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Abstract

Model checking is an efficient technique for verifying properties on asyn-
chronous systems. Unfortunately, it suffers from the so-called combi-
natorial state-space explosion problem. Two common approaches are
used to fight this problem, with different perspectives. On the one hand,
partial-order reduction (POR) methods explore a reduced state space
in a property-preserving way. On the other hand, symbolic techniques
use efficient structures such as binary decision diagrams (BDD’s) to con-
cisely encode and compute large state spaces. By using symbolic model
checking algorithms, it is possible to verify systems with a very large
number of states. However, in some cases, the size of the BDD struc-
tures can become unmanageable. Bounded Model Checking (BMC) uses
SAT-solvers instead of BDD’s to search for errors on bounded execution
path. In practice, BDD-based approaches and BMC approaches are two
fruitful complementary techniques. This thesis presents algorithms which,
one way or another, combine symbolic model checking and partial-order
reduction, allowing efficient verification of CTLX and LTLX properties
on models featuring asynchronous processes.

At the root of our work was the ImProviso algorithm for computing
reachable states [LST03], which combines POR and symbolic verifica-
tion and the FwdUntil method that supports verification of a subset
of CTL [INH96]. We present the PartialExploration algorithm which
adapts and extends ImProviso to support the verification of a fragment
of CTLX . Then, the evalCTLX algorithm merges the PartialExploration
algorithm with the classical backward algorithm to support the totality
of CTL.

The evalLTLX algorithm checks LTLX properties. We start from the
tableau-based reduction of LTL verification of Clarke et al. [CGH97],
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which translates an LTL problem into a fair path detection problem.
While classical BDD-based model-checking would perform this search
with a backward traversal, we use the forward-traversal approach of
Iwashita et al. [INH96]. Part of the resulting computation amounts to
computing the reachable state space; to that end we use our PartialEx-
ploration algorithm.

The BPE algorithm adapts our PartialExploration algorithm and
bounded model checking techniques [BCC+03] in an original way. The
encoding to a SAT problem strongly reduces the complexity and non-
determinism of each transition step, allowing efficient analysis even with
longer execution traces.

The Milestones model checker implements the algorithms developed
in this thesis. It allows us to check the absence of deadlock, LTL
properties, and CTL properties. In order to compare our approach to
others, Milestones is able to translate a model into an equivalent Spin
model or NuSMV model.

We use Milestones, as well as Spin and NuSMV to assess the scalability
and the effectiveness of the approaches developed in this thesis. To that
end, we model and verify four examples. For each of those systems, we
compute both the whole state space and two reduced state space. Then,
we check whether they verify various CTLX or LTLX properties. Those
experiments show that in some cases the approaches developed in this
thesis achieve an improvement with respect to traditional methods.

Finally, we review some approaches which are related to ours. To
that end, we present the considered approaches in the same algorithmic
framework as the one used throughout this thesis. Then, we compare
them with our partial-order reduction method.

The main achievements of this thesis are three new algorithms, as
well as a proof of their correctness, that allow efficient symbolic model-
checking of asynchronous systems based on POR techniques, and the
Milestones model checker that implements the three previous algorithms.
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Chapter 1

Introduction

Nowadays, hardware and software systems have great significance in
our daily lives. Such systems are everywhere, from the latest trendy
smartphones to medical instruments. The structure of those systems can
be very complex. For instance, it is not uncommon for a piece of software
to be composed of millions of lines of code. Due to this complexity, it
frequently happens that a system does not do what it is expected to do.
This phenomenon is commonly know as a “bug”. bugs. The consequences
of such bugs might be unacceptable. For example, in June 1996, the
maiden flight of the Ariane 5 launcher ended in an explosion as a result
of a software error in the computer that was responsible for calculating
the rocket’s movement.

In order to develop error-free systems, it is becoming more and
more important to develop methods to increase our confidence in the
correctness of such systems. To achieve that goal, there is a wide range of
validation methods such as testing, simulation, static analysis, deductive
verification and model checking. Some of these techniques explore only
some of the possible behaviors of the systems [Mye79], while others lead
to an exhaustive exploration of all possibilities.

Model checking is a technique which exhaustively explores a system
in order to verify whether a property is satisfied or not. It is used to
verify finite state models of concurrent systems such as sequential circuit
designs and communication protocols. It has a two main advantages:
it is entirely automatic, and it produces a counterexample when an
error is detected [CGP99]. It also suffers from two drawbacks. Firstly,
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2 Introduction

the property under consideration can be hard to express because it is
generally translated into a rich formal logic. Secondly, model checking can
be resource consuming because the size of the system can be extremely
large. The goal of this thesis is to alleviate the problem of the resources
needed when model checking techniques are applied on a system.

Model checking describes the behavior of a system by a state machine.
Temporal logic is used to express some properties of that state machine.
In a temporal logic, the usual operators of propositional logic are extended
with temporal operators. There are several types of temporal logics,
such as linear temporal logic (LTL and LTLX), computational tree logic
(CTL and CTLX) or CTL*. By using temporal logic model checking
algorithms, one can check automatically whether a given system, modeled
as a state machine, satisfies a given temporal logic property.

In the 1980’s, several researchers introduced temporal logic model
checking algorithms, especially for LTL and CTL. McMillan achieved
a breakthrough with the use of symbolic representations based on the
use of Ordered Binary Decision Diagrams (BDD) [Bry86]. By using this
approach, some systems with a very large number of states, i.e. more
than 1020 states, can be verified [BCM+92]. However, in some cases,
the size of the BDD structures can become unmanageable, and so other
approaches have been developed. For instance, Bounded Model Checking
(BMC) uses SAT-solvers instead of BDD’s to search for errors on bounded
execution paths [BCC+03]. BMC offers the advantage of polynomial
space complexity and in practice, it has proven to provide competitive
execution times in practice.

A common approach to verify a concurrent system is to compute the
parallel composition of the processes involved. Unfortunately, the size of
this composition is frequently prohibitive due, among other causes, to
the modeling of concurrency by interleaving. The aim of partial-order
reduction (POR) techniques is to reduce the number of interleaving
sequences that must be considered. When a specification cannot distin-
guish between two interleaving sequences that differ only by the order in
which concurrently executed events are taken, it is sufficient to analyze
only one of them [God96].

There is actually a lot of work which has been done in POR in model
checking, but only little in symbolic model checking. Traditionally, both
symbolic and POR techniques have been developed by two different
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schools. Two approaches to combine both methods have been devised by
Alur et al. [ABH+97] and Kurshan et al. [AJKP98]. In [LST03], Lerda
et al. attempt to solve the problem called in-stack proviso in particular.
POR algorithms are based on the idea of postponing transitions without
affecting the property to be checked, and provisos are used to guarantee
that no transition is postponed indefinitely. Lerda et al. introduce
ImProviso, a new algorithm for model checking of software that combines
the advantages of POR with symbolic exploration.

1.1 Presentation of This Thesis.
In this thesis we explore how symbolic model checking and partial-order
reduction approaches can fit together. At the root of our work were two
approaches:

• The Two-Phase algorithm and its symbolic version, the ImProviso
algorithm, are two partial-order reduction approaches. Intuitively,
both take as input a state machine M , and produce a reduced
versionMR ofM such thatM andMR respect the same properties.

• The forward CTL model checking approach of H. Iwashita et
al. [INH96]. Classically, symbolic model checking verifies if a CTL
property is satisfied in a backward manner. Intuitively, it starts
from the part of the state machine that one wants to reach. Then,
it looks for all states having a path leading to that part. Forward
CTL model checking takes the opposite approach. It starts from
the initial states and looks for all states which are reachable from
them.

We adapt and merge those two approaches to check either LTLX or
CTLX properties by means of BDD-based model checking or SAT-based
model checking (c.f. Table 1.1).

In the first part of this thesis, we start by constructing the PartialEx-
ploration algorithm. It is a variant of BDD-based ImProviso algorithm.
It is used to incorporate partial-order reduction into the forward model
checking approach. Then, we develop the evalCTLX algorithm which
relies on our PartialExploration method. It checks whether a system
verifies a CTLX property.
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Table 1.1: The Three Approaches Introduced in This Thesis

CTLX LTLX

BDD evalCTLX evalLTLX
SAT — BPE

In the second part of this thesis, we use the PartialExploration
algorithm to construct the evalLTLX algorithm. It verifies whether a
system respect a LTLX properties. As the evalCTLX algorithm, it is a
BDD-based algorithm.

In the third part, we present the BPE algorithm which combines
together the bounded model checking approach and a variant of our
PartialExploration algorithm. Intuitively, from a model and a property,
the BMC method constructs a propositional formula which represents a
finite unfolding of the transition relation and the property. Our method
proceeds in the same way, but instead of using the entire transition
relation during the unfolding of the model, we only use a safe subset
based on POR considerations. This produces a propositional formula
which is well suited for most modern SAT solvers.

In the fourth part, we present the Milestones model checker, which
implements the algorithms developed within the context of this thesis.
Milestones defines a language for describing transition systems. The
absence of deadlock, LTL or CTL temporal logic properties can be
verified on such systems. In order to compare our approaches against the
state-of-the-art, Milestones can also translate its model into a Promela
model [Hol97] or into a NuSMV model [CCGR99]. In order to make the
comparison as fair as possible, the resulting state machines are similar
to those generated by Milestones.

In the fifth part, we illustrate and evaluate the techniques described
in this thesis by applying them to four examples. For each of these case
studies, we compute its state space as well as a reduced state space.
Then we verify some CTLX or LTLX properties with one or more of the
different methods developed in this this thesis, as well as comparable
methods from other authors.
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In the sixth part, we present and discuss six different symbolic
methods which are directly or indirectly related to the ones presented
in this thesis. The first three approaches are related to ours because
they combine partial-order reduction and symbolic method in one way
or another. The three others tackle the same problems, but in a different
way. All the algorithms presented in this part are expressed with the
same conventions as the ones introduced in the previous parts of this
thesis. In particular, for each of them, we provide specifications as well
as loop invariants.

This thesis presents the following scientific contributions:

1. Three new algorithms that allow efficient symbolic model-checking
of asynchronous systems based on POR techniques:

(a) a new algorithm that combines and extends the Two-Phase
algorithm and forward symbolic model-checking for verifying
CTLX properties.

(b) a new algorithm that checks LTLX properties by combining
and adapting our new algorithm mentioned in (1a) and the
Clarke et al.’s tableau-based symbolic LTL model checking,

(c) a new algorithm that checks LTLX properties by combin-
ing and extending our new algorithm mentioned in (1a) and
bounded model checking to allow the verification of LTL prop-
erties,

2. A new model checker that implements the three previous algorithms
as well as other classical approaches for comparison purposes. It
also translates its programs into NuSMV or Spin.

3. A meticulous development and proof of correctness of these three
algorithms, as well as other approaches from which they derive or
to which they compare, all within a unifying mathematical and
algorithmic framework.

4. An evaluation of the techniques described in this thesis on four
models.
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1.2 Publication
Our research has given rise to four publications. We stress that in this
thesis we rename the algorithms which were initially presented in the
following publications:

• The PartialExploration and the evalCTLX algorithms were orig-
inally published in the 13th International Workshop on Formal
Methods for Industrial Critical Systems in 2008 [VP08].

• The BPE algorithm was originally published in the Communicating
Process Architectures 2009 Conference in 2009 [VP09].

• The evalLTLX algorithm was originally published in the Third
NASA Formal Methods Symposium in 2011 [VP11a].

• The Milestones model checker was originally published in the Third
NASA Formal Methods Symposium in 2011 [VP11b].

1.3 Structure of the Thesis
The remainder of this thesis is organized as follows:

• Chapter 2 recalls some background concepts, definitions and nota-
tions that are used throughout the thesis. In particular, it intro-
duces the model checking problem, LTL and CTL temporal logics,
partial-order reduction concepts, and symbolic model checking.

• Chapter 3 starts by presenting two existing POR algorithms: the
Two-Phase algorithm and its symbolic version ImProviso. From
those two algorithms, we construct the PartialExploration algo-
rithm which combines partial-order reduction and set-based model
checking. Then, we develop the evalCTLX algorithm which relies
on the PartialExploration algorithm, and which is used to check
whether a system verifies a CTL property or not.

• Chapter 4 starts by presenting how a LTL property can be verified
with set-based model checking. Then, we present the evalLTLX
algorithm which merges POR and set-based model checking to
check LTL properties.



1.3. Structure of the Thesis 7

• Chapter 5 starts by introducing bounded model checking. It then
constructs the BoundedPartialExploration (BPE) algorithm which
combines partial order reduction and bounded model checking to
check LTL properties.

• Chapter 6 presents the Milestones model checker. It implements
the algorithms presented in the three previous chapters, as well as
other classical approaches.

• Chapter 7 presents an evaluation of the three algorithms presented
in this thesis. To that end, we check four examples of models.

• Chapter 8 reviews related work.

• Chapter 9 gives a general conclusion of our work, with perspectives
on future research.
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Chapter 2

Background

In this chapter, we describe the principles of model checking, its advan-
tages and its drawbacks. Moreover, we introduce the approaches which
were developed to overcome the inherent limitations of model checking.

When someone wants to check a system, the first step consists in
making a model of that system. For that purpose, most of the avail-
able model checkers provide a description language which is similar to
a programming language, e.g. the NuSMV language [CCGR99], the
Promela language [Hol97], the HyDI language [CMT11], the Verilog
language [IEE95]. The resulting model is then automatically translated
into a finite state machine.

The second task consists in providing a formal property. Typical pro-
perties are functional properties (does the system do what it is supposed
to do), reachability properties (is it possible to reach some predetermined
states), safety properties (make sure nothing bad ever happens), liveness
properties (something good will eventually happen). Generally, these
properties are expressed with a temporal logic. Intuitively, a temporal
logic is an extension of the propositional calculus with temporal oper-
ators. Given a finite state machine M , such logics allow us to express
properties about traces of M . For example CTL, and LTL are two such
logics [CGP99].

Model checking takes as inputs a finite state machine and a property.
It then performs a exhaustive exploration to verify that the state machine
satisfies the property. At the end of the process, the model checker
indicates whether the property is valid or not. If it is not valid, a counter-

9



10 Background

example is generally provided. Unfortunately, model checking algorithms
sometimes fail because the given models are too large to fit into memory,
or because the algorithms take to much time to give an answer. Symbolic
model checking and partial-order reduction are two techniques which try
to alleviate that problem. The next sections of this chapter are mainly
devoted to explaining them.

Model checking suffers from three problems:

• It verifies a model of the system and not the real system itself.
Hence, if the model encoding does not reflect reality precisely
enough, the model checking results might not reflect reality as well.

• It suffers from the state-space explosion problem. The model can
be extremely large, or even infinite. In consequent, the available
memory might not be sufficient to represent it, or the time which
is needed by the verification process might be prohibitive. Partial-
order reduction approaches attempt to tackle that problem by not
verifying the model itself, but an equivalent reduced version with
respect to a given class of properties.

• The formal logics which are generally employed to expresses a
property are rich and complex. Therefore, it can be difficult to
write a property which expresses the required behavior. Sometimes,
it is more difficult to write it than to model the system. Therefore,
it can be hard to determine if a non-trivial property reflects what
one wants to say. Moreover, when an error is detected, it could also
be hard to determine whether the error comes from the property
or from the model.

Despite these problems, model checking has some precious benefits:

• It is a general mechanism which is applicable to a wide range of ap-
plications such as hardware components, communication protocols,
etc.

• Contrary to interactive theorem provers, it is fully automatic.

• Contrary to testing and simulation methods, it is exhaustive.
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• Most of the of the available model checkers provide detailed coun-
terexamples when an error is detected.

The remainder of this chapter is structured as follows. Section 2.1
introduces the concept of transition systems which are used to model a
system. Section 2.2 presents three temporal logics: CTL∗, CTL, and LTL.
Section 2.3 is devoted to four bisimulation approaches which allow one to
deduce if two transition systems have equivalent behaviors. Section 2.4
introduces the partial-order reduction method. Section 2.5 presents the
symbolic model checking approach. Section 2.6 gives conclusions.

2.1 Modeling a System
We represent the behavior of a system as a transition system, with
labelled transitions and propositions interpreted over states.

Definition 2.1 (Transition System). A transition system is a structure
M = (A,AP, S,R, I, L) where:

• A is a set of actions, and

• AP is a set of atomic propositions, and

• S is a set of states, and

• R ⊆ S ×A× S is a transition relation, and

• I ⊆ S is a set of initial states, and

• L : E → 2AP is an interpretation function such that S ⊆ E.

Figure 2.1 graphically represents a transition system Mex = (A,AP,
S,R, I, L) where:

• The actions of A correspond to the labels on the arrows.

• The set AP contains four propositions g, x, y, and z.

• Each state of S is a 4-tuple (g, x, y, z) ∈ {0, 1}4 which gives a
valuation of the four propositions g, x, y, and z. The value of a
proposition p in s is noted value(s, p). Figure 2.1 represents each
state by a circle.
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• The transition relation is graphically represented by the arrows
between the states.

• The unique initial state is (0, 0, 0, 0).

• The labeling function maps each state s = (g, x, y, z) to the set of
propositions which have a value equal to 1 in s, i.e. {p ∈ {g, x, y,
z} | value(s, p) = 1}, e.g. L(0110) = {x, y}.

To be more precise, only the states which are reachable by an finite
sequence of arrows from the initial state (0000) are displayed. Those
states form the reachable state space. In general, we are only interested
in such states.

0000start

0100 0010

01100101

0111

1111

x++ y++
y--

z++ y++
y-- x++

y++
y-- z++

g++

g--
x:=y*z

x:=y*z

Figure 2.1: A Transition System where each state is a 4-tuple
(v(g), v(x), v(y), v(z)) ∈ {0, 1}4
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From a theoretical point of view, a transition system can be either
finite or infinite. In this document, a transition system is a finite transition
system when both its set of actions A and its set of of states S are finite.
When a transition system in not finite, we call it an infinite transition
system. In practice, the model checking algorithms which are presented
in this thesis explore either a finite transition system or a finite part of
an infinite transition system. Despite that, some concepts are easier to
explain on infinite transition systems than on finite ones. In the rest of
the document, the transition systems which are manipulated are finite
transition systems, except if the contrary is explicitly mentioned.

