sections have been implemented in two distinct parts. First, the
well-known open-source symbolic model checker NuSMV [4] has been modified to generate tree-like
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annotated counter-examples for ARCTL properties. Second, a new tool called TLACE Visualizer has been
implemented to visualize and manipulate these counter-examples2. An XML format has been designed as
a transfer syntax between the two tools.

The modified version of NuSMV implements the generation algorithm presented in Section 3.2. The
implementation is based on the EXexplain, EUexplain and EGexplain algorithms already implemented
in NuSMV and modified to take actions into account. It generates tree-like annotated counter-examples
and can export them into a custom XML format.

Technically, the algorithm has been implemented slightly differently than presented in this paper but
the result is equivalent. The implemented algorithm generates a witness for every ARCTL formula, without
prior reduction to normal form. Negations are handled within the recursive traversal of sub-formulas.

The implementation supports two kinds of parameters to limit the amount of generated information.
The first set of parameters allows to selectively generate branches only for some temporal operators
(e.g. for EαX but not for EαU nor EαG). The second parameter limits the maximum depth of generated
branches, in terms of number of nested temporal operators.

In terms of output, the original version of NuSMV returns only linear (looping) paths as counter-
examples; on the other hand, the modified version of NuSMV returns richer information that becomes
difficult to display in a text format. We developed TLACE Visualizer, an interactive graphical interface
application for displaying and browsing tree-like annotated counter-examples. The counter-examples are
loaded from XML files produced by the modified NuSMV and pictured as a graph in the main area of
the interface. The tool also provides different means to arrange the layout of the graph and explore the
detailed information associated to each node. A snapshot of the interface is given in Figure 3.

Figure 3: A snapshot of the interface illustrating the different feature of the tool.

The tool automatically lays out the counter-example upon loading, according to a custom layout
algorithm that takes into account the semantic structure of the counter-example. This representation
presents the general structure of the counter-example, showing branches and loops. Single states or entire

2These tools are available on http://lvl.info.ucl.ac.be/Tools/NuSMV-ARCTL-TLACE.
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subtrees can be dragged around for better readability. To support browsing of larger graphs, branches can
be folded and unfolded to reduce clutter and selectively show relevant information.

A side panel displays the values of all variables and annotations along a selected path in the graph,
in a collapsible hierarchical presentation. All variable values can also be accessed as a pop-up menu on
each node in the main panel, and variables can be selected for display as part of the node’s label, giving
immediate visibility for a few variables of interest.

Both our extended NuSMV and the visualization tool currently only support ARCTL logic natively.
That means that epistemic relations are shown in their ARCTL-reduced form. A desirable future extension
is to display counter-examples according to their original logic notations. This requires some additional
engineering but poses no major technical challenge.

6 Evaluation

This section first assesses the benefits of the provided browsing facilities to manage complex counter-
examples in the context of multi-agent systems and CTLK. It then discusses how the approach could be
extended to handle larger counter-examples and universal witnesses using an interactive, incremental
generation.

6.1 Richness and Complexity of TLACEs

The need for branching counter-examples for CTLK properties has already been illustrated in Section 4
with a property violated by the protocol of the dining cryptographers. This example showed that a linear
counter-example was not enough to fully understand why the model (or the property) was wrong.

To illustrate the increasing richness and complexity of counter-examples, let’s consider the following
property on the dining cryptographers: cryptographer a will eventually know whether cryptographer
b knows whether a is paying or not. Let K±ag φ be a shortcut for Kag φ ∨Kag ¬φ , meaning that agent
ag knows whether φ is true or not. The above property can then be expressed as AF K±a K±b a.payer,
meaning that a always eventually knows whether b knows if a is the payer or not. This property is violated
by the model since, if b or c is the payer, then a cannot say whether b knows whether a paid or not (if b
paid, b knows, if c paid, b does not).

A screenshot of a counter-example for this property is given in Figure 4. The counter-example features
many different branches, due to the nested operators and the disjunction resulting from K±ag φ . This
complexity increases when the number of nested epistemic operators increases: the counter-example for
the property AF K±b K±a K±b a.payer contains 75 TLACE nodes and 37 branches; the counter-example
for the same property with 8 nested K±ag operators would contain 195 TLACE nodes and 97 branches.

While this increase still remains linear in terms of the length of the property, theory predicts (and
experiments confirm) that the number of nodes of a tree-like counter-example for M ,s |= φ can be
O(|S||φ |) in the worst case, where |S| is the number of states of the model M and |φ | the length of the
violated property. Indeed, for an ARCTL formula of depth D (for example EtrueG EtrueG ... EtrueG b),
the top-level branch in the counter-example may have up to O(|S|) nodes, each of which carrying a branch
with a counter-example of depth D−1, giving a total of O(|S|D) nodes. Consequently, the time needed
to generate a tree-like annotated counter-example is at least in O(|S||φ |) since the tool has to generate
all nodes of the counter-example. The exact performance depends on the complexity of BDD-based
re-construction of the execution tree of the counter-example, amortized through the use of memoizing,
which is beyond the scope of this analysis.
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Figure 4: A counter-example for the property AF K±a K±b a.payer violated by the protocol of the dining
cryptographers, as presented by the tool TLACE Visualizer. The counter-example is expressed in terms
of MTS and ARCTL. The inner values of states show who is the payer. The transitions labels show
the transitions types: RUN = 1 for temporal transitions, PAST = 1 for reverse temporal transitions and
ag.me = 1 for the epistemic transitions of agent ag.

