
Availabe at:
http://hdl.handle.net/2078.1/91174

[Downloaded 2014/02/24 at 15:30:44 ]

Communication à un colloque (Conference Paper)

"Learning system abstractions for human operators"

Combéfis, Sébastien ; Giannakopoulou, Dimitra ; Pecheur, Charles ; Feary, Michael

Abstract

This paper is concerned with the use of formal techniques for the analysis
of human-machine interactions (HMI). The focus is on generating system
abstractions for human operators. Such abstractions, once expressed in rigorous,
formal notations, can be used for analysis or for user training. They should ideally
be minimal in order to concisely capture the system behaviour. They should
also contain enough infor- mation to allow full-control of the system. This work
addresses the problem of automatically generating abstractions, based on formal
descriptions of system behaviour. Previous work presented a bisimulation-based
technique for constructing minimal full-control abstractions. This paper proposes
an alternative approach based on the use of the L learning algorithm. In particular,
minimal abstractions are generated from learned three-valued deterministic
nite-state automata. The learning-based approach is applied on a number of
examples and compared to the bisimulation-based approach. The result of these
comparisons is that there is no clear winner. However, the proposed approach
h[...]

Référence bibliographique

Combéfis, Sébastien ; Giannakopoulou, Dimitra ; Pecheur, Charles ; Feary, Michael. Learning
system abstractions for human operators. International Workshop on Machine Learning
Technologies in Software Engineering (Lawrence, Kansas, du 12/11/2011 au 12/11/2011).
In: roceedings of the International Workshop on Machine Learning Technologies in Software
Engineering, (2011), p.3-10

http://hdl.handle.net/2078.1/91174


Learning System Abstractions for Human Operators

Sébastien Combéfis∗, Dimitra Giannakopoulou†, Charles Pecheur∗, Michael Feary†
∗Computer Science and Engineering Department
ICT, Electronics and Applied Mathematics Institute

Université catholique de Louvain, Belgium
{Sebastien.Combefis,Charles.Pecheur}@uclouvain.be

†NASA Ames Research Center
Moffett Field, CA 94035, USA

{Dimitra.Giannakopoulou,Michael.S.Feary}@nasa.gov

ABSTRACT
This paper is concerned with the use of formal techniques
for the analysis of human-machine interactions (HMI). The
focus is on generating system abstractions for human opera-
tors. Such abstractions, once expressed in rigorous, formal
notations, can be used for analysis or for user training. They
should ideally be minimal in order to concisely capture the
system behaviour. They should also contain enough infor-
mation to allow full-control of the system.

This work addresses the problem of automatically gener-
ating abstractions, based on formal descriptions of system
behaviour. Previous work presented a bisimulation-based
technique for constructing minimal full-control abstractions.
This paper proposes an alternative approach based on the use
of the L∗ learning algorithm. In particular, minimal abstrac-
tions are generated from learned three-valued deterministic
finite-state automata. The learning-based approach is applied
on a number of examples and compared to the bisimulation-
based approach. The result of these comparisons is that
there is no clear winner. However, the proposed approach
has wider applicability since it can handle more types of
systems than the bisimulation-based technique. Moreover, if
no full-control abstraction can be generated due to a form of
non-determinism in the system, the learning-based approach
provides counterexamples that allow to detect and analyze
that non-determinism. We also discuss how the well-known
HMI issue of mode confusion can be analyzed through this
approach.

Categories and Subject Descriptors
D.2.4 [Software/Program Verification]: Formal meth-
ods; I.2.6 [Artificial Intelligence]: Learning; H.1.2 [Models
and Principles]: User/Machine Systems—Human factors

General Terms
Verification, Human Factors, Algorithms

Keywords
Formal methods, Learning, Human-Machine Interaction
(HMI), Verification, 3DFA, Model-checking

1. INTRODUCTION
Most complex computer systems involve some amount

of interaction between humans and machines. Ensuring
correct perception, understanding and control of the machine
by its human operators is an important part of the safety
requirements of a system. There are numerous examples of
failures caused by an inappropriate interaction between the
operator and the machine. A well-known class of problems is
known as automation surprises, that occur when the system
behaves differently than its operator expects. For example, if
a car driver unknowingly engages the cruise-control system,
she could be surprised by the car’s behaviour, leading into
hazardous situations. Automation surprises can lead to
mode confusion [14, 21] and sometimes to critical failure, as
testified by real accidents [6, 15, 17].

This paper reports on collaborative work between the Hu-
man Factors and Robust Software Engineering (RSE) groups
at the NASA Ames Research Center on the use of formal
techniques for the analysis of HMI systems. In particular,
we address here the problem of automatic generation of sys-
tem abstractions for human operators. Such abstractions,
once expressed in rigorous, formal notations, can be used
for analysis or for user training. System abstractions should
concisely capture the behaviour of the system from the point
of view of an operator. They should also contain enough
information to allow proper control of the system, that is
the operator can control the system by knowing what he can
perform on the system and what he can expect to observe.
This problem has already been stated and studied in [5] using
bisimulation-based relations. A suitable similarity relation
is defined on the states of the system model. Provided that
some determinacy restrictions are met, a variant of the Paige-
Tarjan refinement algorithm [16] can be used to merge those
equivalent states and get a suitable abstraction as a minimal
abstraction of the system.