Throughout this document, we use the following concepts and nota-
tions when we reason about transition systems. In the remainder of this
section, we suppose that M = (A,AP, S,R, I, L) is a transition system,
S′ ⊆ S, and R′ ⊆ R.

• When both the set of actions A and the set of propositions AP are
not relevant to the current context, or when the context is clear,
we often write M = (S,R, I, L) instead of M = (A,AP, S,R, I, L).

• We write s a−−→R′ s
′ for (s, a, s′) ∈ R′. When the context is clear,

we write s a−−→ s′ instead of s a−−→R′ s
′.

• We write s −−→R′ s
′ as “there exists an action a ∈ A such that

(s, a, s′) ∈ R′.” When the context is clear, we write s −−→ s′ instead
of s −−→R′ s

′.

• The states s and s′ are respectively the source state and the target
state of s a−−→R′ s

′, and s −−→R′ s
′.

• An action a is enabled in a state s ∈ S with respect to R′ if and
only if there is a state s′ ∈ S such that s a−−→R′ s

′.

• The set enabled(R′, S′) is the set of enabled actions of states of S′
with respect to R′, i.e. {a ∈ A | ∃s′ ∈ S′ ·∃s ∈ S ·s′ a−−→R′ s}. When
the context is clear, we write enabled(S′) instead of enabled(R′, S′).

• A state s ∈ S′ is a dead state with respect to R′ if and only if no
actions are enabled with respect to R′ and to states of S′. We write
dead(R′, S′) for the set of dead states of S′ with respect to R′, i.e.
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{s ∈ S′ | enabled(R′, s) = ∅}. When the context is clear, we write
dead(S′) instead of dead(R′, S′).

• When a state s is a dead state with respect to the whole transition
relation R, s is a deadlock.

• If the transition relation R′ is a transition function: R′ : S×A→ S,
we say that R′ is deterministic. If R is deterministic, we say that
M is a deterministic transition system. In such a case, R(s, a)
represents the state which results from the application of R to
arguments s ∈ S and a ∈ A. If M is not deterministic, we say that
it is a nondeterministic transition system.

• The transition relation R is a total transition relation if all the
states of S have at least one enabled action. A transition relation
which is not total is a partial transition relation. In the rest
of the document, the transition systems which are manipulated
have a total transition relation, except if the contrary is explicitly
mentioned.

• The set of all successors of S′ with respect to R′, or the post-
image of S′ with respect to R′, is noted post(R′, S′). It is the set
{s ∈ S | ∃s′ ∈ S′ · s′ −−→R′ s}. When the context is clear, we write
post(S′) instead of post(R′, S′).

• The set of all the predecessors of S′ with respect to R′, or the
pre-image of S′ with respect to R′, is noted pre(R′, S′). It is the
set {s ∈ S | ∃s′ ∈ S′ · s −−→R′ s

′}. When the context is clear, we
write pre(S′) instead of pre(R′, S′).

• A transition relation R′′ ⊆ S × A × S is the inverse transition
relation of R′ if and only if for all a ∈ A and all s, s′ ∈ S, s a−−→R′ s

′

if and only if s′ a−−→R′′ s. The inverse transition relation of R′ is
noted R′−1.

• A transition system M ′′ = (A,AP, S,R′′, I, L) is an inverse transi-
tion system of M if and only if R′′ = R−1. The inverse transition
system of M is noted M−1.

• A finite trace (or finite path) of M with respect to R′ is a finite
sequence π = s0

a0−−→ s1
a1−−→ . . .

an−1−−−−→ sn such that each si of π
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belongs to S, and ∀i ∈ [0, . . . , n[ · si
ai−−→R′ si+1. The length of π

is the number of transitions of π. It is noted |π| and is equal to n.

• An infinite trace (or infinite path) of M with respect to R′ is a
infinite sequence π = s0

a0−−→ s1
a1−−→ . . . such that each si of π

belongs to S, and ∀i ∈ N · si
ai−−→ si+1. Its length is noted |π|. It

is infinite. In other words, it is equal to ∞.

• A trace π of M with respect to R′ is maximal if and only if either
it is infinite, or it is finite and its last state is dead with respect to
R′.

• Let π = s0
a0−−→ s1

a1−−→ . . .
ai−1−−−−→ si

ai−−→ si+1
ai+1−−−−→ . . . be

a finite or infinite trace, a prefix of π is a path s0
a0−−→ s1

a1−−→
. . .

ai−1−−−−→ si.

• Let π = s0
a0−−→ s1

a1−−→ . . .
ai−1−−−−→ si

ai−−→ si+1
ai+1−−−−→ . . . be a

finite or infinite trace, a suffix of π is a path si
ai−−→ si+1

ai+1−−−−→ . . . .

• Let π = s0
a0−−→ s1

a1−−→ . . .
ai−1−−−−→ si

ai−−→ . . . be a finite or infinite
trace, πi = si

ai−−→ si+1
ai+1−−−−→ . . . denotes the suffix of π starting

at si.

• The set of traces (resp. maximal traces) of M with respect to R′
and S′ is noted tr (R′, S′) (resp. mtr (R′, S′)). It is the set of all
paths (resp. maximal paths) with respect to R′ which start from a
state of S′.

• The set of traces of M of length k with respect to R′ and S′ is
noted tr (k,R′, S′). It is the set of all paths of length k with respect
to R′ which starts from a state of S′. The set of traces of M of
length k is noted tr(k,M). It is the set tr(k,R, I).

• The reachable state space of M with respect to R′ and S′ is noted
post∗(R′, S′). It is the set of states which are reachable from a
state of S′, i.e. {sk ∈ S | ∃s0 ∈ S′ · ∃π ∈ tr(R′, S′) · π = s0

a0−−→
. . .

ak−1−−−−→ sk}. The reachable state space of M is noted post∗(M).
It is the set post∗(R, I).
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• We occasionally restrict the set of initial states to a singleton.
In such a case, and when the context is clear, we write M =
(A,AP, S,R, i, L) instead of “M = (A,AP, S,R, I, L) where I is a
singleton”.

We write M v M ′ iff M is a sub-transition system of M ′, in the
following sense:

Definition 2.2 (Inclusion of transition system). Let M = (A,AP, S,
R, I, L), M ′ = (A,AP, S′, R′, I ′, L′) be two transition systems over the
same sets of actions and atomic propositions. M is a sub-transition
system of M ′, denoted M vM ′, if and only if S ⊆ S′, R ⊆ R′, I ⊆ I ′,
L(s) = L′(s) for all s ∈ S,

If M vM ′, each path of M is a path of M ′.

Lemma 2.3. if M vM ′ then tr(M) ⊆ tr(M ′).

Given a subset of AP ′ of AP , it can happen that an action a never
modifies the propositions AP ′ for all states s where it is fired. Such an
action is called an invisible action:

Definition 2.4 (Invisibility of an action). Given M = (A,AP, S,R, I, L)
a transition system, AP ′ ⊆ AP , and a action a ∈ A. The action a is
invisible with respect to AP ′ if and only if for all s, s′ ∈ S, such that
(s, a, s′) ∈ R, L(s) ∩AP ′ = L(s′) ∩AP ′. An action is visible if and only
if it is not invisible.

For instance, the action y++ of Figure 2.1 is invisible with respect
to APi = {g, x}. But it is visible with respect to the set APi = {x, y}
because (0000) y++−−−→ (0010), L(0000)∩{x, y} = ∅, and L(0010)∩{x, y} =
{y}.

2.1.1 Computation Tree

Given a transition system M and one of its states s, a computation tree
which represents all the execution paths from s can be built. It is a
transition system. Its transition relation forms a tree. It contains a
root “equivalent” to s. It is generated by unwinding M from the root
state into a tree [AU73]. It can also be seen as a kind of labelled prefix
tree [KNU73] constructed from all the paths of M which start at s.
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Definition 2.5 (Computation Tree). Given a transition system M = (S,
R, I, L), a state s ∈ S of M, and a transition system Mct = (Sct, Rct,
{sct} , Lct). Mct is a computation tree of M if and only if Rct is a tree,
and there is a bijective function B from mtr(M) to mtr(Mct) which
satisfies the following condition:

For all π = s0
a0−−→ s1

a1−−→ . . . and π′ = s′0
a0−−→ s′1

a1−−→ . . . such
that B(π) = π′:

(1) |π| = |π′|, and

(2) ∀i ∈ [0, . . . , |π|[·L(si) = Lct(s′i).

Figure 2.2 shows a part of the Mex computation tree which is derived
from (0000).

0000start

0100

0101 0110

0010

0000 0110

x++ y++

z++ y++ y-- x++

...
...

...
...

...
...

...

Figure 2.2: Mex’s Computation Tree

We notice that a finite transition system M generally induces an
infinite computation tree. It arises when there exists at least one infinite
path from s. In other words, it arises when M contains a cycle. In
particular, it always happens when R is total. Conversely, an a priori
infinite transition system M can induce a finite computation tree. It only
happens when there is a finite number of finite paths which start at s.
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We point out that for each s there is a “unique” computation tree. More
rigorously, for each s it is possible to derive at least one computation by
unrolling M from the tree root. Moreover, if from s two computation
trees Mct1 and Mct2 are derived, Mct1 and Mct2 are isomorphic, in the
sense that there exists a bijection from post∗(Mct1) to post∗(Mct2) such
that when two states are correlated by f , they share the same labeling.
We write CT (M) for designating the “unique” computation tree of M.

Finally, we stress that roughly speaking M and its computation tree
have exactly the same behavior (c.f. Section 2.3.4). The first part of
the next section presents the Computation Tree Logic CTL∗. Given a
transition system M , it describes properties of CT (M).

2.2 Temporal Logics
In this document, we express the properties to be verified on a transition
system in temporal logics. We consider either the Computation tree Logic
(CTL) or the Linear Temporal Logic (LTL). Both are extensions of the
propositional calculus. They define the X, F, G and U operators to reason
about paths. Two quantifiers A and E are also added. Intuitively, given a
states s and a temporal property f , Af states that all paths which start
from s respect f , Ef states there exists a path from s which satisfies f .
Given the path π, Xf (next f) states that f holds in the second state
of π, Gf (globally f) states that f holds in all states of π, Ff (finally
f) states that f holds in some state of π, f U g (f until g) states that g
holds in some state si of π and, for all previous states of si, f holds.

2.2.1 Syntax of CTL*

Before explaining CTL and LTL, we describe the syntax and the semantic
of CTL∗. Actually, CTL and LTL are two different CTL∗ sublogics.
CTL∗ allows one to define two types of formulae: state formulae and path
formulae. The truth value of a state formula is evaluated on a specific
state, while the truth value of a path formulae depends on a specific path.
Let AP be a set of atomic propositions. A formula is a CTL∗ formula if
and only if it is a finite formula which can be derived from the syntax
below. The syntax of a state formula is given by the following rules:

(1) The symbols true and false are state formulae.
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(2) For all p ∈ AP , p is a state formula.

(3) If g1 is a state formula, ¬g1 is a state formula.

(4) If g1 and g2 are state formulae, g1 ∧ g2, and g1 ∨ g2 are state
formulae.

(5) If p1 is a path formula, Ap1 and Ep1 are state formulae.

The syntax of a path formula is given by the following rules:

(6) If g1 is a state formula, then g1 is also a path formula.

(7) If p1 is a path formula, then ¬p1, X p1, F p1, and G p1 are path
formulae.

(8) If p1 and p2 are path formulae, then p1 ∨ p2, p1 ∧ p2, and p1 U p2
are path formulae.

Invisibility of a transition with respect to a property f

The notion of invisible transitions with respect to a set of propositions
(c.f. Definition 2.4) can be extended to CTL∗ properties.

Definition 2.6 (Invisibility of a transition with respect to a property
f). Given M = (A,AP, S,R, I, L) a transition system, an action a ∈ A,
and a CTL∗ property f . The transition a is invisible with respect to f
if and only if a is invisible with respect to the set of propositions which
appear in f .

In the rest of this section, we suppose that:

• M = (A,AP, S,R, I, L) is a transition system such that R is total,
and

• s is a state of S, and

• π is an infinite path of M , and

• g1 and g2 are two state formulae defined on AP , and

• p1 and p2 are two path formulae defined on AP .
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2.2.2 Semantics of CTL*

The notation M, s |= g1 (resp. M, s 6|= g1) means that the state formula
g1 holds (resp. not hold) in s. The notation M |= g1 (resp. M 6|= g1)
means that the state formula g1 holds (resp. not hold) for all the initial
states of M , i.e. for all i ∈ I. The notation M,π |= p1 (resp. M,π 6|= p1)
means that the path formula p1 holds (resp. not hold) along π. The
notation M |= p1 (resp. M 6|= p1) means that the path formula p1 holds
(resp. not hold) along all paths of M . When either M is not relevant, or
the context is clear we write s |= g1 (resp. π |= p1), instead of M, s |= g1
(resp. M,π |= p1). The language of the state formula g1 is noted L(g1).
It is the set of states which satisfy g1, i.e. {s ∈ S | M, s |= g1}. The
language of the path formula p1 is noted L(p1). It is the set of M paths
which satisfies p1, i.e. {π ∈ tr(M) |M,π |= p1}. The semantics of CTL∗
is now defined:

(1) M, s |= true.

(2) M, s 6|= false.

(3) M, s |= p⇔ p ∈ L(s).

(4) M, s |= ¬g1 ⇔M, s 6|= g1.

(5) M, s |= g1 ∧ g2 ⇔M, s |= g1 and M, s |= g2.

(6) M, s |= g1 ∨ g2 ⇔M, s |= g1 or M, s |= g2.

(7) M, s |= E p1 ⇔ there is an infinite path π starting at s such that
M,π |= p1.

(8) M, s |= A p1 ⇔ for every infinite path π starting from s,
M,π |= p1.

(9) M,π |= g1 ⇔M, s0 |= g1, where s0 is the first state of π.

(10) M,π |= ¬p1 ⇔M,π 6|= p1.

(11) M,π |= p1 ∧ p2 ⇔M,π |= p1 and M,π |= p2.

(12) M,π |= p1 ∨ p2 ⇔M,π |= p1 or M,π |= p2.
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(13) M,π |= X p1 ⇔M,π1 |= p1.

(14) M,π |= F p1 ⇔ there exists a k ∈ N such that M,πk |= p1.

(15) M,π |= G p1 ⇔ for all k ∈ N, M,πk |= p1.

(16) M,π |= p1 U p2 ⇔ there exists a k ∈ N, such that the following
conditions hold:

(a) M,πk |= p2, and
(b) for all j ∈ [0, . . . , k[, M,πj |= p1.

The CTL∗X logic is the fragment of CTL∗ which consists of all
the CTL∗ formulae which do not contain any X operator. It is show
in [CGP99] that the operators ∨, ¬, X, U, and E are sufficient to express
any other CTL* formulae. Actually, if f1 and f2 are CTL* formulae. the
following equivalences are valid:

(1) The formula f1 ∧ f2 is equivalent to the formula: ¬(¬f1 ∨ ¬f2).

(2) The formula Ff1 is equivalent to the formula: true U f1.

(3) The formula Gf1 is equivalent to the formula: ¬F ¬f1.

(4) The formula Af1 is equivalent to the formula: ¬E ¬f1.

We now describe two sublogics of CTL*, the Computation Tree Logic
CTL, and the Linear Temporal Logic LTL. Given a transition system M ,
the former reasons about the whole computation tree (c.f. Section 2.1.1)
of M , while the latter reasons about the traces of M .

CTL In CTL, every temporal operator F, G, U, and X has to be
preceded by a path quantifier, i.e A, and E. More formally, the syntax
of CTL is the same as the one of CTL* but without rule (6). Besides,
rule (7) and rule (8) are replaced by the following ones:

(7) If p1 is a state formula, then X p1, F p1, and G p1 are path formulae.

(8) If p1 and p2 are state formulae, then p1 U p2 is a path formula.



22 Background

Finally, a CTL formula has to be a state formula.
For instance, the property AG EF g is a well-formed CTL formula, but

¬Fg is not. Besides, the transition system Mex verifies AG EF g. Actually,
all the Mex reachable states satisfy EF g, and so all the paths from (0000)
satisfy AG EF g. The CTLX logic is the fragment of CTL which consists
of all the CTL formulae which do not contain any X operators.

LTL In LTL, each formula has the form p1 where p1 does not contain
any path quantifiers. It is evaluated to true if and only if M |= A p1.
In other words, a transition system M satisfies p1 if and only if all the
traces of M satisfy p1. Formally, the syntax of LTL is defined with the
same syntax as the one of CTL* but without rule 5. For instance, FG g
is a LTL formula which is not verified by Mex. Actually, the Mex path
(0000) y++−−−−→ (0010) y−−−−−−→ (0000) y++−−−−→ (0010) y−−−−−−→ (0000) . . . does
not contain any states si such that g ∈ L(si). So, it cannot satisfy the
property FG g. As CTLX , LTLX is the fragment of LTL which consists
of all the LTL formulae which do not contain any X operators.

It is shown in [CD89] that the CTL logic and the LTL logic are not
comparable, i.e. they have different expressive powers. For instance,
there is no corresponding LTL formula of the CTL formula AG EF g,
and it is impossible to translate the LTL formula FG g into CTL. The
conjunction of the two previous formulae (AG EF p) ∧ (AFG g) is a CTL*
formula but it is not expressible in either LTL or CTL.

2.3 Bisimulation Relations
Intuitively, two transition systems M and M ′ are bisimilar with respect
to a class of properties, when M and M ′ respect the same properties
of this class. More precisely, a simulation is a binary relation between
the states (or the paths) of two transition systems M and M ′. It
connects the states (or the paths) of M to the states (or the paths) of
M ′ such that the former respect the same properties as the latter. If
there exists a single relation that is a simulation from M to M ′ and a
simulation from M ′ to M , there is a bisimulation between M to M ′. We
say that M and M ′ are bisimilar. For instance, minimization modulo
bisimulation techniques are used in model checking to reduce the number
of states of M while preserving some kinds of properties, e.g. deadlocks,
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LTLX , or CTLX . The literature proposes a large number of variants
of bisimulation relations [GKPP99, Mil89]. This section describes four
kinds of bisimulation relations used in the sequel.

2.3.1 The Stuttering Equivalence

This section introduces the stuttering equivalence. It is the least re-
strictive bisimulation presented in this chapter. It preserves LTLX

properties [CGP99]. Intuitively, given a LTLX property f and two transi-
tion systems M and M ′ which are stutter-equivalent, M contains a path
π which violates f if and only if M ′ contains a path π′ which violates f .