6.2 Towards Interactive Witness Generation

As the size of the model and the complexity of the property grow, the generation of a counter-example
may become intractable. A proposed solution, still to be investigated, is to generate the counter-examples
in a lazy manner: instead of generating all the information in one batch, the tool outputs an initial state
or an initial prefix of the counter-example and the user can ask the system to extend the parts of the
counter-example that are most relevant to his understanding of the reported situation. This interactive,
incremental approach can also handle witnesses of universal operators: the user will be offered to ask for
the expansion of selected branches, rather than being provided with the expansion of all branches.

In such an approach, the Tool plays a game with the User where the Tool tries to show that the property
is violated while the User tries to show that it is satisfied. The Tool will be responsible of showing
witnesses for existential operators—by giving adequate branches—while the User will attempt to refute
witnesses for universal operators (and fail, if the universal property indeed holds). This approach will
require a two-way interaction between the visualizer and the model checker (NuSMV), through which
the visualizer will drive the incremental witness generation in the model checker. The model checker
will obviously have to be extended to support those incremental capabilities. This approach is related to
game-based model checking, as developed e.g. in [22, 1].
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7 Related Work

Other authors propose structures similar to tree-like annotated counter-examples to provide useful infor-
mation about a violation.

For example, Gurfinkel and Chechik generate proof-like counter-examples for CTL properties violated
by Kripke structures [12]. These counter-examples are based on a proof of the violation and are composed
of states to which parts of the proof are linked. The proof steps are mechanically derived from the
structure of the property and the counter-example, so a similar result could be produced on TLACEs by
the visualization tool. Note that this would invert the process, since Gurfinkel and Chechick generate the
counter-example from the proof and not the other way round.

Shoham and Grumberg propose a game-based framework for CTL counter-example generation [21].
Counter-examples are sub-graphs of the game-graph used to perform model checking. Each node of this
graph is composed of a state of the model and a sub-formula of the property that it violates. This approach,
similar to TLACEs and the proof-like counter-examples of [12], is applied to the context of incremental
abstraction-refinement. The structure of these counter-examples is similar to TLACEs. Nevertheless,
due to the granularity of the explanation, the number of steps to illustrate the violation—and then the
number of nodes of the counter-example—is larger than for a TLACE. Such a counter-example for a given
property φ is then larger than the corresponding TLACE for φ , while giving the same information.

Dong et al. define a framework to explore rich witness structures for modal µ-calculus called evi-
dences [9]. An evidence is a graph with nodes composed of a state of the system and a sub-formula of the
property. As these evidences can be large, they develop a relational graph algebra to manipulate them,
and provide an implementation. Evidences have a structure similar to counter-examples of Shoham and
Grumberg [21]. This framework could be adapted to explore multi-modal logics counter-examples like
TLACEs.

Meolic et al. propose another model for richer counter-examples [16]. These counter-examples
are automata accepting all finite linear traces of a given LTS violating a given ACTL (Action-based
Computation Tree Logic) property. The tackled problem is not the same as the one of this paper since
Meolic et al. only consider linear traces. Furthermore, they do not annotate their counter-examples.

Some authors propose complementary approaches to analyze counter-examples and to extract their
useful information. For example, Jin et al. annotate a linear counter-example into fated and free-will
segments, representing the parts of the path where the environment can force the system to go to the
error (fated segments) or where the system performs mistaken behavior and could avoid it (free-will
segments) [13]. This approach is complementary to any counter-example generation and could be applied
to tree-like annotated counter-examples. Other authors like Groce and Visser [11] and Copty et al. [8]
generate and check variations of a found (linear) counter-example to identify the critical parts that
cause the violation. This approach is also complementary and could in principle be applied to tree-like
counter-examples.

Some people have applied SAT solving to verify CTL properties. For example, Penczek et al. describe
an algorithm to transform an ACTL (the universal fragment of CTL) model checking problem into a
SAT problem [19]. The idea is to create a set of paths of length k in the model connected together to
form a branching counter-example. A solution to the SAT problem represents a viable counter-example.
Nevertheless, they do not explicitly describe how to provide the counter-example to the user.

In the domain of epistemic logics, MCK [10] and MCMAS [15] are two tools that perform CTLK
model checking. The first one, MCK, provides some debugging features like the export of the full graph of
the system or the counter-example resulting from bounded model checking of a property. MCMAS gives
also some debugging features: it presents a branching counter-example for a violated CTLK property,
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similar to TLACEs, but these counter-examples are not annotated. It also displays states information that
can be filtered in terms of agents but does not give browsing features like the ones provided by TLACE
Visualizer.

8 Conclusion and Perspectives

This paper presents a structure, an algorithm and an implementation to represent, generate and explore
tree-like annotated counter-examples (TLACEs) for Action-Restricted CTL. These counter-examples are
branching, explaining why an ARCTL property is violated by a model, but also recursively explaining
why sub-formulas of the negation of the property are satisfied by the model. Furthermore, elements of
these counter-examples are annotated to help their understanding. While these counter-examples explain
ARCTL formulas violations, they become really useful to explain violations of richer branching logics
like CTLK, that can be reduced to ARCTL.

The algorithm uses sub-algorithms to generate paths in the model satisfying particular temporal
operators and works recursively to explain why sub-formulas are satisfied by states of these paths. The
implementation combines an extension of the NuSMV model checker for generating TLACEs and a
graphical tool for displaying and inspecting them interactively.

These counter-examples give more information about the violation than linear counter-examples
and give a better understanding about the system. The annotations help the user to understand the
structure of the counter-example. By nature, such branching counter-examples can become very large and
their generation is computationally more costly than generating linear counter-examples. The provided
visualization tool is essential for conveniently and productively inspecting such large structures.

To be able to handle larger and more complex counter-examples, we are investigating an interactive
incremental approach, where the tool provides an initial state of the model violating the property and the
user can ask to expand branches of interest. This approach would also make it possible to provide useful
witnesses for universal operators, by allowing the user to choose and simulate only selected branches.
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