In this paper, we investigate an alternative approach for
addressing the same problem: a variant of the L∗ learn-
ing algorithm is used to construct the abstraction. The



framework is implemented on top of the Java Pathfinder
model-checker [23], building on previous work in [9] where
a similar approach is used to infer component interfaces.
However, the setting of HMI systems presents some new chal-
lenges as compared to interface generation. These challenges
are described in Section 2, where we also explain why exist-
ing techniques are not satisfactory for abstraction of HMI
systems. At a high level, the proposed framework first uses
L∗ to build a 3DFA, that is, a deterministic finite automaton
with accepting, refusing and“don’t-care” states. Sequences to
don’t-care states correspond to situations that are not needed
for properly operating the system but may be included in the
abstraction without compromising operation. They allow to
obtain a simpler, smaller abstraction at the end, by merging
together compatible sequences. The framework subsequently
minimizes the 3DFA into a standard transition system, which
is the desired minimal abstraction.

Moreover, the partially built model is still usable in cases
where the algorithm fails due to resource limitations or inad-
equate system models. The contributions of this work can be
summarized as follows. First, we provide a learning frame-
work for abstraction generation; this consists of defining a
teacher to be used in a variant of the L∗ algorithm to learn
3DFAs, which characterize the set of possible abstractions
satisfying the full-control property, this is the proper control
criterion used in this work. Second, we use our implementa-
tion of the framework in the Java Pathfinder model checker
to provide evaluation results on a number of examples: some
benchmarks from previous work, and some examples provided
by our NASA human factors collaborators. Third, we show
how failed abstraction generation provides counter-examples
that support detecting and analyzing violations of required
determinism properties.

The remainder of this paper is organized as follows. Sec-
tions 2 and 3 provide related work, motivation and back-
ground. Section 4 is the core of the paper and explains the
proposed learning-based framework. Section 5 describes the
prototype implementation and discusses the results of the
experiments. Finally, Section 6 concludes the paper with
discussion and plans for future work.

2. RELATED WORK AND MOTIVATION
Analysis of human-machine interaction (HMI) is a field

that has been studied extensively by researchers in psychol-
ogy, human factors and ergonomics, but formal methods
can also contribute to the analysis and design of the be-
havioural aspects of HMI. Indeed, since the mid-1980s, sev-
eral researchers have investigated the application of formal
methods to HMI analysis, but most of the work so far has
focused on specific target applications or on the system and
its properties [20, 3, 22]. More recently, Heymann and De-
gani [11] pioneered a more generic automata-based approach
for checking and generating adequate formal abstractions
of a user’s knowledge about a given system. Their work
distinguishes between commands, observations and internal
actions, and their abstraction algorithm is based on the defi-
nition of compatible system states and merger tables. Our
terminology and general framework are based on the work
of Heymann and Degani.

In [5], Combéfis and Pecheur extended that work by propos-
ing a formal definition of full-control to characterize good sys-
tem’s abstractions, using labelled transition systems
(LTSs) as formal models. This definition induces a simi-

larity relation on the states of the system, such that similar
states can be confounded in the abstraction. When that
relation is an equivalence for a specific system, they develop
a minimization algorithm for calculating the quotient of the
system modulo the relation. However, the relation may fail
to be transitive, so their algorithm is not applicable to some
models as illustrated in Figure 5. The proposed approach
overcomes the latter problem and will be able to produce a
minimal model for any LTS of an HMI system.

Abstraction generation is related to the problem of compo-
nent interface generation. A component interface summarizes
all possible correct usages of the component [10]. A large
body of research has used learning for interface generation [9,
1]. In this work, we therefore decided to investigate and eval-
uate the applicability of learning for abstraction generation.
The distinction between the two domains is that, for inter-
face generation, one does not typically differentiate between
controllable and observable actions. Moreover, the notion of
a precise interface is defined as a safe and permissive one,
which is different from the notion of “full-control” associated
with abstractions. Note that the notion of controllable and
observable actions is similar to a notion of inputs and out-
puts, respectively. A distinction between input and output
actions of a system is made in the learning-based approach
for interface automata of Emmi et al. [7], but that work is
performed in the context of showing, in a compositional way,
component compatibility.

The framework that we present in this paper has a fun-
damental difference from all of the above frameworks: the
notion of full-control allows to optionally accept some se-
quences in the learned language. In our work, we investigated
whether it would be possible to apply the framework pre-
sented in [9] on LTSs of system models modified to capture
the distinction between observable and controllable actions
in the full-control property. Observations may or may not
be added, as driven by the need to merge states that are
equivalent with respect to the full-control property. In fact,
the correct interpretation for missing observations is a “don’t
care” one, where the decision on whether to add them or
not is driven by the needs of minimization. This motivated
us to look into an alternative version of L∗, which learns
3DFAs, rather than simple DFAs [4]. However, Chen et al. [4]
defined their algorithm in the context of computing mini-
mal assumptions for compositional verification, as opposed
to abstraction generation for HMI systems, which will be
presented here.

We would like to stress that, although learning frameworks
have a similar overall structure, the challenge for any specific
problem is in the definition of an appropriate Teacher to
represent the language that is being learned. None of the
existing learning frameworks that we are aware of could have
been used for generating HMI abstractions.