Definition 2.7 (Stuttering Equivalence [CGP99]). Given a set AP ′ ⊆
AP of propositions which appears in f , two transition systems M = (A,
AP, S,R, I, L) and M ′ = (A′, AP, S′, R′, I ′, L′) are stuttering equivalent
if and only if the following conditions hold:

(1) For every infinite path π of M that starts at a i ∈ I, there is an
infinite path π′ in M ′ that starts at a i′ ∈ I ′, a partition P1, P2, . . .
of π, and a partition Q1, Q2, . . . of π′ such that for each i ≥ 0,
Pi and Qi are nonempty and finite, and all states s ∈ Pi have
the same labeling with respect to AP ′ as every state in Qi, i.e.
∀s ∈ Pi · ∀s′ ∈ Qi · L(s) ∩AP ′ = L′(s′) ∩AP ′.

(2) For every infinite path π′ of M ′ that starts at a i′ ∈ I ′, there is an
infinite path π in M that starts at a i ∈ I, a partition Q1, Q2, . . .
of π′, and a partition P1, P2, . . . of π such that for each i ≥ 0,
Qi and Pi are nonempty and finite, and all states s ∈ Qi have
the same labeling with respect to AP ′ as every state in Pi, i.e.
∀s ∈ Qi · ∀s′ ∈ Pi · L′(s′) ∩AP ′ = L(s) ∩AP ′.

2.3.2 The Stuttering Bisimulation

This section is devoted to the stuttering bisimulation which is stronger
than stuttering equivalence. It preserves CTL∗X properties [BCG88]. On
the one hand, stuttering equivalence connects the paths of two transition
systems M and M ′. On the other hand, stuttering bisimulation connects
the states of M to the states of M ′.
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Definition 2.8 (Stuttering Bisimulation [GKPP99]). Given a set AP ′ ⊆
AP of propositions, a relation B ⊆ S × S′ is a stuttering simula-
tion relation between two structures M = (A,AP, S,R, I, L) and M =
(A′, AP, S′, R′, I ′, L′) if and only if for every s ∈ S, s′ ∈ S′ such that
(s, s′) ∈ B, the following conditions hold:

(1) L(s) ∩AP ′ = L′(s′) ∩AP ′

(2) For every infinite path π of M that starts at s, there is a infinite
path π′ in M ′ that starts at s′, a partition P1, P2, . . . of π, and a
partition Q1, Q2, . . . of π′ such that for each i ≥ 0, Pi and Qi are
nonempty and finite, and every state in Pi is related by the relation
B to every state in Qi.

B is a stuttering bisimulation relation if and only if both B and its
inverse relation B−1 are stuttering simulations. M andM1 are stuttering-
bisimilar if and only if there is a stuttering-bisimulation relation B such
that

(3) ∀i ∈ I · ∃i′ ∈ I ′ · (i, i′) ∈ B, and

(4) ∀i′ ∈ I ′ · ∃i ∈ I · (i, i′) ∈ B.

2.3.3 The Visible Bisimulation

This section introduces the visible bisimulation. It preserves CTL∗X
properties and action-based logics such as Hennessy-Milner logic and its
derivatives [HM85]. Thus, it also preserves CTLX and LTLX properties.
Intuitively, the visible-bisimulation associates two states s and s′ that
are impossible to distinguish, in the sense that if from s a visible action
a is attainable in the future, a also belongs to future of s′. In [GKPP99],
it is shown that a visible bisimulation is also a stuttering bisimulation.

Definition 2.9 (Visible-Bisimulation [GKPP99]). Given a set AP ′ ⊆
AP of propositions, a relation B ⊆ S × S′ is a visible-simulation
relation between two structures M = (A,AP, S,R, I, L) and M ′ =
(A,AP, S′, R′, I ′, L′) if and only if for every s ∈ S, s′ ∈ S′ such that
(s, s′) ∈ B, the following conditions hold:

(1) L(s) ∩AP ′ = L′(s′) ∩AP ′
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(2) Let s a−−→ t. There are two cases:

If a is invisible with respect to AP ′, then there exists a path
s′ = s′0

b0−−→ s′1
b1−−→ . . .

bn−1−−−−→ s′n in M ′, such that (s, s′i) ∈ B
for 0 ≤ i < n, B(t, s′n), and bi is invisible with respect to AP ′
for 0 ≤ i < n.

If a is visible with respect to AP ′, then there exists a path s′ =
s′0

b0−−→ s′1
b1−−→ . . .

bn−1−−−−→ s′n
a−−→ s′n+1 in M ′, such that

(s, s′i) ∈ B for 0 ≤ i ≤ n, B(t, s′n+1), and bi is invisible with
respect to AP ′ for 0 ≤ i < n.

(3) If there is an infinite path s = s0
a0−−→ s1

a1−−→ . . . in M , where
all ai are invisible with respect to AP ′ and B(si, t) for i ≥ 0, then
there exists a transition s′ b−−→ t′ such that b is invisible, and for
some j > 0, B(sj , t

′)

B is a visible bisimulation relation if and only if both B and its
inverse relation B−1 are visible simulations. M and M ′ are visibly-
bisimilar if and only if there is a visible bisimulation relation B such
that

(3) ∀i ∈ I · ∃i′ ∈ I ′ · (i, i′) ∈ B, and

(4) ∀i′ ∈ I ′ · ∃i ∈ I · (i, i′) ∈ B.

The transition system in Figure 2.3 (a) and 2.3 (b) are visibly-
bisimilar. To see this, we construct the relation which puts together
states of Figure 2.3 (a) and states of Figure 2.3 (b) that are linked
together by a dashed line. The actions a and b can be executed in any
order leading to the same result, from the standpoint of verification.
Figure 2.3 (a) and Figure 2.3 (c) are not visibly-bisimilar, the sate 12
in Figure 2.3 (c) does not correspond to any states in Figure 2.3 (a).
Moreover, state 14 is not visibly-bisimilar to state 3 because they do not
have the same labeling.

2.3.4 Bisimulation Equivalence

Bisimulation equivalence is the classical notion [Mil89], here adapted to
transition systems by requiring identical state labelings, which ensures
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Figure 2.3: Visibly-bisimilar and not visibly-bisimilar structures

that CTL∗ properties are preserved [CGP99]. Intuitively, bisimulation
equivalence groups states that are impossible to distinguish, in the sense
that both have the same labeling and offer the same transitions leading
to equivalent states.

Definition 2.10 (Bisimulation Equivalence). Let M = (A,AP, S,R, I,
L) and M = (A,AP, S′, R′, I ′, L′) be two transition systems. A relation
B ⊆ S × S′ is a bisimulation equivalence relation between M and M ′ if
and only if for all s ∈ S and all s′ ∈ S′:

(1) if (s, s′) ∈ B, then L(s) = L′(s′), and

(2) if (s, s′) ∈ B and (s, a, t) ∈ R then there is a state t′ ∈ S′ such that
(s′, t′) ∈ B and (s′, a, t′) ∈ R′.

(3) if (s, s′) ∈ B and (s′, a, t′) ∈ R′ then there is a state t ∈ S such
that (s, t) ∈ B and (s, a, t) ∈ R′.

M and M ′ are bisimulation equivalent if and only if there exists a
bisimulation equivalence relation B such that the two following conditions
hold:

(3) ∀i ∈ I · ∃i′ ∈ I ′ · (i, i′) ∈ B, and



2.4. Partial-Order Reduction 27

(4) ∀i′ ∈ I ′ · ∃i ∈ I · (i, i′) ∈ B.

We notice that unwinding a transition system results in a bisimulation-
equivalent structure. Given a transition system M , and its computation
tree CT (M), M and CT (M) are bisimulation-equivalent [CGP99].

Figure 2.4 (a) and Figure 2.4 (b) are bisimulation-equivalent. For
each dashed oval, we can group together every state of Figure 2.4 (b) to
state of Figure 2.4 (a) (e.g. B(1, 3)). On the other hand, Figure 2.4 (a)
and Figure 2.4 (c) are not bisimulation-equivalent because state 7 in
Figure 2.4 (c) does not correspond to any states in Figure 2.4 (a).
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Figure 2.4: Bisimilar and nonbisimilar structures

2.4 Partial-Order Reduction
The goal of partial-order reduction methods (POR) is to reduce either
the number of states or the number of interleavings which are explored by
model-checking. They try to avoid the exploration of different equivalent
interleavings of concurrent transitions [CGP99, GKPP99, God96, NG02,
Val90, WW96]. Partial order reduction is based on the notions of visibility
(c.f. Definition 2.4 and Definition 2.6) of actions and independence between
actions. Two actions are independent if they do not disable one another
and executing them in either order results in the same state.

Definition 2.11 (Independence of two actions). Given M = (A,AP,
S,R, I, L), a deterministic transition system, and two distinct actions
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a, b ∈ A. The actions a and b are independent if and only if for all s ∈ S
the two following conditions hold:

(1) if a, b ∈ enabled(s) then a ∈ enabled(R(s, b)) and b ∈ enabled(R(s,
a)), and

(2) if a, b ∈ enabled(s) then R(R(s, a), b) = R(R(s, b), a).

Figure 2.5 draws a transition system which contains two independent
transitions a and b. Furthermore, transition a is invisible with respect
to the formula f = Fp, while transition b is visible with respect to f
because L(s0) 6= L(s2).

s0

p ∧ q

s1

p ∧ q
s2

p ∧ ¬q

s3

p ∧ q

a

b

b

a

Figure 2.5: Two independent transitions

Intuitively, if two independent actions a and b are invisible with
respect to the property f that one wants to verify, it does not matter
whether a is executed before or after b. Actually, they lead to the same
state and do not affect the truth of f . Partial order reduction consists
in identifying such situations and restricting the exploration to either
of these two alternatives. The following section develops the concept of
partial order reduction in more detail.

2.4.1 A Modified Depth-First Search Algorithm

Given a deterministic transition system M = (A,AP, S,R, I, L), POR
amounts to exploring a reduced model MR = (A,AP, SR, RR, I, L), i.e
MR is a sub-transition system of M . In practice, most POR algorithms
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[God96, CGP99] execute a modified depth-first search (DFS) algorithm
(c.f. Algorithm 2.6). At each state s, it does not consider all the enabled
actions in s, but instead it only considers a subset ample(s) of the enabled
actions in s. This subset is called an ample-set.

To ensure that the verification results on the reduced model MR

hold for the full model M , ample(s) must respect some conditions.
Those conditions depend on the type of properties that have to be
preserved [CGP99, GKPP99]:

C0 ample(s) = ∅ if and only if enabled(s) = ∅.

C1 Along every path in the full state graph M that starts at s, an action
a /∈ ample(s) that is not independent on an action in a′ ∈ ample(s)
cannot occur without an action in a′′ ∈ ample(s) occurring first.

Conditions C0, and C1 are sufficient to guarantee that the reduced
model contains a deadlock if and only if the original model contains a
deadlock as well. In the literature, notably in [God96], when the set
ample(s) respects the two conditions C0 and C1, it is called a persistent
set.

Theorem 2.12 (c.f. [God96]). Given a transition system M (and any
property f), if MR = reduce(M,f) is a POR reduction of M using an
ample(s) that satisfies the two conditions C0 and C1, then M contains
a reachable state which is a deadlock if and only if MR contains a state
which is a deadlock.

In order to check more elaborated properties than deadlocks the
following conditions have been added:

C2 If ample(s) 6= enabled(s), then all actions in ample(s) are invisible.

C3 A cycle in MR is not allowed if it contains a state in which some
action is enabled in M , but is never included in ample(s) on the
cycle.

Conditions C0, C1, C2 and C3 are sufficient to guarantee that the
reduced model preserves properties expressed in LTLX , but does not
preserve properties expressed in LTL, CTL, or CTLX .
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Algorithm 2.6: A Selective DFS

Header: Reduce(M)

Precondition: M = (A, AP, S, R, i, L) is a deterministic transition
system.

Result: MR = (A, AP, S, RR, i, L) a reduced transition system.

Source code:

1 global Visited ⊆ S := ∅
2 global RR ⊆ R := ∅
3 global Stack := an empty stack of states
4
5 Reduce (M) {
6 dfs(i);
7 return (A, AP, Visited, RR, i, L)
8 }
9
10 dfs(s) {
11 local Succ ⊆ S := ample(s)
12 push(Stack, s)
13
14 while(Succ 6= ∅) {
15 local a ∈ A := an action of Succ
16 Succ := Succ \ {a}
17
18 RR := RR ∪ {s

a−−→ R (s, a)}
19
20 if(R(s, a) is not in Visited nor in Stack){
21 dfs(R(s, a))
22 }
23 }
24 pop(Stack, s)
25 Visited := Visited ∪ {s}
26 }
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Theorem 2.13 (c.f. [CGP99, GKPP99]). Given a transition system M ,
and a LTLX property f , if MR = reduce(M,f) is a POR reduction of
M using an ample(s) that satisfies conditions C0–C3, then M |= f if
and only if MR |= f .

An additional condition is necessary to ensure preservation of branch-
ing temporal logics.

C4 If ample(s) 6= enabled(s), then ample(s) is a singleton.

When conditions C0–C4 are fulfilled, [GKPP99] shows that there is
a visible bisimulation (c.f. 2.3.3) between the complete and reduced
models, which ensures preservation of CTL∗X logics. By consequence,
CTLX properties are also preserved.

Theorem 2.14 (c.f. [GKPP99]). Given a transition systemM , a CTL∗X
property f , if MR = reduce(M,f) is a POR reduction of M using an
ample(s) that satisfies conditions C0–C4, then M |= f if and only if
MR |= f .

Conditions C1 and C3 depend on the whole state graph M . C1 is
not directly exploitable in a verification algorithm. It is at least as
hard to check condition C1 as computing the reachable state space of
the original transition system [CGP99]. Instead, one uses sufficient
conditions, typically derived from the structure of the model description,
to safely decide where reduction can be performed. For instance, in the
Spin model checker context, it is derived from the Promela semantics
that an assignment which only manipulates local variables and constant
values defines a transition which satisfies condition C1 [Hol97].

Condition C1 is elaborated with the objective to obtain an ample set
that is as small as possible. In [God96], it is shown that choosing the
smallest ample(s) at each step is well-suited to partial order reduction.
Often, it allows one to generate a reduced system which is substantially
smaller.

Contrary to C1, C3 can be checked on the reduced graph, though in
a nontrivial way. Hence, the following condition which is stronger than
C3 is often employed [CGP99, GKPP99]:

C3b At least one state along each cycle of MR is fully expanded.
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We notice that a broad range of variations around those conditions
have been studied [HGP92, ELLL04]. For instance, conditions C0, C1 and
C3c, which is defined below, are sufficient to preserve invariance of local
properties. It is a subclass of reachability properties [ABH+97, HGP92].

C3c If a state s is not fully expanded, then at least one transition in
ample(s) does not lead to already visited states.

2.4.2 Process Model

In this section we define a process model. It is an extension of a transition
system (c.f. Section 2.1). A process model is a set of subsets of actions
{A0, A1, . . . , Am−1}. Intuitively, we use the Ai’s to construct the ample-
sets which were defined in the previous section. More precisely, given a
state s and a set of actions Ai, ample(s) will be equal to enabled(s)∩Ai.
In our prototype tool Milestones presented in Chapter 6, we will define
a transition system by means of a programming language which allows
one to model one or more processes which communicate together. Given
a system described with this language, we generate a process model, and
we use this process model when we perform partial-order reduction.

Definition 2.15 (Process Model). Given a deterministic transition
system M = (A,AP, S,R, I, L), a process model for M consists of a
finite set of sets of actions {A0, A1, . . . , Am−1} with Ai ⊆ A. Besides, for
each Ai, a transition relations Ri is defined as Ri = R ∩ (S ×Ai × S).

Definition 2.16 (Safe Process Model). A process model is safe with
respect to M and a CTL∗ property f if and only if for all Ai and
for all a ∈ Ai, a is invisible with respect to f , and for all s ∈ S,
ample(s) = enabled(Ri, s) satisfies condition C1. In such a case, we say
that all a ∈ Ai are safe.

Definition 2.17 (Linear Process Model). A process model is linear with
respect to M if and only if for all s ∈ S, ample(s) = enabled(Ri, s) is a
singleton.

In the sequel, when no confusion is possible, we write a transition
system M = (A,AP, S,R, I, L) with a safe process model {R0, R1, . . . ,
Rm−1} to define a transition system M which is accompanied by a
property f , a finite set of disjoint sets of actions {A0, A1, . . . , Am−1},
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and a finite set of transition relations {R0, R1, . . . , Rm−1} such that this
process model is safe with respect to M and f . We proceed in the same
way for a linear process model.

2.4.3 Forming-path

In this section, we present a theorem which will be intensively exploited
in the sequel to perform partial-order reduction. Moreover, the modified
DFS algorithm presented in Algorithm 2.6 which respects the conditions
C0, C1, C2, C3b, and C4 can be seen as a direct application of this
theorem. Given a transition system M with a safe and linear process
model {R0, R1, . . . , Rm−1} and a transition system MR which is a sub-
transition system of M , R. Gerth et al. states that if from each state of
MR starts a path s0

a0−−→ s1
a1−−→ . . .

an−1−−−−→ sn such that all the actions
aj belong to a subset Ai and ample(sn) = enabled(sn), then MR is
visible-bisimilar to M , and so MR preserves CTL∗X properties [GKPP99].
Before presenting the theorem itself, we introduce some useful definitions.

A forming-path from s0 to sn is a path which is only composed of
actions belonging to a process model.

Definition 2.18 (Forming Path). Let M = (A,AP, S,R, I, L) be a
transition system accompanied by a process model {R0, . . . , Rm−1}. Let
s0 and sn be two states of S. The path s0

a0−−→ s1
a1−−→ . . .

an−1−−−−→ sn is
a forming path if and only if for all ai there exists a set Aj(i) such that
ai ∈ Aj(i).

A state s is a fully-forming state when each path which starts from s
begins with a forming path which leads to a completely expanded state.

Definition 2.19 (Fully-forming State). Let M = (S,R, I, L) and MR =
(SR, RR, IR, LR) be two transition systems such that MR vM . Let s be
a state of SR. The state s is a fully forming state with respect to R if and
only if all paths which start from s begin by a prefix π = s

a0−−→ s1
a1−−→

. . .
an−1−−−−→ sn such that π is a forming path and sn is fully expanded with

respect to R, i.e. enabled(R, {sn}) = enabled(RR, {sn}).