3. BACKGROUND
We use the example of a semi-automatic vehicle trans-

mission system (VTS) to illustrate some of the concepts in
this section. The example is taken from [11]. The model
of the system is shown on Figure 1. The system has eight
states and two kinds of actions. The initial state is low-1.
The actions push-up and pull-down are triggered when the
user operates the transmission lever. The actions up and
down are triggered autonomously by the system, without
the intervention of the user, and corresponds to automatic



internal gear shifting as speed changes. The user can just
hear the occurrence of those two last actions. Note that this
system has a particular behaviour: while the system is in the
low level (low-1, low-2 or low-3), if the user triggers a push-up
action, the system can either transition to the medium level
or high level depending on the current low state the system
is in.

high-1 high-2 high-3

medium-1 medium-2

low-1 low-2 low-3
up

down

up

down

up

down

up

down

up

down

push-up push-up
pull-down

pull-down

push-up

push-up
push-up

pull-downpull-down
pull-down

Figure 1: Vehicle transmission system (VTS): the
system model.

3.1 Labelled Transition Systems
Both system models and abstractions are formally repre-

sented with an enriched version of labelled transition system.
Act is the universal set of actions, τ is the unobservable
action, and Π is a special state which denotes an error. An
HMI LTS M is a tuple M = 〈S,Lc,Lo, s0, δ〉 where S is
the finite set of states and s0 ∈ S is the initial state. The
set Lc of commands contains the actions that are controlled
by the user, and the set Lo of observations contains actions
controlled by the system but observed by the user. We use
Lco = Lc ] Lo to denote the actions that are visible to the
operator, i.e., commands and observations. All unobservable
and uncontrollable actions are represented by τ . The transi-
tion function is δ : S × (Lco ∪ {τ})→ 2S . We say that M
is deterministic if it contains no τ -transitions and if δ(s, a)
contains at most one element.

Figure 1 shows the graphical representation of the HMI
LTS of the VTS system model. Commands are depicted as
solid lines and observations as dashed lines .

The notation s
α−−→ s′ is a shortcut for s′ ∈ δ(s, α) and

corresponds to a strong transition. It is extended for a
sequence σ = α1α2 . . . αn ∈ L∗ in the usual way, that is

s
σ−−→ s′ is a shortcut for s

α1−−−→ s1
α2−−−→ . . .

αn−−−→ s′. The
notation s

α
==⇒ s′ represents a weak transition and is a

shortcut for s
τ∗ατ∗−−−−−→ s′, that is the transition α can be

preceded and followed by zero or more τ -transitions. The ⇒
notation is extended for a sequence in a similar way.

The set of all sequences belonging to a model is denoted
Tr(M) and defined as {σ ∈ Lco∗ | ∃s0

σ
==⇒ s′}. Given a state

s ∈ S, the set of enabled commands (resp. observations),

denoted Ac(s) (resp. Ao(s)) is defined by {α ∈ Lc | s α
==⇒ s′}

(resp. {α ∈ Lo | s α
==⇒ s′}).

In this work, system models and abstractions are repre-
sented as HMI LTSs MM and MU which are defined on the
same alphabet Lc,Lo. Moreover, abstractions are determin-
istic HMI LTSs without τ transitions, so that sU0

α
==⇒ s′

reduces to sU0

α−−→ s′ in MU .
The possible interactions between a systemMM and a user

following a deterministic abstractionMU for that system are
represented by the parallel composition between the models

and denoted by MM ‖ MU . States of MM ‖ MU are pairs
of states (sM , sU ) ∈ SM × SU ; in particular, the initial state

is (s0M , s0U ). There is a transition (sM , sU )
α−−→ (s′M , s

′
U )

with α ∈ Lco if there is both sM
α−−→ s′M and sU

α−−→ s′U ,

and there is a transition (sM , sU )
τ−−→ (s′M , sU ) if there is

sM
τ−−→ s′M .

For simplicity, in the remainder of the paper, an HMI LTS
will simply be referred to as LTS.

3.2 Full-Control Abstraction
In this work, both systems and their associated abstrac-

tions are represented with LTS. As formalized by some of
the authors in previous work [5], a desirable property for
an abstraction is that of full-control, defined as follows. An
abstraction MU allows full-control of a system MM iff:

∀σ ∈ Lco∗ such that s0M
σ

==⇒ sM and s0U
σ−−→ sU :

Ac(sM ) = Ac(sU ) ∧ Ao(sM ) ⊆ Ao(sU ). (1)

Intuitively, a full-control abstraction allows a user that
follows it to know exactly what commands can be executed
in the current state of the system, and to be prepared to
receive at least any observation that the system may produce,
and possibly others too.

Achieving full-control is only possible if the user can know
the allowed commands after any sequence σ. Otherwise, the
user has no way to know whether a command is available or
not. A system is full-control-deterministic iff:

∀σ ∈ Lco∗ such that s0M
σ

==⇒ sM and s0M
σ

==⇒ s′M :

Ac(sM ) = Ac(s′M ) (2)

Full-control-non-determinism is detected and reported dur-
ing the generation of abstractions (see Section 4.4).

Figure 2 shows the minimal full-control abstraction for the
vehicle transmission system example. It is easily seen that for
every composite state (sM , sU ) of the parallel composition
between the models of Figures 1 and 2, the full-control
conditions Ac(SM ) = Ac(sU ) and Ao(sM ) ⊆ Ao(sU ) are
indeed satisfied.

The full-control requirement allows an abstraction to have
more observations than those possible on the system. To
capture and represent such optional behaviour, we use Three-
Valued Deterministic Finite Automata (3DFAs).

high

medium

low-a low-b low-c
up

down

up

down

push-up push-up pull-down

push-up pull-down

push-up

up, down

up, down

Figure 2: VTS example: the minimal full-control
abstraction.

3.3 DFAs and Three-Valued DFAs (3DFAs)
A Deterministic Finite Automaton (DFA) A is a tuple
〈Σ, S, s0, δ, Acc〉, where Σ is an alphabet, S is the finite
set of states, s0 is the initial state, δ : S × Σ → S is



the transition function, and Acc ⊆ S is a set of accept-
ing states. The transition function is extended in the usual
way to sequences, so that for σ = σ0 · · ·σn ∈ Σ∗, δ(s0, σ) =
δ(. . . δ(δ(s0, σ0), σ1) . . . , σn). A sequence σ ∈ Σ∗ is accepted
by the automaton if and only if δ(s0, σ) ∈ Acc.

A Three-Valued Deterministic Finite Automaton (3DFA) C
is a tuple 〈Σ, S, s0, δ, Acc, Rej,Dont〉, where Σ, S, s0, δ are as
defined in a DFA. However, S is partitioned into three disjoint
sets Acc (accepting states), Rej (rejecting states), and Dont
(don’t care states). Given a 3DFA C = 〈Σ, S, s0, δ, Acc,
Rej,Dont〉, a sequence σ ∈ Σ∗ is accepted if δ(s0, σ) ∈ Acc,
rejected if δ(s0, σ) ∈ Rej, and is a don’t care sequence if
δ(s0, σ) ∈ Dont.

Let C+ denote the DFA 〈Σ, S, s0, δ, Acc ∪Dont〉, where all
don’t care states become accepting states, and C− denote
the DFA 〈Σ, S, s0, δ, Acc〉, where all don’t care states become
rejecting states. By definition, we have that L(C−) is the set

of accepted sequences in C and L(C+) is the set of rejected
sequences in C.

A DFA A is consistent with a 3DFA C if and only if A
accepts all sequences that C accepts, and rejects all sequences
that C rejects. It follows that A accepts sequences in L(C−)

and rejects those in L(C+), or equivalently, L(C−) ⊆ L(A) ⊆
L(C+). A DFA A is the minimal consistent DFA of a 3DFA
C if it is consistent with C and has the smallest number of
states among all DFAs which are consistent with C.

3.4 The L∗ Learning Algorithm
The learning algorithm L∗ of Angluin [2] learns an un-

known regular language and produces a DFA that accepts it.
Let U be an unknown regular language over some alphabet
Σ. In order to learn U , L∗ interacts with a Teacher that
must answer correctly two types of questions. The first type
is a membership query, consisting of a sequence σ ∈ Σ∗; the
answer is true if σ ∈ U , and false otherwise. The second
type is a conjecture, that is, a candidate DFA C whose lan-
guage L(C) the algorithm believes to be identical to U . The
answer is true if L(C) = U . Otherwise the Teacher returns
a counterexample, which is a sequence σ in the symmetric
difference of L(C) and U . Let M be the minimal (in terms
of number of states) automaton such that L(M) = U . L∗

is guaranteed to terminate with M as its last conjecture.
The conjectures made by L∗ strictly increase in size; each
conjecture is smaller than the next one, and all incorrect
conjectures are smaller than M .

4. LEARNING FRAMEWORK FOR FULL-
CONTROL ABSTRACTION GENERATION

Similarly to Chen et al [4], we use L∗ to learn 3DFAs, but
in the context of abstraction generation for HMI systems.
The challenge therefore lies in providing a correct Teacher
that captures the notion of full-control. Our framework uses
L∗ for 3DFAs to learn a minimal full-control abstraction for a
system model M. The high-level structure of the framework
is presented in Figure 3. The framework first uses L∗ to
learn a minimal 3DFA C, with ΣC = Lco. C must exhibit
the full-control property, meaning that any DFA consistent
with C is a full-control abstraction for M. The framework
subsequently generates a minimal DFA consistent with the
3DFA that was produced by L∗.

In what follows, we present our implementation of a Teacher
for L∗. Sections 4.1 and 4.2 presents the two parts of a

Teacher (membership query and conjecture) and provide
brief justifications about their correctness which induces the
correctness of the Teacher. We also discuss the minimization
phase of the framework, as well as complexity and overall
correctness issues. Note that the learning always succeeds
when the system model is full-control deterministic. At the
end of this section, we also discuss the case where the system
is not full-control deterministic.

L∗

teacher

membership
MQ(σ)?

T, F or DC

oracle 1
Conj(C)?

no

cex

yes
oracle 2

no

cex

yes CU
minimization

MU

Figure 3: Global view of the proposed learning-
based approach to generate a full-control abstraction
from a given system model.

The notion of correctness for HMI system abstractions is
captured by the full-control property as presented in Sec-
tion 3.2. The definition of full-control involves weak tran-
sitions in the model, and therefore our framework Teacher
uses Mweak, which is obtained from M by transforming its
transition relation into the corresponding weak transition
relation. This is performed with the standard τ∗-completion
construction, which computes the reflexive and transitive
closure with respect to the τ relation [12].

Moreover, let A = 〈Σ, S, s0, δ, Acc〉 be a DFA such that
ΣA = Lco. We define lts(A) = 〈Acc,Lc,Lo, s0, δ′〉, where
δ′ is obtained from projecting δ onto the accepting states
Acc. In other words, lts(A) is a deterministic LTS obtained
by removing the rejecting states and their corresponding
transitions from the DFA. This transformation is well defined
because the DFAs that are generated by our approach are
always prefix-closed, meaning that it is not possible to reach
an accepting state after a rejecting state has been reached.