We are now able to express the main theorem which is presented in
[GKPP99]. We point out that the theorem is paraphrased according to
the notations and the definitions of this document.



34 Background

Theorem 2.20 (c.f [GKPP99]). Let M = (S,R, I, L) and MR = (SR,
RR, IR, LR) be two transition systems such that MR vM . Let {R0, . . . ,
Rm−1} be a safe and linear process model of M . If each state of MR is
a fully forming state then MR is visible-bisimilar to M .

Theorem 2.21 (c.f [CGP99]). Let M = (S,R, I, L) and MR = (SR,
RR, IR, LR) be two transition systems such that MR vM . Let {R0, . . . ,
Rm−1} be a safe process model of M . MR is stuttering equivalent to M
if each state of MR is a fully forming state,

2.5 BDD-based Model Checking

2.5.1 Backward Symbolic Model-Checking of CTL

This section is devoted to the so-called backward symbolic model checking
algorithm introduced in [BCM+92] and applied in mainstream BDD-
based model checkers as NuSMV [CCGR99]. The backward symbolic
model checking algorithm supposes a transition system M = (S,R, I, L),
and takes as input a CTL formula f . It returns true or false depending
on M verifies f or not, i.e. it checks whether M |= f . It starts by finding
the set of all states which satisfy f , i.e. L(f). Then, it checks whether I
is incluced to L(f). The algorithm is seen as backward search because
the navigation from states to states is performed with the pre-image
operation.

We present the eval algorithm which finds the set of all states which
satisfy a CTL property f . It is a recursive algorithm which proceeds by
induction on the structure of the formula. f . It uses three sub-problems:
evalEX, evalEU, evalEG. They find the set of all the states witch satisfy
f when f has the form EG g, E [g U h], or EX g.

Those three algorithms are based on the following equivalences ex-
pressed in the fixed-point calculus. The notation µZ.τ(Z) and νZ.τ(Z)
denotes the least fixed point and the greater fixed point of the set trans-
former τ . For more details, we refer the reader to [CGH97].

L(EXf) = pre(L(f)) (2.1)
L(E[f U g]) = µZ · [(L(f) ∩ pre(Z)) ∪ L(g)] (2.2)
L(EGf) = νZ · [L(f) ∩ pre(Z)] (2.3)
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Here are the specifications of the sub-problems evalEX, evalEU,
evalEG.

• evalEX takes as input a set of states F and returns the pre-image
pre(F ).

• evalEU takes as input two sets of states F , and G and returns the
least fixed point: µZ · [(L(f) ∩ pre(Z)) ∪ L(g)].

• evalEG takes as input a set of states f and returns the greater
fixed point: νZ · [L(f) ∩ pre(Z)].

The recursive eval algorithm which finds the states satisfying f is pre-
sented in Algorithm 2.7.

2.5.2 Forward Symbolic Model-Checking of CTL

In [INH96], H. Iwashita et al. present a model-checking algorithm based
on forward state traversal, which is shown to be more effective than back-
ward state traversal in many situations. Forward traversal is applicable
only to a subset of CTL, but can be combined with backward traversal
for the rest of the formulae.

Given a CTL formula f and a set of initial sates I, backward BDD-
based symbolic model-checking can be described as evaluating L(f) over
the sub-formulas of f in a bottom-up manner, and checking whether
I ⊆ L(f), or equivalently, whether I ∩ L(¬f) is empty.

H. Iwashita et al. introduce a forward exploration by transforming a
“set emptiness problem”H∩L(op0(f)) = ∅ into another oneHop1∩L(f) =
∅. The former contains a ”future” CTL operator op0 in the right term.
In the latter, op0 is transformed into a kind of “past operator” op1. It is
used to compute a new left set of states Hop1 .

Given two sets of states H and F , the following equivalence over
states are defined. Equation 2.4 (resp. Equation 2.5) is the backward (or
past) version of Equation 2.2 (resp. Equation 2.3).

FwdUntil(H,F ) = µZ.[H ∪ post(Z ∩ F )] (2.4)
EH(F ) = νZ.[F ∩ post(Z)] (2.5)

FwdGlobal(H,F ) = EH(FwdUntil(H,F ) ∩ F ) (2.6)
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Algorithm 2.7: The eval algorithm

Header: eval(f)

Global: A transition system M = (S,R, I, L)

Precondition: f is a (reduced as in Section 2.2.2) CTL formula.

Result: The set of states which satisfy f .

Induction Parameter: The size of f .

Source code: The implementation proceeds by induction on the
structure of the formula f .

• If f is an element p of AP ,
eval(f) = L(p).

• If f has the form ¬g,
eval(f) = S \ eval(g).

• If f has the form g ∨ h,
eval(f) = eval(g) ∪ eval(h).

• If f has the form EX g,
eval(f) = evalEX(eval(g)).

• If f has the form E(g U h),
eval(f) = evalEU(eval(g), eval(h)).

• If f has the form EG g,
eval(f) = evalEG(eval(g)).
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FwdUntil (H,F ) computes the set of all states s which belong to a path
having the following form: s0

a0−−→ s1
a1−−→ . . .

an−1−−−−→ s where s0 ∈ H and
∀i ∈ [1, . . . , n[·si ∈ F . Intuitively, the FwdUntil function compute a kind
of reversed EU operator. Given a transition M and its reverse transition
system M−1, if M, si |= E[f U g] then si ∈ FwdUntil (L (g) ,L (f)) when
FwdUntil(L(g),L(f)) is computed on M−1. The reverse is not totally
true, because si might satisfy neither f nor g, but M, si |= (E [f U g]) ∨
EX E [f U g].

EH (F ) computes the set of all states s from which it is possible to go
back indefinitely within F . It means that there exists from s an infinite
“reverse path”: s = s0

a0←−− s1
a1←−− s2

a2←−− . . . where ∀i ∈ N · si ∈ F .
The EH function computes a kind of reversed EG operator. Actually,
given a transition M , its reverse transition system M−1, and a CTL
property f , (M, si) |= EG f if and only if si ∈ EH(L(f)) when EH(L(f))
is computed on M−1.

On this basis, the following equivalences are established:

H ∩ L(EX f) = ∅ ⇐⇒ post(H) ∩ L(f) = ∅ (2.7)
H ∩ L(E[f U g]) = ∅ ⇐⇒ FwdUntil(H,L(f)) ∩ L(g) = ∅ (2.8)

H ∩ L(EG f) = ∅ ⇐⇒ EH (FwdUntil(H,L(f)) ∩ L(f)) = ∅ (2.9)

Given a transition system M , and a CTL property f , the trans-
formation process starts from I ∩ L(¬f) = ∅. The equivalences above
are applied recurrently until the right part cannot be reduced further,
either because all temporal operators have been eliminated or because
no rule applies to those remaining. Disjunctions in f can also be handled
by case-splitting. Given the final H ∩ L(f) = ∅, H is computed using
forward traversal, and the resulting set of states is used as the new set
of initial sates for a classical, backward model-checking of the remain-
ing f . For instance, it is impossible to translate the following formula
I ∩L(AG EF p) = ∅. Actually, the translation procedure finishes with the
formula FwdUntil(I,L(true)) ∩ L(¬EF p) = ∅ because there remain no
other rules to apply. FwdUntil(I,L(true)) is computed in a forward way,
while L(¬EF p) is computed is a backward way.

By using these equivalences, it is possible to replace an outermost
EX, EU or EG operator in f with a forward traversal operator in I. For
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instance, one can derive the following equivalence:

I ∩ L(AG(req → AF ack)) = ∅ ⇐⇒
FwdGlobal((FwdUntil(hs, true) ∧ req),¬ack) = ∅

2.5.3 Representing a Transition System

In classical BDD-based model checking, the sets of states and the tran-
sition relations which are manipulated by the different algorithms are
encoded by means of Ordered Binary Decision Diagrams (BDDs). BDDs
are a canonical form representation for propositional formulae [Bry86]. It
is a rooted and directed acyclic graph (DAG) which consists of decision
nodes and two terminal nodes called 0-terminal and 1-terminal. Each
decision node is labeled by a Boolean variable and has two child nodes
called low child and high child. The edge from a node to a low or high
child represents an assignment of the variable to 0 or 1. Such a BDD
is called ordered if different variables appear in the same order on all
paths from the root. A BDD is said to be reduced if it respects the two
following properties [CGP99] hold:

(1) the graph does not contain two isomorphic subgraphs, and

(2) the graph does not contain node whose children are isomorphic.

To explain how a finite transition system can be encoded into BDDs,
we suppose a high level description of transition system M = (A,AP, S,
R, I, L) which is finite and so S, A, and AP are finite sets. Because S
is finite, each state of S can be encoded as a binary number of length
m ≈ log2(#S), and so S can be encoded with a set Sb of m Boolean
variables. In the same way, A can be encoded with a set Ab of Boolean
variables. The set of proposition AP does not need to be encoded because
it already contains Boolean variables. Finally, M itself can be translated
into a new transition system Mb = (Ab, AP, Sb, Rb, Ib, Lb) where Rb, Ib,
and Lb refer to Ab and Sb instead of A and S. The BDDs are used to
encode Ib, Rb, and Lb. The sets Sb, Ab and AP are not explicitly encoded
into BDDs because the model checking algorithms do not use them.

To encode the transition relation Rb into a BDD, a copy S′b of Sb

is needed. S′b of Sb are disjoint. The Sb is used to represent the source
states. The set S′b is used to represent the target states. A propositional
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formula FR over (Ab ∪ Sb ∪ S′b) is constructed. It is used to characterize
the transition relation R. To understand the purpose of FR, we suppose
the existence of an action a, and two states s and t. Action a and the
two states s and t can be seen as a valuation of respectively the variables
of Ab, Sb and S′b. Hence, F can be evaluated on the action a, and the
two states s and t. The formula FR is constructed in such a way that
given an action a, and two states s and t, it is evaluated to true if and
only if s a−−→ t belongs to R. Because FR is a propositional formula, it is
easily converted into BDDs.

To encode the initial set states Ib into a BDD, a propositional ex-
pression FI over Sb is constructed. It is used to characterize the set of
initial states Ib. The formula FI is constructed in such a way that that
given a states s, it is evaluated to true if and only if s ∈ I. Then, The
propositional formula Fi is converted into a BDD representing Ib.

Concerning the labeling function, one BDD is created for each propo-
sition p ∈ AP . It represents the set of states labelled with p, i.e.
{s ∈ S | p ∈ Lb(s)}. Those BDDs are created by a similar mecha-
nism as the set of initial states Ib.

There are efficient algorithms for manipulating the BDDs. For in-
stance those algorithms allow one to compute:

• the intersection or the union of two sets of states,

• the complement of a set of states,

• the pre-image or the post-image of a set of states with respect to a
relation on states.

We notice that even if BDD-based implementations have been shown
very efficient [BCM+92], all the algorithms which perform backward
and forward model checking remain correct with any other encoding for
sets. For instance, the sets could be represented by enumeration, by a
propositional formula, or by other kinds of decision diagrams such as
Multi-valued Decision Diagrams [MD98]. For this reason, in the sequel,
we use the name set-based model checking when we refer to algorithms
which manipulate set of states instead of individual states.
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2.5.4 Ordering of the Variables

As seen in the previous section, BDDs require a fixed ordering among
the boolean variables used to represent the system. The size of BDDs,
and therefore the performance of BDD-based model-checking, strongly
depends on this ordering. For instance, the size of the BDD representing
an n-bit comparator (x1 = x′1∧· · ·∧xn = x′n) can go from 3∗n+2 nodes
with the order x1 ≺ x′1 ≺ · · · ≺ xn ≺ x′n to 3∗2n−1 nodes with the order
x1 ≺ · · · ≺ xn ≺ x′1 ≺ · · · ≺ x′n. In general, finding the best variable
ordering is an NP-complete problem. The topic has been intensively
studied and several heuristics have been developed for finding a good
ordering between variables.

We now show two heuristics to order the variables used for rep-
resenting the transitions relation Rb which is defined in the previous
section. The BDD which represent Rb ranges over three sets of variables
Ab = a0, a1, . . . , aa, Sb = s0, s1, . . . , ss and S′b = s′0, s

′
1, . . . , s

′
s. An intu-

itive approach would be to start with Ab, followed by Sb, then Sb. In
the case of strongly asynchronous systems, this approach leads to an
explosion of the BDD size [EFT93]. A better solution for asynchronous
models is proposed in [EFT93]. The action variables are encoded first,
followed by an “interlacing” between the source variables and the target
variables: a0 ≺ a1 ≺ · · · ≺ aa ≺ s0 ≺ s′0 ≺ s1 ≺ s′1 ≺ · · · ≺ ss ≺ s′s

Experimental results show that the resulting BDDs typically grow
linearly in the number of asynchronous components. Intuitively, the
ordering works well due to the fact that, in the case of asynchronous
processes, most of the time a small number of processes proceed, so only
the variables of those processes change while most variables remains the
same (i.e. si = s′i). These constraints are more efficiently encoded in the
BDD if si and s′i are next to each other in the ordering, similarly to the
n-bit comparator example above.

Table 2.1 compares the transition relation BDD size and the time
between the intuitive and the interlaced ordering, based on the turntable
case study of Section 7.2. The size of the model is driven by the parameter
#drill, and the time corresponds to verifying property p6. It confirms
the much reduced growth rate of the interlaced ordering, allowing a much
larger number of components to be added.
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# drills # vars interlaced non-interlaced
size time size time

1 24 1 543 .041 153 056 6.222
2 31 1 913 .070 4 051 081 409.078
3 38 2 307 .114 — —
20 157 12 184 4.436 — —
40 297 31 572 30.884 — —

Table 2.1: Size of the transition relation BDD (in # nodes) and veri-
fication time (in seconds) for property p6 of the Turntable case study,
using interlaced vs. non-interlaced orderings, — correspond to memory
exhausted (2 GB)

2.6 Conclusion
In this section, we have laid the groundwork of this thesis. In particular,
we have presented:

• The transition systems which are used to model real-life systems.

• The CTL and LTL temporal logics which are used to express in a
formal way what a real-life system is expected to do.

• The partial-order reduction technique which given a transition
systemM computes a reduced transition systemMR that preserves
deadlocks, LTLX properties, or CTL∗X properties.

• The backward and the forward symbolic model checking algorithms
which allow one to check whether a CTL property is verified by a
transition system M .

In the next parts of this thesis, we will use those concepts to combine
symbolic model checking with partial-order reduction approaches and
verify systems featuring asynchronous processes.
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Chapter 3

Checking CTL Properties:
a Set-Based Approach

This chapter presents the evalCTLX algorithm. It combines partial-order
reduction (POR) and set-based model checking, which manipulates sets
of states rather than individual states (c.f. 2.5.3). Those sets are generally
encoded by means of Binary Decision Diagrams (BDD) or Multi-valued
Decision Diagrams (MDD). The evalCTLX algorithm is designed to verify
properties on models featuring asynchronous processes. More precisely, it
checks whether a transition system with a safe and linear process model
(c.f. Section 2.4.2) verifies a CTLX property or not.

At the root of our work is the Two-Phase algorithm of N. Nalumasu
al. [NG02]. It is an explicit POR algorithm, i.e. it does not manipulate
sets of states, but solely individual states. It takes as input a tran-
sition system M . It generates a reduced transition system MR wich
preserves CTL∗X properties. Besides, it is implemented inside the PV
model checker [NG97b, NG98b]. For some real protocols, it is able to
generate a reduced state space much faster than other POR tools, e.g.
Spin [Hol97]. From the Two-Phase algorithm, F. Lerda et al. developed
the ImProviso algorithm [LST03]. Using BDD-based symbolic model
checking, It computes the reachable state space of a reduced transition
system which preserves reachability properties [BK08].

In this chapter, we start by presenting and discussing both the Two-
Phase algorithm and the ImProviso algorithm. Then, we construct the
PartialExploration algorithm which is a variation around ImProviso.

43
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Moreover, it is a POR version of the FwdUntil algorithm of H. Iwashita
et al. [INH96] presented in Section 2.5.2. We recall that thanks to the
FwdUntil algorithm a fragment of CTL can be verified in a forward way.
Intuitively, given two sets of states H and F , the PartialExploration
algorithm computes all the states which are reachable from a state of H
within states of F . On the one hand, the FwdUntil algorithm computes
those states on the original transition system. On the other hand, the
PartialExploration algorithm computes those states on an equivalent
reduced version of the original transition system.

Contrary to classical POR algorithms, the PartialExploration algo-
rithm does not need to identify cycles. Instead, it guarantees that from
each state of the reduced graph, only sequences of safe actions will start
(c.f. Definition 2.16). These sequences ends by a fully expanded state as
presented in Section 2.4.3. In consequence, no action is postponed forever.
In others words, each state is a fully-forming state (c.f. Section 2.4.3).
The PartialExploration algorithm can be used to verify a fragment of
CTLX . Intuitively, it is able to verify CTLX properties having the form
E[f U g] and EG f .

The last part of this chapter is devoted to the construction of the
evalCTLX algorithm. To verify all CTLX properties, it combines forward
and backward symbolic model checking. The former applies partial-order
reduction based on the PartialExploration algorithm, while the latter
is the classical CTL model checking algorithm which is presented in
Section 2.5.1.

To summarize, the main contributions of this chapter are the Par-
tialExploration algorithm that combines POR and forward CTL model
checking, the evalCTLX algorithm which verifies CTLX properties, a
proof of their correctness, and an original way to treat cycles in the
context of POR.

The remainder of this chapter is structured as follows. Section 3.1
reviews the Two-Phase algorithm for POR, and its symbolic incarnation in
ImProviso. Section 3.2 presents the PartialExploration algorithm which
revisits the ImProviso algorithm. Section 3.3 combines together the
PartialExploration algorithm and the forward model checking approach
of H. Iwashita et al. Section 3.4 presents the evalCTLX algorithm.
Section 3.5 provides a conclusion and observations.
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3.1 The Two-Phase Approach

This section starts by presenting the Two-Phase algorithm. It is an
explicit model-checking algorithm which computes the reachable state
space of a reduced transition system which is visible-bisimilar to the
original one. Then, the ImProviso algorithm is introduced. It is a
symbolic version of the Two-Phase algorithm. In the sequel we adapt
it to allow the verification of CTLX rather than limiting its use to
verification of reachability properties only.

3.1.1 The Two-Phase Algorithm

The Two-Phase algorithm was conceived at the end of 1995 in the context
of verifying real distributed shared-memory protocols. It was initially
presented by R. Nalumasu et al. in a series of articles [Nal98, NG96,
NG97a, NG97b, NG98a, NG98b, NG02]. It was firstly proved that the
algorithm preserves stutter-free safety properties [NG97a]. Then, it was
demonstrated that LTLX properties are also preserved [Nal98, NG97b,
NG98a]. Finally, it was proved that all CTL∗X are preserved [NG02]. The
algorithm was also implemented inside the PV model checker [NG97b,
NG98b]. Experimental results suggest that the PV model checker is able
to compute a safe part of the reachable state space of very large systems,
where in some cases, other tools such as Spin are not able to make that
computation [NG97b, NG98b].

The Two-Phase algorithm takes as input a transition system with a
safe and linear process model. It generates, depending on the versions,
either a reduced transition system or the reachable state space of a
reduced transition system which preserves CTL∗X properties.

It can been seen as a variant of the classical DFS algorithm with
POR of [God96, CGP99]. In other words, it performs a selective DFS.
At each step the choice of the ample set respects the conditions C0,
C1, C2, C4 of Section 2.4.1. Intuitively, it tries as much as possible
to expand successively each transition relation Ri of a safe and linear
process model {R0, . . . , Rm−1}. When either a cycle is closed or no safe
actions remain to be expanded for the current transition relation Ri, the
algorithm switches to the next safe transition relation Ri+1. When all
the transition relations have been expanded, a full expansion is made.
More precisely, the Two-Phase algorithm alternates between two distinct
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phases:

• Phase-1 (c.f. procedure Phase1OfAllProcesses of Listing 3.1,
line 26) considers each transition relation Ri at a time, in a fixed
order. As long as actions remain to be expanded for the current
transition relation Ri and no cycles are closed, the single transition
that is enabled for that process is executed. Otherwise, either the
algorithm moves on to the next transition relation Ri+1, or, when
all the processes are expanded, the last reached state is passed on
to Phase-2.

• Phase-2 (c.f. procedure Phase2 of Listing 3.1) is simple. It performs
a full expansion of the states resulting from Phase-1, then a Phase-1
is applied again to the reached states.

Algorithm 3.1 and Listing 3.1 introduces the specification and the
implementation of the Two-Phase algorithm. We firstly make precise the
roles of the main variables. To that end, we suppose that the algorithm
has already performed a number of cycles Phase-1/Phase-2, and is now
performing a Phase-1. The Visited variable (line 4) contains all the
states which have been expanded since the beginning of the algorithm to
the the end of the last Phase-2. The Queue variable (line 5) contains all
the states which have been expanded since the beginning of the current
Phase-1. The Frontier variable (line 6) contains the states which remain
to expand, and one of its states is chosen to start each Phase-1. The
current variable (line 7) is the state under consideration. The RR variable
(line 8) represents the transition relation of MR.
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Algorithm 3.1: The Two-Phase Algorithm [NG02]

Global: A transition system M = (S,R, i, L) with a process model
{R0, R1, . . . , Rm−1}.

Header: Two-Phase()

Precondition: M = (S,R, i, L) is a deterministic transition system
which has an unique initial state, and {R0, R1, . . . , Rm−1} is a
safe and linear process model.

Result: A reduced transition system MR = (SR, RR, iR, LR) which
is visible-bisimilar to M .

Implementation: The source code is given in Listing 3.1

Listing 3.1: The Two-Phase Algorithm [NG02]
1 global M = (A, AP, S, R, i, L): a transition system
2 global R0, R1, . . . , Rm−1 ⊆ R
3
4 global Visited ⊆ S
5 global Queue ⊆ S
6 global Frontier ⊆ S
7 global current ∈ S
8 global RR ⊆ R
9
10 TwoPhase () {
11 RR := ∅
12 Visited := ∅
13 Frontier := {i}
14
15 while (Frontier 6= ∅) {
16 current := an element of Frontier
17 Queue := {current}
18
19 Frontier := Frontier \ {current}
20 Phase1OfAllProcesses ()
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21 Phase2 ()
22 }
23 return (A, AP, Visited, RR, i, L)
24 }
25
26 Phase1OfAllProcesses () {
27 local i ∈ N := 0;
28 while(i 6= m) {
29 Phase1OfOneProcess (i)
30 i++;
31 }
32 }
33
34 Phase1OfOneProcess (i) {
35 local continue ∈ {true, false} := post (Ri, {current}) 6= ∅
36
37 while(continue) {
38 local a ∈ A :=
39 the unique action of enabled (Ri, {current})
40
41 if (Ri(current, a) 6∈ Queue) {
42 RR := RR ∪ {current a−−→ Ri(current, a)}
43 current := Ri(current, a)
44 Queue := Queue ∪ {current}
45 continue := post (Ri, {current}) 6= ∅
46 } else {
47 continue := false
48 }
49 }
50 }
51
52
53 Phase2 () {
54 local isNew ∈ {true, false} := current 6∈ Visited
55 Visited := Visited ∪ Queue
56 if (isNew) {
57 local Image ⊆ S := post (R, {current})
58 Frontier := (Frontier ∪ Image) \ Visited
59 RR := RR ∪ {current a−−→ R(current, a) | a ∈ enabled(R, {current})}
60 }
61 }
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During Phase-1, the Queue variable exclusively contains states which
belong to a path of the reduced transition system π = s0

a0−−→ s1
a1−−→

. . .
an−−→ sn where all actions ai are invisible and all {ai} respect the

condition C1. The goal of the first phase is to extend the paths π
as much as possible. We point out that π might contain some cycles:
s0

a0−−→ . . .
aj−1−−−−→ sj

aj−−→ . . .
ap−1−−−−→ sj

ap−−→ . . .
an−1−−−−→ sn. When

such a cycle is closed, the current Phase-1 switches to the next transition
relation of the process model. Thus, π can contain at most m cycles. At
the end of Phase-1, the last state of π is given to Phase-2 to be fully
expanded. Hence, all the states of π are fully-forming states an are added
to the Visited set. The algorithm ends when Frontier is empty, as such
no states remain to be treated. When the algorithm ends, the reduced
transition system contains only fully-forming states (c.f. Section 2.4.3).
As a consequence, it is visible-bisimilar to the original one and preserves
CTL∗X properties. It is interesting to note that the condition C3 (or one
of its variant) of Section 2.4.1 might not be fulfilled because the reduced
transition system can contain a cycle sj

aj−−→ . . .
ap−1−−−−→ sj in which

some action ak is enabled with respect to the full transition relation, but
is never included in ample(s`) for any j ≤ ` ≤ p on the cycle.

This paragraph is devoted to the worst-case complexity of the Two-
Phase algorithm. For that purpose, we firstly analyze when Phase-1
moves on the next transition relation. This happens when the variable
current represents a dead state with respect to the transition relation Ri,
or when the variable current belongs to Queue. We stress that Phase-1
does not take into consideration the states which belong to Visited. For
this reason, during each Phase-1, all the states of Visited could reappear
into Queue. As a direct consequence, it might happen that the Two-Phase
algorithm visits on the order of #S2 state. This is for instance the case
when each cycle Phase-1/Phase-2 discovers only one new state, and when
each Phase-1 revisits the states of Queue. Nevertheless, experimental
results do not report such bad behaviors. Actually, R. Nalumasu et al.
intentionally choose this approach because it seems the most performant
to verify real distributed shared-memory protocols [NG96, NG98a]. In
practice, it seems more expensive to check at each step whether a state
has already been visited since the beginning of the algorithm than risking
to expand some states more than once.
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3.1.2 The ImProviso Algorithm

In [LST03], F. Lerda et al. propose ImProviso, a symbolic adaptation of
the Two-Phase algorithm. It combines POR and BDD-based methods.
On the one hand, the Two-Phase algorithm takes as input a transition
system with a safe and linear process model. It produces a reduced
transition system which is visible-bisimilar to the original one. On the
other hand, ImProviso takes as input a transition system M with a
process model {R0, R1, . . . , Rm−1} which is safe but not necessary linear.
It aims to produce a reduced transition system which is stuttering-
equivalent to the original one (c.f. Section 2.3.1). Algorithm 3.2 presents
the specification of ImProviso. Its implementation is given in Listing 3.2.
We point out that the original ImProviso algorithm was modified to
keep track of states that have no transition with the current process (cf.
Listing 3.2, lines 39 and 47). Those states are passed on to the next
process. If this computation was not done, we could have missed some
states during the BFS. Intuitively, we could have violated the condition
C0 of Section 2.4.1. The need for this computation was apparently not
addressed in [LST03].

Classical set-based model checking algorithms use a single transition
relation to carry out the required computation on the state space. The
ImProviso method supposes m + 1 transition relations, where m is
the number of safe transition relations of the process model. One is
Rg = R \

⋃m−1
i=0 Ri which is used to expand the non-safe actions during

Phase-2, and the others are the safe transition relations Ri which are
used in Phase-1.

On the one hand, the Two-Phase algorithm considers each Ri only
once during the same Phase-1. When the last process is reached, the
current state is passed to the Phase-2. However, that state could still
be safely expanded by another safe transition relation. On the other
hand, the heuristic chosen by ImProviso is to include an additional loop
during Phase-1 (line 20), which guarantees that a state is passed on
from Phase-1 to Phase-2 only if it is not possible to expand it with
any safe transition relation. In addition, this heuristic guarantees that
no transition belonging to a safe transition relation will be expanded
during Phase-2. Thus, the transition relation Rg which is used in Phase-
2 contains only the transitions which are not safe. That is why the
transition relation Rg is used instead of the whole one. This heuristic
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could also have been added to the Two-Phase algorithm.
Contrary to the DFS preferred by classical POR methods, the set-

based method amount to a breadth-first search (BFS). The DFS algorithm
allows us to easily distinguish between states which close a cycle and
states which have already been treated. This is possible because, at each
step, the DFS algorithm keeps information on the currently visited path.
The BFS algorithm does not offer that possibility because it does not keep
any data about the paths of the graph. It is thus harder to detect cycles
within Phase-1 in the symbolic case. ImProviso adopts a pessimistic
approach: at each step during Phase-1, it is assumed pessimistically that
any previously expanded state that is reached again might close a cycle,
although these occurrences might actually be on different paths. This
over-approximation guarantees that all cycles are correctly identified,
but possibly needlessly reduces the number of states where Phase-1 can
be applied. This is the key justification for basing ImProviso on the
Two-Phase algorithm, as this limits the need for cycle detection to each
single execution of Phase-1, as opposed to the whole exploration for more
traditional POR approaches.

Algorithm 3.2: ImProviso [LST03]

Global: A transition system M = (S,R, I, L) with a process model
{R0, R1, . . . , Rm−1}. {D0, D1, . . . , Dm−1} ⊆ 2S , Rg ⊆ R.

Header: ImProviso()

Precondition: M is a deterministic transition system with a safe
process model {R0, R1, . . . , Rm−1}. Each Di = dead(Ri, S)
contains the dead states with respect to Ri. Rg = R \

⋃m−1
i=0 Ri.

Result: The reachable state space of a reduced transition system
which is stuttering-equivalent to M .

Source code: The source code is given in Listing 3.2
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Listing 3.2: The ImProviso Algorithm [LST03]

1 global M = (A, AP, S, R, I, L): a transition system
2 global R0, R1, . . . , Rm−1 ⊆ R
3 global D0, D1, . . . , Dm−1 ∈ S
4 global Rg ⊆ R
5 global Visited ⊆ S
6 global Queue ⊆ S
7 global Frontier ⊆ S
8
9 ImProviso () {

10 Visited := ∅
11 Queue := ∅
12 Frontier := I
13
14 while (Frontier 6= ∅) {
15 Phase1 ()
16 Phase2 ()
17 }
18 }
19
20 Phase1 () {
21 local Old ⊆ S := Frontier
22 Phase1OfAllProcesses ()
23
24 while (Old 6= Frontier) {
25 Old := Frontier
26 Phase1OfAllProcesses ()
27 }
28 }
29
30 Phase1OfAllProcesses () {
31 local i ∈ N := 0
32 while (i 6= m) {
33 Phase1OfOneProcess (i)
34 i := i + 1
35 }
36 }
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37
38 Phase1OfOneProcess (i) {
39 local E ⊆ S := Di ∩ Frontier
40
41 while (Frontier 6= ∅) {
42 Queue := Queue ∪ Frontier
43 Frontier := post (Ri, Frontier)
44
45 E := E ∪ (Queue ∩ Frontier)
46 Frontier := Frontier \ Queue
47 E := E ∪ (Di ∩ Frontier)
48 }
49 Frontier := E
50 }
51
52
53 Phase2 () {
54 Visited := Visited ∪ Queue ∪ Frontier
55 Queue := ∅
56 Frontier := post(Rg, Frontier) \ Visited
57 }

As in the Two-Phase algorithm, ImProviso might visit a state more
than once, for the same reasons. Intuitively, in the worst case, each state
in Visited can be expanded again during Phase-1, and so reappears into
Queue. In other words, in the worst case the algorithm might perform
around #S2 operations on sets. However, experimental results do not
exhibit such bad behaviors. On the contrary, they show that substantial
improvements can be achieved by applying that technique.

3.2 The PartialExploration Algorithm
In this section, the PartialExploration algorithm is defined. It applies
principles of ImProviso and extends them to support model checking
of CTLX properties with partial-order reduction. We start by a deep
analysis of the problem and its interesting properties. Those properties
allow us to construct a correct version of the PartialExploration algorithm.
Afterwards, we construct the algorithm itself.
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State Space of MR

H

F

Figure 3.3: States which are Discovered by the PartialExploration Algo-
rithm
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3.2.1 Problem Theory

Given a transition system M = (S,R, I, L) and a subset of H of S, the
goal of the PartialExploration algorithm is to be an alternative to the
the FwdUntil approach H. Iwashita et al [INH96] which is presented in
Section 2.5.2. In the end, it will be used to answer the two following
questions:

1. Is there a state in a set H which respects the CTL property E[fUg]?

2. Is there a state in a set H which respects the CTL property EG f?

To that end, it takes as input a transition M and two set of states
H and F , where F contains all states which respect f from the above
formulae, i.e. L(f). It aims at discovering on a reduced transition
system MR, all the states which are reachable from a state of H through
states of F . To rephrase, it looks for all the states sn such that there
exists a path of MR: s0

a0−−→ s1
a1−−→ . . .

an−1−−−−→ sn where s0 ∈ H and
∀i ∈ [0, . . . , n− 1] · si ∈ F . Figure 3.3 schematically represents MR, H
and F . The black states represent the states which will be found by the
PartialExploration algorithms.

The key idea is to work with a transition system MH = (S,R,H,L)
which is similar to M = (S,R, I, L). However, its set of initials states is
H instead of I. The PartialExploration algorithm performs the search
not on the modelMH , but on a visible-bisimilar reduced transition model
MR = (S,RR, H, L). Note that only a part of the reduced transition
system is constructed. We try to keep that part as small as possible.

To achieve its goal, the algorithm visits a reduced transition system
MR which contains only fully-forming states (c.f. Section 2.4.3). As such,
we know that MR is visible-bisimilar to MH , and so it preserves CTL∗X
properties. At each step, the states which have already been visited are
organized as follows. The Visited variable and the Frontier variable
contain all the states which have already been reached. The Frontier
variable contains the states which remain to be expanded. In addition,
it contains at least one state s for each cycle which might not contain
a state leading to a fully expanded state, s are both in Visited and
in Frontier. The Visited variable contains all the states which have
already been expanded.
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F-arrangement

At each step, the algorithm arranges the states in such a way that it
is possible to construct a transition system MR which respects the two
following conditions:

(1) MR is visible-bisimilar to MH .

(2) MR contains at least all the states which have already been visited,
that is, MR contains at least all the states in Visited ∪ Frontier.

More precisely, the Visited variable and the Frontier variable form an
F-arrangement when it is possible to construct a transition system MR

which respects the three following conditions:

(1) MR is visible-bisimilar to MH (c.f. (1) of Definition 3.1).

(2) All initial states are in Visited ∪ Frontier (c.f. (2) of Defini-
tion 3.1)

(3) The successors of the states which are in Visited ∩ F but not
in Frontier are necessarily in Visited ∪ Frontier (c.f. (3) of
Definition 3.1).

(4) All states in Visited ∪ Frontier are reachable from H through
states of F (c.f. (4) of Definition 3.1).

Definition 3.1 (F-arrangement). Let M = (S,R, I, L) be a determinis-
tic transition system with a safe and linear process model {R0, R1, . . . ,
Rm−1}. Let H, F , Visited, and Frontier be four subsets of S. Let
MH = (S,R,H,L) be a deterministic transition system derived from M
and H.

(Visited, Frontier) is an F-arrangement if and only if there exists a
transition system MR = (S,RR, H, L) such that the following conditions
hold:

(1) MR contains only fully-forming states with respect to MH and
{R0, R1, . . . , Rm−1}, so it is visible-bisimilar to MH , and

(2) H ⊆ (Visited ∪ Frontier) ⊆ S, and

(3) post(RR, F ∩ Visited ∩ Frontier) ⊆ (Visited ∪ Frontier).
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(4) For all states s ∈ (Visited ∪ Frontier) there exists a path of
MR: s0

a0−−→ s1
a1−−→ . . .

an−1−−−−→ s where s0 ∈ H and ∀i ∈ [0, . . . ,
n− 1] · si ∈ F ∧ si ∈ (Visited ∪ Frontier).

According to the previous definition, when (Visited, Frontier) is an
F-arrangement, we know that there exists at least one reduced transition
system MR which respects conditions (1), (2), and (3). In the sequel,
any transitions systems MR which respects conditions (1), (2), and (3) is
referred to as a transition system induced by (Visited, Frontier). We
notice that for any set of states H and F , and any transition system M ,
the two sets Visited = ∅ and Frontier = H forms an F-arrangement
because MH is the required reduced transition system.

Performing a Partial Expansion

In this paragraph, given an F-arrangement (Visited0, Frontier0) and a
safe and linear transition relation Ri, we show how to perform a partial
expansion of Frontier0. Actually, any state s ∈ Frontier0 which has
a transition s −−→Ri s

′ can be safely expanded, and added to Visited0.
Moreover, s′ has to be added to Frontier0. To show that this construc-
tion is correct, we build from the F-arrangement (Visited0, Frontier0)
a new one: (Visited, Frontier).