4.1 Membership query
A membership query (MQ) determines whether a sequence

σ ∈ Lco∗ should be an accepting, rejecting, or don’t care
sequence in the learned 3DFA C. There are therefore three
possible outcomes to such queries: yes (T), no (F) and don’t
care (DC). Membership queries are answered based on the
full-control property requirement.

Our membership query algorithm operates onMweak, com-
pleted on commands by adding transitions leading to an error
state Π. That is for each state s, a transition s

α−−→ Π is
added for each α ∈ Lc \ Ac(s). The sequence σ is then
simulated on the completed system and there are different
possible outcomes giving rise to three different answers:

1. σ may lead to the error state: MQ(σ) = F;

2. σ can be simulated entirely and never leads to an error
state: MQ(σ) = T;

3. σ cannot be simulated entirely: MQ(σ) = DC.



Notice that for any sequence σ such that MQ(σ) = F (resp.
DC), it always follows that MQ(σσ′) = F (resp. DC) for all
sequences σ′. That property is used in the implementation
to speed up the membership queries algorithm by using
a memoized table that stores the results of all previously
queried sequences.

Intuition and Justification. Case 1: Since the error state is
reached during simulation of σ, it means that there exists a
sequence σ′ and a command c such that σ′c is a prefix of σ
which leads to the error. Therefore, c is not available after
σ′ in the system model. The full-control property requires
that c not be available after σ′ in the learned 3DFA either.
As mentioned above, if a sequence is not accepted by the
language that we are trying to learn, then any extension of
that sequence will not be accepted either. It follows that
any extension of sequence σ′c is not accepted either, and
therefore the answer to query σ must be F. For example,

MQ(pull-down) = F, because low-1
pull−down−−−−−−−→ Π.

Case 2: Let σ be σ′a, where a is either an observation or
a command. The full-control property requires for a to be
available after σ′ in the full-control model (since it requires
equality of commands and a superset for observations), so the
answer must be T. For example, MQ(push-up) = T, because
the sequence exists and never leads to error.

Case 3: Since σ cannot be simulated entirely and it
does not lead to the error state, it must block on some
observation (since the system model is completed with respect
to commands). Therefore, there exists a sequence σ′ and
an observation o such that σ′o is a prefix of σ, σ′ belongs
to Tr(M) and o is not available after σ′ in the system
model. Such observations are optional in the abstraction
according to the full-control property, which explains the DC
answer. For example, MQ(push-up, down) = DC, because
MQ(push-up) = T and down is not possible on the states
reached after executing 〈push-up〉.

4.2 Conjectures
A Conjecture (Conj) establishes whether a candidate 3DFA
C has the full-control property, meaning that any DFA that
is consistent with the conjectured 3DFA has the full-control
property. The algorithm may reply with a yes, in which
case learning terminates, or with a no, in which case a
counterexample cex is provided that exhibits the fact that
the conjectured 3DFA does not provide full-control. In other
words, some consistent DFA does not have the full-control
property. Checking this property on C is established in two
steps, represented by Oracle 1 and Oracle 2.

Note that in this work, we omit a completeness check
for the 3DFA defined in Chen et al [4]. The completeness
check requires a potentially expensive determinization of the
system model. By omitting this check, we may miss smaller
abstractions, but this case did not occur in our case studies.
Chen et al. also omit this check in their experiments.

Oracle 1 operates on Mweak and C+. It first completes
Mweak with respect to commands by adding transitions
leading to the error state Π: for each state s, a transition
s

α−−→ Π is added for each α ∈ Lc \ Ac(s). It then computes
the parallel composition of the resulting LTS with lts(C+).
If the error state Π is not reachable in the composition,
then the Oracle 1 check passes, and Oracle 2 is invoked.
Otherwise, the answer is no, and the counterexample cex
obtained is returned to L∗, which will start a new iteration of
membership queries in order to produce a refined conjecture.

Intuition and Justification. Oracle 1 establishes whether
∀Ci such that Ci is consistent with C the following holds:
∀σ ∈ Lco∗ such that s0M

σ
==⇒ sM , s0Ci

σ−−→ sCi and sCi ∈
AccCi : Ac(sM ) ⊇ Ac(sCi).

In other words, after any string, the set of commands
available in the system model should be a superset of the
set of commands available in the abstraction. We use C+
to represent all consistent DFAs of C for this check because
C+ accepts the largest language among them. When Π is
reachable in the parallel composition of lts(C+) with Mweak

completed with Π on commands, the obtained counterexam-
ple exposes a sequence σ and a command c where σ can be
executed in both models, but after σ, command c is enabled
in the abstraction but not enabled in the system model (hence
it leads to Π). Therefore, the conjectured 3DFA represents
at least one consistent DFA (C+) that is not a full-control
model of the system. Since the system model is complete
with respect to commands, there is no way of missing any
counterexamples that are relevant to Oracle 1.

Oracle 2 operates on Mweak and C−. It first completes
lts(C−) with respect to all observable actions (both com-
mands and observations) so that any missing transitions are
replaced with transitions to the error state Π. It then com-
putes the parallel composition of Mweak with the completed
lts(C−). If state Π is unreachable in the composition, then
the answer is yes, and L∗ concludes producing C as a repre-
sentative of all full-control abstractions for M. Otherwise,
the answer is no, and a counterexample cex is produced,
which exhibits the fact that the candidate C represents some
abstractions that are missing transitions on some command
or some observation (the last action in cex). Based on cex,
L∗ starts a new iteration of membership queries in order to
produce a refined conjecture.

Intuition and Justification. Oracle 2 establishes whether
∀Ci such that Ci is consistent with C the following holds:
∀σ ∈ Lco∗ such that s0M

σ
==⇒ sM , s0Ci

σ−−→ sCi and sCi ∈
AccCi : Ac(sM ) ⊆ Ac(sCi) ∧Ao(sM ) ⊆ Ao(sCi).

In other words, after any string, the set of commands
available in the system model should be a subset of the
set of commands available in the abstraction, and the same
should hold for observations. We use C− to represent all
consistent DFAs of C for this check because C− accepts the
smallest language among them. When the error state of the
completed lts(C−) is reachable in the parallel composition of
lts(C−) with Mweak, the obtained counterexample exposes
a sequence σ and an observable action obs (obs may be
a command or an observation) such that, after σ, action
obs is enabled in the system model but not enabled in the
abstraction. Since lts(C−) is complete, there is no way of
missing counterexamples that are relevant to Oracle 2.

Figure 4 shows a 3DFA which is an intermediate candi-
date produced by the learning algorithm. The candidate is
checked by the two oracles and fails during Oracle 2 with
the following counterexample: 〈up, up, down, down〉. Although
this sequence is a trace of the system, in the 3DFA, it leads
to a don’t care state (state 1), which corresponds to a non-
accepting state in C− and therefore an error state in the
completed lts(C−). The error state is therefore reachable
in the parallel composition of Mweak with the completed
lts(C−), and the above counterexample is returned to L* to
refine the conjecture.



0 3

1

2

up
push-up

down

pull-down

push-up

down

pull-down

up

Figure 4: Intermediate 3DFA candidate for the VTS
example. State 1 is the don’t care state and 2 is the
rejecting state.

4.3 Minimizing 3DFAs
The minimization step consists of computing a minimal

(in terms of numbers of states) DFA consistent with the
3DFA CU produced by L∗. We use the algorithm proposed
in [18] to perform this step. The algorithm computes a set
Comp of sets of compatible states called compatibles for short.
We refer the reader to [18] for a detailed definition, but
intuitively, compatibles identify states that could be merged
because they exhibit compatible behaviour. Two behaviors
are compatible if the two states to which they lead are both
accepting, or both rejecting, or at least one of them is a don’t
care, in which case it could be interpreted either way. Note
that some states may belong to multiple compatibles, which
means that there exist several choices when computing a
consistent DFA for CU .

In generating an abstraction based on CU , the states of
the 3DFA are merged according to the compatibles, but each
state should be assigned to a single compatible among all
the choices. In order to guarantee a minimal abstraction, all
the possible matching functions should be explored. That
amounts to solving the set covering problem, known to be
NP-complete [13]. The search can be improved by using
heuristics, as proposed in [19] for example.

Figure 5(a) shows an example of a system for which the
maximal compatibles overlap. States B and C are in the
same compatible, and so are states C and D. The algorithm
will output one of the two minimal full-control abstractions
depicted in Figures 5(b).

A

B

C

D

E

F

b

c

d

a

a

e

f

(a) The system model.

0

1

2

3

4

b, c

d

a

a

e

f

0

1

2

3

4

b

c, d

a

a

e

f

(b) The two abstrac-
tions.

Figure 5: A system for which the full-control sim-
ilarity is not transitive, with two possible minimal
full-control abstractions.

4.4 Non-Determinism
As mentioned, system models used throughout this work

are expected to be full-control deterministic, as defined in
Section 3.2, i.e., the same observable sequence will always
lead to states where the same set of commands is available.

Indeed, if a sequence may lead to different commands, then
the user cannot possibly know what commands are allowed
after that sequence. Assume, for example, that we modify our
running example of Figure 1 by replacing the “up” transition
from low-2 to low-3 with a τ (unobservable) transition. The
modified system is no longer full-control deterministic. If
we use our learning framework to compute an abstraction
for this modified example, the learning process fails on the
following sequence:

〈up, down, down, down, up, push-up, up, pull-down, pull-down〉

In general, the learning algorithm fails when it cannot use
a counterexample to refine its current candidate. This hap-
pens whenever counterexamples obtained from conjectures
disagree with information obtained through membership
queries. In our example, the above sequence is returned from
a failed conjecture check as a trace that should be included
in the abstraction but is not. However, a query on that se-
quence returns F as a result, because there exist executions
of that sequence where the last pull-down is not allowed.

Such conflicting information by the teacher confuses the
learner. The algorithm fails and reports the contradiction,
along with the abstraction built so far, which may still be
a useful partial result. Furthermore the failing trace pre-
cisely points to the source of non-determinism that prevented
successful generation. In contrast, the bisimulation-based al-
gorithm of [5] simply fails on systems that are non full-control
deterministic, without providing any tangible information.
Note that the sequence obtained is not minimal because the
model checking Oracle used a depth-first search strategy;
breadth-first search could be used alternatively for getting
shortest counterexamples.