Theorem 3.2. Let M = (S,R, I, L) be a deterministic transition system
with a safe and linear process model PM = {R0, R1, . . . , Rm−1}. Let H,
F , Visited, Visited0, Frontier, and Frontier0 be six subsets of S.
Let MH = (S,R,H,L). Let E ⊆ Frontier be a set of states such that all
s ∈ E are not dead states with respect to Ri.

If (Visited0, Frontier0) is an F-arrangement and the two following
equalities hold then (Visited, Frontier) is an F-arrangement.

(1) Visited = (Visited0 ∪ E)

(2) Frontier = (Frontier0 \ E) ∪ post(Ri, E ∩ F )

Proof. To show that (Visited, Frontier) is an F-arrangement, we con-
struct a reduced transition MR = (S,RR, H, L) which satisfies the three
conditions of Definition 3.1.
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Because (Visited0, Frontier0) is an F-arrangement, we know that
there exists a reduced transition systemM0 = (S,R0, H, L) which satisfies
the conditions of Definition 3.1.

We now construct RR as follows: RR = ((R0 \R1) ∪R2 ∪R3) where:

• R1 = (E ∩ F )× (Visited0 ∪ Frontier0). We remove from R0 all
the transitions starting from a state s ∈ E ∩ F and leading to a
state s′ which is neither in Visited0 nor in Frontier0

• R2 = Ri ∩ ((E ∩ F )× S). We add to R0 all the transitions of Ri

starting from a state s ∈ E ∩ F .

• R3 = R ∩ ((F ∪ Visited ∪ Frontier) × S). We add to R0 the
transitions of R3 to fully expand all the states s which do not
belong to F or Visited, or which belong to Frontier.

Then, we show that the conditions of Definition 3.1 are met.

1. To prove the condition (1), we show that each state ofMR is a fully-
forming state with respect to MH and PM (c.f.Section 2.4.3). R3
fully expands all the states s such that s ∈ (F∪Visited∪Frontier).
All of those states are trivially fully-forming states. We now prove
that the other states are also fully-forming states. We suppose
a state s such that s ∈ (F ∩ Visited ∩ Frontier). Hence s ∈
Visited0. Since M0 contains only fully-forming states with respect
to MH and PM, by expanding R0, any path π: s = s0

a1−−→ s1
a1−−→

. . .
an−1−−−−→ sn is a forming path such that sn is fully expanded with

respect to R. There are two cases:

(a) The path π does not contain any state of E ∩ F , and so π
does not contain any transitions of R1. Because RR contains
all the transitions of R0 except those of R1, all the transitions
of π are also in RR. Hence, π is also a forming path in MR

where sn is fully expanded with respect to R. Therefore, the
state s of MR is a fully-forming state.

(b) The path π contains a state of (E ∩ F ). Suppose that e is
the first state of π which belongs to (E ∩ F ). By hypothesis,
there is one transition e a−−→Ri e

′, and so there is a transition
e

a−−→R2 e
′ where e′ ∈ Frontier. Thus, R3 fully expands e′.
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Moreover, π can be rewritten as follows π = s
a0−−→ s1

a1−−→
. . .

ar−1−−−−→ e
ar−−→ . . .

an−1−−−−→ sn. Based on that, by expanding
RR, s0

a0−−→ . . .
ar−1−−−−→ e

a−−→ e′ is a forming path which
ends by a full expansion. Therefore, the state s of MR is a
fully-forming state.

2. H ⊆ (Visited ∪ Frontier) = [(Visited ∪ E) ∪ (Frontier \ E)]
⊆ (Visited ∪ Frontier) ⊆ S. Therefore, the condition (2) is
verified.

3. To prove condition (3), we suppose a state s ∈ (F ∩ Visited ∩
Frontier) such that s −−→RR s

′. By hypothesis, s ∈ (Visited0 ∪
E). There are two cases:

(a) s ∈ Visited0∧s 6∈ E. In this case, s −−→R0 s
′ (c.f.definition of

RR). We recall that (Visited0, Frontier0) is an F-arrange-
ment. By condition (3), s′ ∈ (Visited0 ∪ Frontier0) ⊆
(Visited ∪ Frontier).

(b) s ∈ E. The transition s ar−−→RR s
′ must belong to (R0 \R1)

or to R2 because it does not belong to R3. There are two
cases:

i. s −−→ s′ ∈ (R0 \R1). By hypothesis, s ∈ (E ∩ F ). Thus,
s′ ∈ (Visited0 ∪ Frontier0) ⊆ (Visited ∪ Frontier)
(c.f. definition of R1).

ii. s −−→ s′ ∈ R2. Therefore, s −−→RR s must belong to Ri,
and v′ ∈ post(Ri, E ∩ F ). Consequently, v′ ∈ Frontier

4. The proof of condition (4) proceeds in a similar way as the one of
condition (1) and is left to the reader.

Three Variants

The set E which is defined in the previous section can contain any state
which is not a dead state with respect to Ri. Moreover, E can contain
any number of such states. In other words, there exists more than one
valid set E. For instance, the three following strategies can be easily
implemented:



60 Checking CTL Properties: a Set-Based Approach

(1) E = Frontier \ dead(Ri, S) contains all states which are not dead
states with respect to Ri. This corresponds to partially expanding
all the states which allow such an expansion.

(2) E = Frontier \ Visited contains all states which are not in
Visited. This corresponds to fully expanding all the states which
have been seen more than once during the search. Actually, this
strategy is equivalent to the pessimistic one which considers that
all such states close a cycle.

(3) E = Frontier \ FullyExpanded where FullyExpanded is the set
which contains all states which have already been fully expanded.
It seems a good strategy not to partially expand the states of
(FullyExpanded ∩ Frontier), as those states have already been
fully expanded. Even if states in (FullyExpanded∩Frontier) will
be fully expanded again during the next full expansion of Phase-2,
all their successors will already be in Visited and thus not be
explored again.

Performing a full expansion

In this paragraph, given an F-arrangement (Visited0, Frontier0), we
show how to perform a full expansion of Frontier0. Actually, we merge
Visited0 and Frontier0 to create the new Visited. The successors of
Frontier0 with respect of the full transition relation R constitute the
new Frontier.

Theorem 3.3. Let M = (S,R, I, L) be a deterministic transition system
with a safe and linear process model PM = {R0, R1, . . . , Rm−1}. Let H,
F , Visited, Visited0, Frontier, and Frontier0 be six subsets of S.
Let MH = (S,R,H,L).

If (Visited0, Frontier0) is an F-arrangement and the two following
equalities hold then (Visited, Frontier) is an F-arrangement.

(1) Visited = (Visited0 ∪ Frontier0)

(2) Frontier = post(R, Frontier0) \ Visited

Proof. This proof is very similar to the proof of Theorem 3.2. It consists
in constructing a reduced transition system MR from a transition sys-
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tem M0 which is induced by the F-arrangement (Visited0, Frontier0).
Therefore, the complete proof is left to the reader.

Properties of an F-arrangement

In this paragraph we present two useful properties of an F-arrangement.
The first property will be used to show that at the end of the algorithm,
an F-arrangement contains enough states to check a EU property. The
second property states the same but for an EG property.

Theorem 3.4. Let M = (S,R, I, L) be a deterministic transition system
with a safe and linear process model PM = {R0, R1, . . . , Rm−1}. Let
H, F , Visited, be three subsets of S. Let MH = (S,R,H,L). Let
(Visited0, ∅) be an F-arrangement, and MR = (S,RR, H, L) be any
transition system induced by (Visited, ∅).

There exists a state v ∈ S such that there is a path of MR: v0
a0−−→

v1
a1−−→ . . .

an−2−−−−→ vn−1
an−1−−−−→ v such that v0 ∈ H, and ∀i ∈ [1, . . . ,

n[·vi ∈ F if and only if v ∈ Visited.

Proof.

⇒ The proof proceeds by induction of the length n of π. The induction
hypothesis is the theorem itself.

Base case When n = 0, by the theorem statement, v = v0, and
so v belongs to H. Because H ⊆ (Visited ∪ ∅) = Visited,
we deduce that v belongs to Visited (c.f. condition (2) of
Definition 3.1).

Inductive step We prove that when the theorem is valid for
any n ∈ N, it also holds for n + 1. We suppose a path
π = v0

a0−−→ v1
a1−−→ . . .

an−1−−−−→ vn
an−−→ v such that v0 ∈ H,

and ∀i ∈ [1, . . . , n] · si ∈ F . In this case, the induction
hypothesis is applicable for vn, and so, vn belongs to Visited.
By condition (3) of Definition 3.1, and because vn ∈ F , we
deduce that v also belongs to Visited.

⇐ The proof is trivial by condition (4) of Definition 3.1

The following corollary makes the link between an F-arrangement
and a CTL property E [f U g].
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Corollary 3.5. LetM = (S,R, I, L) be a deterministic transition system
with a safe and linear process model PM = {R0, R1, . . . , Rm−1}. Let H
be a subset of S. Let MH = (S,R,H,L). Let f and g be two CTLX

properties. Let F be the set of states which satisfy f , i.e. F = L(f). Let
(Visited, ∅) be an F-arrangement.

There is a state h ∈ H such that M,h |= E[f U g] if and only if there
is a state v ∈ Visited such that M,v |= g.

Proof.

(1) There is a state h ∈ H such that M,h |= E[f U g].

(2) From the CTL semantics, (1) if and only if MH 6|= ¬E[f U g].

(3) MR preserves CTL properties, so (2) if and only if MR 6|= ¬E[f U g].

(4) From the CTL semantics, (3) if and only if there exists a path
of MR: v0

a0−−→ v1
a1−−→ . . .

an−1−−−−→ v such that v0 ∈ H, and
∀i ∈ [1, . . . , n[·vi |= f ∧ vi ∈ F , and M,v |= g.

(5) By Theorem 3.4, (4) if and only if v ∈ Visited.

The following property is helpful to show that an F-arrangement can
be exploited to verify a CTL property EG f .

Theorem 3.6. Let M = (S,R, I, L) be a deterministic transition sys-
tem with a safe and linear process model PM = {R0, R1, . . . , Rm−1}.
Let H, F , Visited, be three subsets of S. Let MH = (S,R,H,L).
Let (Visited0, ∅) be an F-arrangement, and MR = (S,RR, H, L) be a
transition system induced by (Visited, ∅).

For all infinite path of MR: v0
a0−−→ v1

a1−−→ . . . such that v0 ∈ H,
and ∀i ∈ N · vi ∈ F , ∀i ∈ N · vi ∈ Visited.

Proof. We prove the theorem by contradiction. We suppose an infinite
path ofMR: v0

a0−−→ . . .
an−1−−−−→ vn

an−−→ vn+1 . . . such that ∀i ∈ N·vi ∈ F
and ∀i ∈ [0, . . . , n] · vi ∈ Visited, and vn+1 6∈ Visited. Thus, vn ∈
(Visited\∅)∩F . By condition (3) of Definition 3.1, vn+1 ∈ Visited. We
obtain a contradiction. Therefore, the unique hypothesis vn+1 6∈ Visited
must be false.
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The following corollary makes the link between an F-arrangement
and a CTL property EG f .

Corollary 3.7. LetM = (S,R, I, L) be a deterministic transition system
with a safe and linear process model PM = {R0, R1, . . . , Rm−1}. Let H
be a subsets of S. Let MH = (S,R,H,L). Let f be a CTLX properties.
Let F be the set of states which satisfy f , i.e. F = L(f). Let (Visited, ∅)
be an F-arrangement.

There is a state h ∈ H such that M,h |= EG f , if and only if there
is a path in M: v0

a0−−→ v1
a1−−→ . . . such that v0 ∈ H, and ∀i ∈ N · vi ∈

F ∩ Visited.

Proof. This proof is very similar to the proof of Corollary 3.5. It is left
to the reader.

3.2.2 Construction of the Algorithm

In this section, we construct the PartialExploration algorithm. This
construction is based on the problem theory which was presented in
the previous section. It supposes a deterministic transition system
M = (S,R, I, L) with a safe and linear process model {R0, R1, . . . , Rm−1},
and two sets H ⊆ S and F ⊆ S. It returns a relevant part of the
reachable state space which corresponds to the set Visited such that
(Visited, ∅) forms an F-arrangement. In the following sections, it will be
shown that the PartialExploration algorithm can be used instead of he
FwdUntil algorithm (c.f. Section 2.5.2) to perform forward CTLX model
checking. The algorithm consists in sub-problems. We firstly define the
environment of the algorithm. Then, we provide the specification of all the
sub-problems. Concerning the specification of those sub-problems, when
Visited0 and Frontier0 appear in a postcondition of a sub-problem,
they respectively correspond to the sets Visited and Frontier before
the call of that sub-problem. Figure 3.4 graphically represents the call
tree of the PartialExploration Algorithm.

Environment

The global variables of the PartialExploration algorithm contains a finite
and deterministic process model M = (S, R, I, L) with a safe and linear
process model {R0, R1, . . . , Rm−1}. For Each Ri, there is an associated
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PartialExploration

Phase1

Phase1OfAllProcesses

Phase1OfOneProcess

PerformAPartialExpansion

PerformAFullExpansion

Figure 3.4: Call Tree of The PartialExploration Algorithm
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set of states Di. It contains all the states which are dead states with
respect to Ri. The sets Visited and Frontier form an F-arrangement.
Algorithm 3.5 precisely introduces that environment.

Algorithm 3.5: The global variables of the PartialExploration Algorithm

Global:

1 global M = (A, AP, S, R, I, L): a transition system
2 global R0, R1, . . . , Rm−1 ⊆ R
3 global D0, D1, . . . , Dm−1 ∈ S
4 global F ⊆ S
5
6 global Visited ⊆ S
7 global Frontier ⊆ S

Performing a Partial Expansion

Algorithm 3.6 shows how to concretely implement a one step of a partial
expansion. It is guided by the Theorem 3.2. E contains all states which
are not dead states with respect to Ri. We recall that other choices are
possible (c.f. Section 3.2.1).
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Algorithm 3.6: PerformAPartialExpansion

Header: PerformAPartialExpansion(i)

Precondition: i ∈ N, and 0 ≤ i < m, and (Visited, Frontier) is
an F-arrangement.

Postcondition: (Visited, Frontier) is an F-arrangement, and
post(Ri, Frontier0 ∩ F) ⊆ Frontier, and
(Visited0 ∪ Frontier0) ⊆ (Visited ∪ Frontier).

Implementation:

1 PerformAPartialExpansion (i) {
2 local E := Frontier \ Di
3 Visited := Visited ∪ E
4 Frontier:= (Frontier \ E) ∪ post(Ri, E ∩ F)
5 }
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Performinging a Full Expansion

Algorithm 3.7 performs one full expansion. It is based on Theorem 3.3.

Algorithm 3.7: PerformAFullExpansion

Header: PerformAFullExpansion()

Precondition: (Visited, Frontier) is an F-arrangement.

Postcondition: (Visited, Frontier) is an F-arrangement, and
(Visited = Visited0 ∪ Frontier0), and
(Visited ∩ Frontier) = ∅.

Implementation:

1 PerformAFullExpansion () {
2 Visited := (Visited ∪ Frontier)
3 Frontier := post(R, Frontier ∩ F) \ Visited
4 }

Phase-1 of One Process

The Phase1OfOneProcess sub-problem expands transitions of a safe
transition relation Ri. It is defined in Algorithm 3.8. It continues until
no new states can be found. It is based on the specification of the
PerformAPartialExpansion sub-problem.

Phase-1 of All Processes

The Phase1OfAllProcesses sub-problem expands the transitions of the
various safe transition relations Ri. It is defined in Algorithm 3.9. It
uses the Phase1OfOneProcess sub-problem.
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Algorithm 3.8: Phase1OfOneProcess

Header: Phase1OfOneProcess(i)

Precondition: i ∈ N, and 0 ≤ i < m, and (Visited, Frontier) is
an F-arrangement.

Postcondition: (Visited, Frontier) is an F-arrangement, and
post∗(Ri, Frontier0 ∩ F) ⊆ (Visited ∪ Frontier), and
(Visited0 ∪ Frontier0) ⊆ (Visited ∪ Frontier).

Loop Invariant: (Visited, Frontier) is an F-arrangement, and
(Visited0 ∪ Frontier0) ⊆ (Visited ∪ Frontier). Moreover,
there exists two sets Visited−1 ⊆ S and Frontier−1 ⊆ S
which form an F-arrangement such that WR = (Visited−1 ∪
Frontier−1) ⊆ (Visited ∪ Frontier).

Halting Condition: WR = (Visited ∪ Frontier)

Loop Variant: #S−#WR.

Implementation:

1 Phase1OfOneProcess (i) {
2 local WR ⊆ S := (Visited ∪ Frontier)
3 PerformPartialExpansion (i);
4
5 while(WR 6= (Visited ∪ Frontier)) {
6 WR := (Visited ∪ Frontier)
7 PerformPartialExpansion (i);
8 }
9 }
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Algorithm 3.9: Phase1OffAllProcesses

Header: Phase1OffAllProcesses()

Precondition: (Visited, Frontier) is an F-arrangement.

Postcondition: (Visited, Frontier) is an F-arrangement, and
post∗(Rm−1, (. . . post∗(R1, post∗(R0, Frontier0 ∩ F) ∩ F) . . . ) ∩
F) ⊆
(Visited ∪ Frontier), and
(Visited0 ∪ Frontier0) ⊆ (Visited ∪ Frontier).

Loop Invariant: 0 ≤ i < m, and
(Visited, Frontier) is an F-arrangement, and
post∗(Ri−1, (. . . post∗(R1, post∗(R0, Frontier0 ∩ F) ∩ F) . . . ) ∩
F) ⊆
(Visited ∪ Frontier), and
(Visited0 ∪ Frontier0) ⊆ (Visited ∪ Frontier).

Halting Condition: i = m

Loop Variant: m− i.