5. IMPLEMENTATION AND EVALUATION
We have implemented the presented learning framework

within JavaPathfinder (JPF), as a new project (jpf-hmi).
JPF1 [23]) is an open-source, extensible verification frame-
work developed by the RSE group at NASA Ames. It is a
software model checker that handles Java bytecode directly.
Details about jpf-hmi are provided in a paper submitted in
the JPF workshop associated with ASE 2011.

The approach developed in this paper has been evaluated
on the following six different models:

• VTS is a simple model of a vehicle transmission system
from [11], used as illustration in Section 3.
• AirConditioner comes from [5] and is derived from

the user manual of an air conditioner.
• TimedVCR is based on a model of a video-cassette

recorder (VCR) developed in ADEPT, a toolset for
analyzing HMI [8]. Its large number of states is due to
a float-type variable tapeRemaining. In SimpleVCR,
the tapeRemaining variable is omitted: internal states
of the system with different values of remaining tape
length are not distinguished in the system model. Ful-
lVCR refines SimpleVCR with different tape speeds.
• AlarmClock is a partial model of an alarm clock and

AlarmClock2 is a version with larger ranges for time
values, which result in many internal τ transitions.

We have attempted to generate abstractions for all these
models using both the bisimulation-based technique from [5]

1http://babelfish.arc.nasa.gov/trac/jpf/



System Abstraction
Bisim.

Learning
States / Trans. States / Trans. 3DFA states Total

VTS 8 / 20 5 / 14 10 ms 10 92 ms
AirConditionner 154 / 885 27 / 150 177 ms 51 6 271 ms
TimedVCR 3 352 / 15 082 2 / 9 1 031 ms 6 614 ms
SimpleVCR 20 / 110 2 / 9 65 ms 6 250 ms
FullVCR 24 / 261 4 / 24 45 ms 11 432 ms
AlarmClock 42 / 215 5 / 14 – 14 512 ms
AlarmClock2 1 734 / 67 535 5 / 15 – 14 30 831 ms

Table 1: Experimental results.

and the learning-based approach proposed here. Table 1
summarizes the results of the experiments. Execution times
were measured on the same machine, and represent the total
time needed to compute the minimal full-control abstraction.
For the learning-based approach, this comprises generating
the τ∗-closure, learning the 3DFA and minimizing to the
LTS of the abstraction. τ∗-closure is also needed in the
bisimulation-based approach. It accounts for 10 seconds on
the AlarmClock2 model and is negligible for all other models,
which have very few τ transitions. Minimization accounts
for less than 10% of the time in all cases. No algorithm is
uniformly better than the other in terms of execution time.
As expected, the learning-based algorithm performs better
on the larger TimedVCR model.

When both approaches work, they produce the same mod-
els. The AlarmClock model has a similar structure to that
of Figure 5(a). As a consequence, the bisimulation-based
approach fails while the learning-based approach generates
one possible full-control abstraction. In the TimedVCR and
SimpleVCR models, all commands are permanently enabled
once the system is turned on, which results in a rather trivial
two-state abstraction. The FullVCR yields a larger, more
informative 24-state model because commands are not always
enabled.

6. DISCUSSION AND CONCLUSION
We proposed a framework to automatically learn an ab-

straction for a given system model, as an alternative to an
existing bisimulation-based approach [5]. We have demon-
strated, through a number of experiments, that the learning
framework can be more efficient in some cases, but that
it also waives some restrictions of the existing approach,
making our framework applicable to a larger number of sys-
tems. Moreover, the learning framework can provide useful
diagnostic messages when it detects violation of full-control
determinism.

Note that the latest feature of our framework can be used
to detect another important problem in HMI systems, namely
mode confusion. Mode confusion happens when the user be-
lieves that the system is in a different mode of operation than
it actually is, which may lead into incorrect and hazardous
maneuvers. The complex flight guidance systems found on
modern civil aircrafts constitute a prominent target for this
kind of analysis.

In the bisimulation-based approach of [5], modes are han-
dled by enriching models with mode assignments on system
model and abstraction states, and refining the algorithm to
preserve mode consistency. The same result can be achieved
within the current framework, by adding self-loop transitions
s

m−−→ s on system states to indicate that s is within mode

m. Treating these mode actions as commands ensures that
the abstraction “knows” in which mode the system is at any
time. Conversely, mode confusion will occur if the same
observable sequence leads to different modes. Since modes
are treated as commands, mode confusion can be detected
as an instance of violation of full-control determinism, where
the last action in the failing sequence is a mode action.

In terms of performance, our experiments showed that,
when both approaches are applicable, there is no clear winner
between them. One could therefore include them both in an
HMI analysis environment, apply them in parallel, and use
the results of the one that terminates first. In the future,
we plan on working on optimizations to the current algo-
rithms. Moreover, we are working on connecting jpf-hmi to
the ADEPT tool for the specification and generation of user-
interfaces for HMI systems [8]. We have almost completed an
automatic translation of ADEPT models into statecharts as
supported by the JPF tool. This will allow us to have access
to additional realistic examples that have been developed
in the domain of HMI systems. Such examples will be used
to thoroughly evaluate but also evolve our techniques for
practical use in the real world. In particular, scalability is a
major direction that we need to pursue; most systems in the
HMI domain, such as autopilots, are large and complex and
would challenge any formal analysis technique.

Acknowledgments
This work is partly supported by project MoVES under the
Interuniversity Attraction Poles Programme — Belgian State

— Belgian Science Policy.