Implementation:

1 Phase1OfAllProcesses () {
2 local i ∈ N := 0
3
4 while(i 6= m) {
5 Phase1OfOneProcess (i);
6 i++
7 }
8 }
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Phase-1

After the sequential expansion of the various safe transition relations,
it might still be possible to discover new states with the help of those
transition relations. For instance, a new state s which was discovered by
a safe transition relation Ri can be a dead state with respect to Ri. But
in the same time, s may well be expanded by an other safe transition
relation Rj where j < i. The Phase1 sub-problem guarantees that a full
expansion of a state is made only if it is not possible to expand it with
any safe transition relations. It is defined by Algorithm 3.10. It is based
on the specification of the Phase1OfAllProcesses sub-problem.

The PartialExploration Algorithm

We now construct the PartialExploration algorithm itself. It is defined
by Algorithm 3.11. It is based on the specifications of the Phase1 sub-
problem and the PerformAFullExpansion sub-problem.

We note that as the Two-Phase algorithm and the ImProviso algo-
rithm, the PartialExploration algorithm might visit a state more than
once. It happens during Phase-1 when a cycle is closed. In such a
case, the algorithm might explore the same cycle of transitions more
than one. At each step, Frontier contains at least a state sc of the
cycle. Our algorithm will stop looping around the cycle either during a
Phase-2, or when a safe transition relation Ri allows to discover a state
which is not on the cycle. When no POR are possible,the results of the
PartialExploration algorithm and the ForwardUntil algorithm are the
same.

This paragraph briefly analyzes the complexity of the PartialExplo-
ration algorithm in terms of set operations. One can see that in the
worst case, the PartialExploration algorithm discovers only one new state
during each Phase1/Phase2 cycle, except during the last one which does
not discover any new state. When this happens, for each Phase1/Phase2
cycle, the algorithm performs on the order of m partial expansions plus
one full expansion where m is the number of safe transition relations of
the process model. Each partial or full expansion executes a constant
number of set operations. Therefore, in the worst case, the Partial-
Exploration algorithm performs on the order of m ·#S number of set
operations.
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Algorithm 3.10: Phase1

Header: Phase1()

Precondition: (Visited, Frontier) is an F-arrangement.

Postcondition: (Visited, Frontier) is an F-arrangement, and
(Visited0 ∪ Frontier0) ⊆ (Visited ∪ Frontier), and
post(

⋃m−1
i=0 Ri, Frontier) ⊆ (Visited ∪ Frontier).

Loop Invariant: (Visited, Frontier) is an F-arrangement, and
(Visited0, Frontier0) ⊆ (Visited, Frontier). Moreover,
there exists two sets Visited−1 ⊆ S and Frontier−1 ⊆ S
which form an F-arrangement such that WR = (Visited−1 ∪
Frontier−1) ⊆ (Visited ∪ Frontier).

Halting Condition: WR = (Visited ∪ Frontier)

Loop Variant: #S−#WR.

Implementation:

1 Phase1 () {
2 local WR ⊆ S := (Visited ∪ Frontier)
3 Phase1OfAllProcesses ();
4
5 while(WR 6= (Visited ∪ Frontier)) {
6 WR := (Visited ∪ Frontier)
7 Phase1OfAllProcesses ();
8 }
9 }
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Algorithm 3.11: PartialExploration

Header: PartialExploration(H0, Q0)

Precondition: M is a deterministic transition system with a safe
and linear process model {R0, R1, . . . , Rm−1}, and F0 ⊆ S.

Postcondition: A set Visited such that (V isited, ∅) is an F-
arrangement.

Loop Invariant: (Visited, Frontier) is an F-arrangement.

Halting Condition: Frontier = ∅

Loop Variant: #S−#Visited

Implementation:

1 PartialExploration (H0, Q0) {
2 Q := Q0
3 Visited := ∅
4 Frontier := H0
5
6 while(Frontier 6= ∅) {
7 Phase1 ();
8 PerformAFullExpansion ();
9 }
10 }
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Given a transition system M , it is easy to see that if the PartialEx-
ploration algorithm takes as input a safe but not linear process model, it
induces a reduced transition system MR which is stuttering-equivalent
to M and so preserves LTLX properties. This follows the fact that all
states of MR are fully-forming states (c.f. Theorem 2.21).

3.3 FwdUntil vs PartialExploration
In this section, we present the link between the FwdUntil algorithm and
the PartialExploration algorithm of Section 3.2. Intuitively, the CTL
properties E[f U g] and EG f which can be verified with the FwdUntil
approach can also be verified with the PartialExploration algorithm.

We start by a brief recall. In Section 2.5.2, we introduced:

• The FwdUntil(H,F ) procedure which computes all the states which
are reachable from a state of H through states of F .

• The EH(FG) procedure computes the states reachable from a cycle,
all within FG

Moreover, the following equations have been presented (c.f. Equation (2.8)
and (2.9)) .

H ∩ L(E[q U f ]) = ∅ ⇐⇒ FwdUntil(H,L(q)) ∩ L(f) = ∅ (3.1)
H ∩ L(EG f) = ∅ ⇐⇒ EH (FG(H,L(f))) = ∅ where (3.2)

FG(H,F ) = FwdUntil(H,F ) ∩ F

We now show how to use the PartialExploration algorithm instead of the
FwdUntil algorithm. The idea is to replace the FwdUntil algorithm and
keep EH as it is without partial-order reduction.

Theorem 3.8. We suppose that M = (S,R, I, L) is a deterministic
transition system, H ⊆ S, and f , g are two CTLX properties. There
exists a state h ∈ H which satisfies E [f U g] (i.e. M,h |= E [f U g])
if and only if there exists a state v in the result set Visited of the
PartialExploration(H,L(f)) algorithm such that v satisfies the CTLX

property g (i.e. M,v |= g).

Proof. The proof consists of the following four implications:
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(1) M,h |= E[f U g]

(2) By definition, (1) if and only if there exists a path h = s0
a0−−→

s1
a1−−→ . . .

an−1−−−−→ sn in M , such that ∀i ∈ [0, . . . , n[·si |= f , and
sn |= g.

(3) By Corollary 3.5, (2) if and only if there exists a state v ∈ Visited

such that there exists a path t0
b0−−→ t1

b1−−→ . . .
bm−1−−−−→ tm = v in

M , such that ∀i ∈ [0, . . . ,m[·ti |= f , v |= g.

The PartialExploration procedure can also be used to check a property
having the form EGf . We point out that the proof of Equation (3.2) which
was presented in [INH96] cannot be used to prove the following theorem.
This is so because the sets returned by the algorithms FwdUntil(H, F )
and PartialExploration(H, F ) might be different. Thus, we are not
able to make a proof which states that EH (FwdUntil(H,L(f)) ∩ L(f))
is equal to EH (PartialExploration(H,L(f)) ∩ L(f)).

Theorem 3.9. We suppose that M = (S,R, I, L) is a finite and deter-
ministic transition system, H ⊆ S, f is a CTLX property, and V is the
result of PartialExploration(I,L(f)) ∩ L(f). There exists a state h ∈ H
which satisfies EG f (i.e. M,h |= EG f) if and only if there exists a state
v in the result set of the algorithm EH(V ).

Proof. The proof contains the following four equivalences:

(1) M,h |= EG f .

(2) By Corollary 3.7, (2) and becauseM is finite, (1) if and only if there
exists a path h = s0

a0−−→ s1
a1−−→ . . .

an−1−−−−→ sn
an−−→ . . .

ap−1−−−−→
sn in M , such that ∀i ∈ [0, . . . , n] · si ∈ V . We stress that the
states of the path sn

an−−→ . . .
ap−1−−−−→ sn forms a cycle within f .

(3) By definition of EH, (2) if and only if EH(V ) 6= ∅.

From Theorem 3.8 and Theorem 3.9, it follows that the PartialEx-
ploration algorithm can be used instead of the FwdUntil algorithm in
the equation (3.1), and (3.2).
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Corollary 3.10.

H ∩ L(E[q U f ]) = ∅ ⇐⇒ PartialExploration(H,L(q)) ∩ L(f) = ∅ (3.3)
H ∩ L(EG f) = ∅ ⇐⇒ EH (FPG(H,L(f))) = ∅ where (3.4)

FPG(H,F ) = PartialExploration(H,F ) ∩ F

3.4 Forward CTLX Model Checking with POR

In this section, we construct the evalCTLX algorithm which combines
partial-order reduction and the Iwashita’s forward symbolic model check-
ing of Section 2.5.2. Our algorithm is based on Equations (3.3) and (3.4).
It supposes a deterministic transition system M with a safe and linear
process model {R0, R1, . . . Rm−1}. It takes as input a set of states H,
and a CTLX property f . It returns a Boolean value which is true if and
only if there exists a state h ∈ H such that M,h |= f .

The evalCTLX algorithm which is defined by Algorithm 3.12 can
be used to check whether a transition system M = (S,R, I, L) satisfies
a CTLX property f . In that case, it should be called with the two
parameters I and ¬f . In this case, evalCTLX(I, f ′) returns false if and
only if M verifies f .

The implementation of the evalCTLX algorithm is guided by the
equivalences of Corollary 3.10. It tries to perform POR as deep as
possible in the sub-formulae of f . For sub-formulae to which forward
model checking does not apply, the standard, backward eval algorithm is
called. It is defined by Algorithm 2.7 (c.f. Section 2.5.1). We stress that
the algorithm always terminates because it proceeds by induction on the
structure of the CTL formula.

3.5 Conclusion

This chapter is dedicated to the construction of the evalCTLX algorithm
which verifies CTLX properties on asynchronous systems. To tackle
the state space explosion problem, it combines partial-order reduction
and forward model checking. For that purpose, we start by introducing
the PartialExploration algorithm. It adapts and extends the ImProviso
algorithm which merges POR and symbolic methods and extends it to
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Algorithm 3.12: evalCTLX

Global: M = (A, AP, S, R, I, L) a transition system with a process
model {R0, R1, . . . , Rm−1}.

Header: evalCTLX(H, f)

Precondition: M is a deterministic transition, H ⊆ S, f is a CTLX

property, and {R0, R1, . . . , Rm−1}, is a safe and linear process
model with respect to M and f.

Result: A Boolean value which is true if and only if there exists a
state h ∈ H such that M,h |= f

Induction Variant: The length of f .

Implementation:

1 evalCTLX (H, f) {
2 local r ∈ {true, false}
3 if (f has the form E [f′ U g′]) {
4 local T ⊆ S :=
5 PartialExploration (H, eval(f′))
6
7 r := evalCTLX (T, g′)
8 } else if (f has the form EG f′) {
9 local T ⊆ S := PartialExploration(H, eval(f′))

10 r := EH(T ∩ eval(f′)) = ∅
11 } else {
12 r := (H ∩ eval(f)) = ∅
13 }
14 return r
15 }
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support CTLX model checking. Then, the PartialExploration algorithm
is used as a POR alternative to the forward symbolic model checking
approach which allows to verify a subset of CTL properties. Finally,
we construct the evalCTLX algorithm itself. To be able to check all
CTL properties, it uses when possible our PartialExploration algorithm,
otherwise it uses the classical backward model checking.

The reduced state set computed by the PartialExploration algorithm
could as well be used in other BDD-based model-checking circumstances:
as a filter during fixed-point computations in classical backward model-
checking, or even to restrict the BDD of the transition relation before
standard, non-POR techniques are applied. It would be interesting
to compare the benefits of the reduction in the different approaches.
However, the size of the BDD representing either the reduced state space
or the reduced transition relation could become unmanageable due to
the loss of some symmetry. Actually, in Chapter 7, which is devoted to
experimental evaluations, we see that this indeed generally happens.
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Chapter 4

Checking LTL Properties:
a set-based Approach

In this chapter, we introduce an algorithm which verifies linear tempo-
ral logic properties without the next operator (LTLX) properties. Its
name is the evalLTLX algorithm. It combines symbolic model check-
ing and partial-order reduction (POR) by using the PartialExploration
algorithm which was presented in the previous chapter. Intuitively, it
adapts and combines three methods: tableau-based symbolic LTL model
checking [CGH97], the forward symbolic CTL model checking [INH96]
and the PartialExploration algorithm. More precisely, we proceed as
follows:

1. We start from the tableau-based reduction of LTL verification to
fair-CTL of E. Clarke et al. [CGH97]. This approach starts by
constructing a new transition system P from both the transition
system and the property under verification. Then, it looks for a
fair path in P .

2. We compute a safe subset VR of the states of P . VR is safe in the
following sense: if P contains a fair path then P also contains a
fair path which is exclusively composed of states of VR.

3. By using the forward traversal approach of H. Iwashita et al.
[INH96], we check whether P contains a fair path which is composed
of states of VR.

79
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The main contribution of this chapter is the evalLTLX algorithm. To
bring this construction off, we provide the required theoretical foundation.
Moreover, we provide a proof of correctness.

The remainder of this section is structured as follows. Section 4.1
presents some definitions and properties that support the construction
and the validation of a correct version of the evalLTLX algorithm. Among
other things, it revisits the LTL symbolic model checking algorithm
of [CGH97], and shows that partial-order reduction can be applied
directly on the product P which was mentioned above. Section 4.2
presents our new approach for LTL model-checking with POR and
discusses its correctness. Section 4.3 gives conclusions.

4.1 Problem Theory

In this section, we present the theoretical foundations which are exploited
by the evalTLX algorithm. We present a set-based model checking
approach which verifies whether a transition system satisfies an LTL
property or not. We then present how POR approaches can be applied on
a specific class of nondeterministic transition systems. We remind that
generally POR approaches are only applicable on deterministic transition
systems.

The LTL model-checking algorithm of this section is a slight variant
of the one which was initially presented by E. Clarke et al. in [CGH97].
Intuitively, it takes as input a transition system M and an LTL property
f . It computes if there exists a path of M which does not satisfy f .
To rephrase, it computes if there exists a path of M which satisfies ¬f .
To achieve this computation, M is rearranged to form a new transition
system P where each state of M is created. Each copy is annotated with
sub-formulae of f . More precisely, each state of P has the form (s, F )
where F is a set of sub-formulae of ¬f . Finally, it is guaranteed that if
there exists an infinite fair path from a state (s, F ), then the paths of M
which start from s satisfy all the formulae of F . Thus, all we need to
look for is a fair path which starts from a state (i, F ) such that i is an
initial state and F contains ¬f .
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4.1.1 Fairness

In the sequel, to verify if a transition system M satisfies an LTL property
f , we will need to check if a new transition system P derived fromM and
¬f contains a special kind of path called fair path. Intuitively, given a set
of states Fk which is called a fairness constraint, a fair path with respect
to Fk is an infinite path which contains a state of Fk infinitely often. To
deal with fair paths, we extend the concept of transition system.

Definition 4.1 (A Fair Transition System). A fair transition system is
a structure M = (A,AP, S,R, I, L, F ) where:

• (A, AP, S, R, I, L) is a transition system, and

• F = {F0, F1, . . . , Fn−1} ⊆ 2S is a set of fairness constraints.

The set of states that appear infinitely often on a infinite path π
is noted inf(π). A trace is fair if and only if each fairness constraint
Fk ∈ F is met infinitely often on this path. To rephrase, a path π is said
to be fair if and only if for every Fk ∈ F , inf(π) ∩ Fk 6= ∅. A fair state s
is a state from which a fair path starts.

It is shown in [CGP99] that the set of fair states is the largest set
FS which respects the following property:

For all fairness constraints Fk ∈ F and all states s ∈ FS, there is
a sequence of states of length one or greater from s to a state s′ in
FS ∩ Fk.

This characterization can be expressed by means of the two following
fixed-point equations. Equation (4.1) has been presented in Section 2.5.1.
It is used to compute the set of all states which satisfy a property E[f Ug].
Equation (4.2) can be used to compute the set of fair states in a backward
way [CGP99].

evalEU(F,G) = µZ · [F ∩ pre(Z)) ∪G] (4.1)

FS = νZ · [
n∧

k=1
pre(evalEU(S,Z ∧ Fk))] (4.2)

To check whether a transition system contains at least one fair state,
the forward approach can also be applied (Equation (4.5)) [INH96].
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Equation (4.3) has been introduced in Section 2.5.2. Intuitively, it is
used to compute whether a transition system verifies a property E[f U g].
Equation (4.4) computes the fair states reachable from a cycle, all within
F .

FwdUntil(H,F ) = µZ.[H ∪ post(Z ∩ F )] (4.3)

EHF(H) = νZ · [F ∧ pre(
n∧

k=1
pre(FwdUntil(Fk, Z) ∩ Z)] (4.4)

I ∩ FS = ∅ ⇔ EHF(FwdUntil(I, S)) = ∅ (4.5)

4.1.2 Product of Two Transition Systems

We now introduce a simple way to annotate the states of a transition sys-
tem M . It consists in creating a new transition system T which contains
the annotations. This method is a variant of the one presented [CGH97].
In the sequel, we show how to encode an LTL property into this new
transition system T . Afterwards, T is combined with M to produce a
third transition system P which contains the annotated states of M .
This is done in such a way that P preserves the structure of both M and
T . It means that each path of P corresponds to a path of M and to a
path T . To be precise, the opposite is not always true: not all paths of
M or T have a corresponding path in P .

Definition 4.2 (Product of M and T ). Let M = (A,AP, S,R, I, L)
be a transition system and T = (AT , APT , ST , RT , IT , LT , FT ) be a fair
transition system. The asymmetric product of M and T , denoted M ×T ,
is a fair transition system P = (A,AP, SP , RP , IP , LP , FP ) such that:

• SP = S × ST

• RP =
{

((s, t) , a, (s′, t′)) | s a−−→R s′ ∧ t −−→RT t
′
}

• IP = IT × I

• LP ((s, t)) = L (s)

• FP = {{(s, t) ∈ SP | t ∈ Pk} | Pk ∈ FT }
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This product is asymmetric because it ignores the labeling of T . We
would like to point out that there are plenty of variants of such products
in the literature [Hoa85]. Each variant is designed to preserve some
specific properties. Besides, contrary to the product defined in [CGH97],
the previous definition does not require the two components of each state
(s, t) to share the same labeling, i.e. L(s) = LT (t). As so, it preserves the
following useful property: if bothM and T have a total relation transition,
then P is stuttering-equivalent to M (c.f. Section 2.3.1). Moreover, each
fair path of T has a corresponding fair path in P .

Theorem 4.3. Let M and T be two transition systems such that their
transition relations are total and T has at least one initial state. Let P
be the product M × T . In such a case, M is stuttering-equivalent to P .

Proof. The proof consists in showing that for any path of M there is a
corresponding path of P , and vice versa.