7. REFERENCES
[1] R. Alur, P. Cerný, P. Madhusudan, and W. Nam.

Synthesis of interface specifications for java classes. In
Proceedings of the 32nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages
(POPL’05), pages 98–109, New York, NY, USA, Jan.
2005. ACM.

[2] D. Angluin. Learning regular sets from queries and
counterexamples. Information and Computation,
75(2):87–106, Nov. 1987.

[3] J. C. Campos and M. D. Harrison. Systematic analysis
of control panel interfaces using formal tools. In
Proceedings of the 15th International Workshop on the
Design, Verification and Specification of Interactive
Systems, number 5136 in Lecture Notes in Computer
Science, pages 72–85. Springer-Verlag, July 2008.

[4] Y.-F. Chen, A. Farzan, E. M. Clarke, Y.-K. Tsay, and
B.-Y. Wang. Learning minimal separating DFAs for
compositional verification. In S. Kowalewski and



A. Philippou, editors, Proceedings of the 15th
International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS’09),
volume 5505 of Lecture Notes in Computer Science,
pages 31–45, Berlin, Heidelberg, 2009. Springer-Verlag.

[5] S. Combéfis and C. Pecheur. A bisimulation-based
approach to the analysis of human-computer
interaction. In G. Calvary, T. N. Graham, and P. Gray,
editors, Proceedings of the ACM SIGCHI Symposium
on Engineering Interactive Computing Systems
(EICS’09), pages 101–110, New York, NY, USA, 2009.
ACM.

[6] A. Degani. Taming HAL: Designing Interfaces Beyond
2001. Palgrave Macmillan, Jan. 2004.

[7] M. Emmi, D. Giannakopoulou, and C. S. Păsăreanu.
Assume-guarantee verification for interface automata.
In J. Cuellar and T. Maibaum, editors, Proceedings of
the 15th International Symposium on Formal Methods
(FM’08), volume 5014, pages 116–131, Berlin,
Heidelberg, 2008. Springer-Verlag.

[8] M. S. Feary. A toolset for supporting iterative human –
automation interaction in design. Technical Report
20100012861, NASA Ames Research Center, Mar. 2010.

[9] D. Giannakopoulou and C. S. Păsăreanu. Interface
generation and compositional verification in
JavaPathfinder. In Proceedings of the 12th
International Conference on Fundamental Approaches
to Software Engineering (FASE’09), pages 94–108,
Berlin, Heidelberg, 2009. Springer-Verlag.

[10] T. A. Henzinger, R. Jhala, and R. Majumdar.
Permissive interface. In Proceedings of the 10th
European Software Engineering Conference (ESEC’05),
pages 31–40, New York, NY, USA, Sept. 2005. ACM.

[11] M. Heymann and A. Degani. Formal analysis and
automatic generation of user interfaces: Approach,
methodology, and an algorithm. Human Factors: The
Journal of the Human Factors and Ergonomics Society,
49(2):311–330, Apr. 2007.

[12] P. C. Kanellakis and S. A. Smolka. CCS expressions,
finite state processes, and three problems of equivalence.
In Proceedings of the second annual ACM symposium
on Principles of distributed computing (PODC’93),
pages 228–240, New York, NY, USA, 1983. ACM.

[13] R. M. Karp. Reducibility among combinatorial
problems. Complexity of Computer Computations,
pages 85–103, 1972.

[14] N. G. Leveson, L. D. Pinnel, S. D. Sandys, S. Koga,
and J. D. Reese. Analyzing software specifications for
mode confusion potential. In Workshop on Human
Error and System Development, pages 132–146, 1997.

[15] N. G. Leveson and C. S. Turner. Investigation of the
Therac-25 accidents. IEEE Computer, 26(7):18–41, July
1993.

[16] R. Paige and R. E. Tarjan. Three partition refinement
algorithms. SIAM Journal on Computing,
16(6):973–989, Dec. 1987.

[17] E. Palmer. Oops, it didn’t arm. – a case study of two
automation surprises. In Proceedings of the 8th
International Symposium on Aviation Psychology,
pages 227–232, 1996.

[18] M. C. Paull and S. H. Unger. Minimizing the number
of states in incompletely specified sequential switching
functions. IRE Transactions on Electronic Computers,
EC-8(3):356–367, Sept. 1959.

[19] J. M. Pena and A. L. Oliveira. A new algorithm for the
reduction of incompletely specified finite state machines.
In Proceedings of the 9th IEEE/ACM International
Conference on Computer-Aided Design (ICCAD’98),
pages 482–489, New-York, NY, USA, Nov. 1998. ACM.

[20] J. Rushby. Using model checking to help discover mode
confusions and other automation surprises. Reliability
Engineering and System Safety, 75(2):167–177, Feb.
2002.

[21] N. B. Starter and D. D. Woods. How in the world did
we ever get into that mode ? Mode error and awareness
in supervisory control. Human Factors: The Journal of
the Human Factors and Ergonomics Society,
37(1):5–19, Mar. 1995.

[22] H. Thimbleby and J. Gow. Applying graph theory to
interaction design. In J. Gulliksen, editor, Engineering
Interactive Systems 2007/DSVIS 2007, number 4940 in
Lecture Notes in Computer Science, pages 501–518.
Springer-Verlag, 2008.

[23] W. Visser, K. Havelund, G. Brat, and S. Park. Model
checking programs. In Proceedings of the IEEE
International Conference on Automated Software
Engineering, pages 3–12, 2000.