• We consider any path of M from an initial state s0: s0
a0−−→

s1
a1−−→ . . . . We suppose that t0 is an initial state of T . Because

T has a total transition relation, there exists a path of T : t0
b0−−→

t1
b1−−→ . . . . Thus, there exists by construction a a path of P :

(s0, t0) a0−−→ (s1, t1) a1−−→ . . . . Furthermore, the two paths are
equivalent because for all si, L(si) = LP ((si, t)).

• We suppose a path of P : (s0, t0) a0−−→ (s1, t1) a1−−→ . . . . By con-
struction, the following path of M exists: s0

a0−−→ s1
a1−−→ . . .

.Furthermore, the two paths are equivalent because for all si,
LP ((si, ti)) = L(si).

4.1.3 LTL Set-Based Model Checking

This section starts by presenting a variant of the LTL model checking
algorithm of E. Clarke et al. [CGH97]. Afterwards, we explain the
differences between our variant and the original one. Given a transition
system M and an LTL property f , the tableau of ¬f is constructed. It is
a fair transition system T over the set of propositions which appear in f .
Roughly, the construction is based on the set of sub-formulae of f . Each
state of the tableau is a set of such sub-formulae . They characterize the
sub-formulae of f that are satisfied on fair traces from that state. Initial
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states are those that entail f . The fairness constraints ensure that all
eventualities occurring in f are fulfilled. The fair traces of the tableau
correspond to the traces that satisfy f .

More precisely, the function el(f) from an LTL formula to its elemen-
tary formulae is defined:

Definition 4.4 (Function el). The function el from an LTL formula f
to a set of elementary sub-formulae of f is recursively defined as follows:

• If f is an element p ∈ AP , el(f) = {p}.

• If f has the form ¬g, el(f) = el(g).

• If f has the form g ∨ h, el(f) = el(g) ∪ el(h).

• If f has the form Xg, el(f) = {Xg} ∪ el(g).

• If f has the form g U h, el(f) = {X(g U h)} ∪ el(h) ∪ el(g).

are finite. The function sat(g) from LTL formulae to subsets of 2el(f)

is also needed.

Definition 4.5 (Function sat). Given an LTL formula f , let g be a
sub-formula of f . The function sat from LTL formulae to subsets of
2el(f) is defined recursively as follows:

• if g ∈ el(f), sat(g) = {s ∈ 2el(f) | g ∈ s}

• if g is the form ¬h, sat(g) = {s | s 6∈ sat(h)}

• if g is the form h ∨ i, sat(g) = sat(h) ∪ sat(i)

• if g is the form h U i, sat(g) = [sat(h) ∩ sat(X (h U i))] ∪ sat(i)

Based on the previous definitions, the tableau T is constructed.

Definition 4.6 (Tableau T ). Given an LTL property f , a tableau is con-
structed. It is a fair transition system T = (AT , APT , ST , RT , IT , LT , FT )
over AT = {>} and the set APT of propositions which appear in f . It is
constructed as follows.

• ST = 2el(f)
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• RT ⊆ (ST × {>} × ST ) such that (st,>, s′t) ∈ RT if and only if∧
Xg∈el(f)

[
st ∈ sat (X g)⇔ s′t ∈ sat (g)

]

• IT = sat(f)

• LT : ST → 2APT : LT (st) = st ∩APT

• FT = {sat ((f U g)⇒ g) | (f U g) is a sub-formula of f}

Then, the product P of M and T which was defined in the previous
section is computed. It is shown in [CGH97] that M contains a path
which satisfies ¬f if and only if there is an infinite fair path π in P such
that the two components of all the states of π share the same atomic
propositions. Furthermore, the existence of fair traces is captured by
the CTL formula EG true under fairness conditions, to be read as “there
exists a fair path. The interest is that this CTL formula can be verified
with set-based forward symbolic model checking.

Definition 4.7 (Acceptable Path of P ). Let M be a transition system
with a total transition relation, f be an LTL property, T be the tableau of
¬f , and P be the product M ×T . A path π of P is acceptable if and only
if π is an infinite fair path such that the two components of all states
(s, t) which appear on π share the same labeling, i.e. L(s)∩APT = LT (t).

Theorem 4.8. Let M be a transition system with a total transition
relation, f be an LTL property, T be the tableau of ¬f , and P be the
product M × T . M 6|= f if and only if P contains an acceptable path π.

Proof. The proof is the same as the proof of the Theorem 5 of the original
approach of Clarke et al. [CGP99, CGH97].

This paragraph explains the main difference between our approach
and the one of E. Clarke et al. The product of the original approach
and the product of this section are not the same. Actually the two
components of the states (s, t) of the original product share the same
labeling. It means that the set of states of the original product is
equal to {(s, t) ∈ S × ST | L(s) ∩ APT = LT (t)}. We do enforce such
a restriction because we would like to produce a product P which is
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stuttering equivalent to M by ensuring that Theorem 4.3 is applicable.
As a consequence, the original approach looks for any infinite trace on
the constrained product, while our approach looks for an acceptable
infinite fair trace on the constrained product.

4.1.4 Total Tableau Construction

We outline here a minor variant of the algorithm which is presented
in the previous section. We modify the construction of the tableau to
ensure that its transition relation is total. As such by Theorem 4.3, we
are sure that the product P = M × T is stuttering-equivalent to M .

As in the original approach, given a transition system M and an LTL
property f , a total tableau T> is constructed from ¬f . It is the same
as the one of the previous section but with one more state > which a
unique transition which is a self-loop. Roughly speaking, when state > is
reached, it is impossible to leave it. While the original tableau T might
contain some deadlocks, thanks to state >, T> is deadlock-free. Then,
the product P> of M and T> is constructed. Like P , P> contains an
infinite fair path sharing the same label if and only if M does not satisfy
f

Before defining the new construction of the total tableau T>, we
identify the deadlock states of the tableau T .

Definition 4.9 (Deadlock States of T ). Let f be an LTL property f .
Let s be an element of 2el(f). The result of the predicate deadT (s) is true
if and only if

¬∃s′ ∈ 2el(f) ·
∧

Xg ∈ el(f)

[
s ∈ sat (X g)⇔ s′ ∈ sat (g)

]
.

Based on that, the total total tableau T> is constructed from the LTL
property f as follows.

Definition 4.10 (Total Tableau T>). Given an LTL property f , a
fair transition system T> = (A>, AP>, S>, R>, I>, L>, F>) is defined as
follows

• A> = {>}

• AP> = var(f) ∪ {>} where > 6∈ var(f)
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• S> = (2el(f) ∪ {>})

• R> ⊆ (S> × {>} × S>) such that (s,>, s′) ∈ R> if and only if

(1) s 6= > ∧ ¬ deadT (s) =⇒∧
Xg ∈ el(f)

[
s ∈ sat (X g)⇔ s′ ∈ sat (g)

]
, and

(2) s = > ∨ [s 6= > ∧ deadT (s)] =⇒ s′ = >

• I> = sat(f) ∪ {>}

• L> : S> → 2AP ∪ {>} :

(1) st = > =⇒ L>(st) = >

(2) st 6= > =⇒ L>(st) = st ∩AP>

• F> = {sat ((g U h)⇒ h) | g U h is a subformula of f}

Given an LTL property f , the tableau T which is defined in the pre-
vious section is a sub-transition system of the total tableau T>. Actually,
AT = A>, AP> = (APT ∪ {>}), S> = (ST ∪ {>}), I> = (IT ∪ {>}),
and L> = (LT ∪ {(>,>)}). Moreover, R> is a sub-transition relation of
RT . Actually, the condition (1) includes all the transition of RT . The
condition (2) adds a transition from deadlock states with respect to RT

to the > state. Moreover, the condition (2) also adds a self loop to
the > state. Thus, R> is a total transition relation. As in the original
approach, T> is composed with the initial system M to produce a new
fair transition system P>.

Theorem 4.11. Let M be a transition system with a total transition
relation. Let T> be the total tableau of ¬f . Let P> be the product of M
and T>. M 6|= f if and only if P> contains an acceptable path π

Proof. The proof is the same as the proof of the Theorem 5 of the original
approach of Clarke et al. [CGH97, CGP99].



88 Checking LTL Properties: a set-based Approach

4.1.5 POR and Nondeterministic Transition Systems

In this part, we present the theorem which allows us to apply partial-
order reduction on the product P> defined in the previous section rather
than on the transition system M under verification itself. Furthermore,
thanks to this theorem, we are allowed to make use of a process model
of M to reduce the product P>.

In the sequel, we suppose a deterministic transition system M = (A,
AP, S,R, I, L) with safe process model {R0, R1, . . . , Rm−1}. We also
suppose any fair transition system with a total relation transition TT =
(AT , APT , ST , RT , IT , LT , FT ).

Theorem 4.12 (c.f [Pel96]). Let M be a transition system with a total
transition relation, f be an LTL property, T> be the total tableau of
¬f , and P> be the product M × T>. Let PR = (SR, RR, IR, LR) be a
sub-transition system of P>, i.e. PR v P . If each state of PR is a
fully forming state with respect to the process model {R0, R1, . . . , Rm−1}
and the transition relation RP , then PR = MR × T is the product of a
transition system MR which is stuttering equivalent to M and T>.

Proof. The proof is exactly the same as the proof of the Theorem 2.20
which was initially presented in [GKPP99].

The product P can be seen as a non-deterministic variant of M .
For each transition (s, a, s′) of M , there is one or more transitions
((t, s) , a, (t′, s′)) in P . We are sure that there is at least one transition
because by definition T> is deadlock-free. The above theorem shows
that partial-order reduction can be easily applied on P based on the
safe actions of M . Given a transition system M and a total tableau T>,
Theorem 4.12 can be used to construct an algorithm which produces a
stuttering-equivalent reduced version of P . This leads to the following
corollary:

Corollary 4.13. Let P> = (S>, R>, I>, L>) be the product of M and
T>. Let PR = (SR, RR, IR, LR) be a sub-transition of P>, i.e. PR v P>.
If each state of PR is a fully forming state with respect to the process
model {R0, R1, . . . , Rm−1} and the transition relation R>, then

PR contains an acceptable path if and only if P> contains an acceptable
path.
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Actually, a theorem similar to Theorem 4.12 was firstly introduced
in [Pel96] (c.f. Theorem 4.2). We outline here the context in which
this theorem was introduced. Given a transition system G and an LTL
property f , a Büchi automaton B which accepts the language L(¬f) is
constructed. The product A of G and B is computed, i.e. A = G×B.
Then, a reduced version A′ of A is constructed by performing a modified
DFS (c.f. Section 2.4.1). At each step a valid ample set is chosen. In
practice, it means that the conditions C1 and C2 are checked on G alone,
while C0 and C3 are checked on the whole product. It is shown that A′
corresponds to a product of a reduced system GR and B such that GR is a
property-preserving reduction of G, i.e. (G, i) |= E ¬f iff (GR, i) |= E ¬f .

4.2 Symbolic LTL Model Checking with POR
In this section, we bring together the symbolic LTL model checking
approach and the partial-order reduction (POR) technique to create the
evalLTLX algorithm. We merge the computation of the reachable state
space by means of POR and the fair cycle detection.

Given a transition system M = (S,R, I, L) with a safe process model
{R0, R1, . . . , Rm−1} and an LTLX property f , our algorithm verifies
whether M satisfies f by building a total tableau T> from ¬f . Then,
it checks for the absence of infinite fair traces in the product P> =
(S>, R>, I>, L>, F>) of M and T>. This check is performed symbolically.
We proceed as follows.

1. We start by computing the subset S′> of S> which contains all the
states (s, t) such that L(s) ∩APT = LT (t).

2. Then, thanks to the partial exploration algorithm, we compute a
sufficiently large subset VR of S′>, in the sense that we are certain
that the two following sentences are equivalent:

• P contains an acceptable path π.
• P contains an acceptable path π which is exclusively composed

of states of VR.

3. Finally, thanks to the forward model checking algorithm, we check
whether P contains a fair cycle within the reduced state space



90 Checking LTL Properties: a set-based Approach

VR (c.f. Section 2.5.2). It takes place if and only if M does not
verify the property f (c.f. Theorem 4.11).

In the rest of this section, we suppose that M is a deterministic
transition system with a total relation transition.

Theorem 4.14. Given an LTLX property f , T> is the total tableau
of ¬f . P> = (S>, R>, I>, L>, F>) is the product of M and T>. Q> is
the set of all states of P which have two components sharing the same
labeling. Finally VR is the result of the algorithm PartialExploration(IP ,
Q>) (c.f. Section 3.2.2). M does not satisfy f if and only if P> contains
an acceptable fair path π such that all the states of π belongs to VR ∩QT .

Proof. By the specification of the PartialExploration algorithm, we know
there exists a transition system PR = (SR, RR, IR, LR) v P> which
contains only fully forming states with respect to the process model
{R0, R1, . . . , Rm−1} and the transition relation R>. By Corollary 4.13,
we know that PR is stutteringly-equivalent to P . We now perform the
following deductions:

(1) M does not satisfy f .

(2) By LTL semantics, (1) if and only if there is a path π of M which
starts from an initial state such that M,π |= ¬f

(3) By Theorem 4.11, (2) if and only if there is an acceptable path π′
in P>.

(4) By Corrolary 4.13, (3) if and only if there is an acceptable fair path
π′′ of PR. Moreover, because PR v P>, P>, π′′ |= ¬f , and π′′ is an
acceptable fair path. Thus, all the states of π′′ belong to Q>.
Besides, we know from the specification of the PartialExploration
algorithm that because the path π′′ of PR exclusively contains state
of Q>, all the states of π′′ belong to VR.

Algorithm 4.1 constructs the evalLTLX algorithm. Both Theorem 4.14
and Equation (4.4), which is relative to fair path detection, help us to
deduce that the evalLTLX algorithm is correct.
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Algorithm 4.1: evalLTLX

Global: A transition system M = (S, R, I, L) with a process model
{R0, R1, . . . , Rm−1}, and {D0, D1, . . . , Dm−1} ⊆ 2S.

Header: evalLTLX(f)

Precondition: M is a deterministic transition system,
{R0, R1, . . . , Rm−1} is a safe process model. Each Di con-
tains the dead states with respect to Ri. f is an LTLX

property.

Result: A boolean value which is true if and only if M satisfies the
property f.

Implementation:

1 evalLTLX (f ) {
2 local T> := create the total tableau of ¬f
3 local (S>, R>, I>, L>, F>) := M × T>
4 local Q> ⊆ S> := {(s, t) ∈ S> | L (s) ∩APT = LT (t)}
5 local VR ⊆ S> := PartialExploration (I>, Q>)
6 return EHF(VR) = ∅
7 }
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4.3 Conclusion
In this chapter, we presented an improved set-based model checking
algorithm for verifying LTLX properties on asynchronous models. Our
approach combines the tableau-based reduction of LTL model-checking
to fair-CTL from [CGH97], forward state-traversal of fair-CTL formulae
from [INH96] used to detect fair cycles, and the PartialExploration
algorithm to reduce the forward state traversal.

We note that other symbolic partial-order reduction algorithms which
construct a valid POR-reduced reachable state set reduced(M) of a
transition system M could have been used instead of our approach.
In the same way, other algorithms can be used to detect fair cycles,
for instance the classical backward fair CTL model-checking algorithm
can be used [CGP99]. Actually, these approaches are valid, and the
proof of Theorem 4.14 remains the same. For comparison purposes, we
implemented the classical backward as a basis for comparison, though
experimental results show the forward approach to be more efficient than
the backward approach in all performed experiments.



Chapter 5

Checking LTL Properties:
a Bounded Approach

BDD-based symbolic model checking, as exploited in Chapter 3 and Chap-
ter 4, can handle systems with a very large number of states [BCM+92].
Nevertheless, the size of the BDD structures themselves can become
unmanageable for some systems. To tackle this problem, bounded model
checking (BMC) was developed [BCC+03]. Intuitively, it constructs a
set tr(k,M,¬f) of traces of the system M under verification. Given a
predetermined bound k, this set contains the error paths of length k
which allow one to discover an error. Then, it checks whether tr(k,M,¬f)
is empty. If this is the case, no errors are found. In practice, the set
tr(k,M,¬f) is represented by a propositional formula. A SAT-solver is
used to verify that tr(k,M,¬f) is empty. BMC offers the advantage of
polynomial space complexity in the length of the generated propositional
formula. Moreover, it has proven to provide competitive execution times
in practice. Nevertheless, it is well-known that the SAT problem is NP
complete, and thus hard to solve.

In this chapter, we present an approach which attempts to improve
BMC for asynchronous systems by applying partial-order reduction to
bounded model checking for verifying linear temporal logic (LTL) prop-
erties. Given a system and a property to check, we try to generate a
propositional formula such that its satisfiability is easier to check than the
one generated by classical BMC. We start from the PartialExploration
algorithm of Chapter 3 . We merge a variant of this algorithm with the

93
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BMC procedure. The standard BMC method constructs a propositional
formula which represents a finite unfolding of the transition relation and
the property. To some extant, our method proceeds in the same way,
but instead of using the entire transition relation during the unfolding
of the model, we only use a safe subset based on POR considerations.
This produces a propositional formula which is well suited for most mod-
ern SAT-solvers because it contains less nondeterminism, and therefore
reduces backtracking in the SAT search.

To assess the validity of our approach, we reason on the computation
tree which is induced by a given transition system (c.f. Section 2.1.1).
This offers the advantage that states of the original transition system that
can be reached through different paths in the original model, and thus be
expanded in different ways, become different states in the computation
tree, each with its unique expansion. It matches with the bounded model-
checking approach naturally. Actually BMC does not attempt to prevent
exploring the same state several times on the same path, as opposed to
conventional enumerative model-checkers. We start by introducing two
methods which can be combined together for transforming computation
trees. The POR method captures partial-order reduction criteria [God96,
CGP99, GKPP99]. The idle-extension shows how a finite number of
transitions can be added while also preserving temporal logic properties.
Then, the concept of bounded partial exploration (BPE) is introduced, as a
particular instance of a combination of these two methods. The bounded
partial exploration approach is inspired from the PartialExploration
algorithm. Finally, we present a finite prefix of the tree which is generated
by the bounded partial exploration. It is encoded as a propositional
formula suitable for BMC.

The remainder of this chapter is structured as follows. Section 5.1
introduces bounded model checking. Besides, it characterizes a broad
class of derived computation trees reduced according to partial-order
criteria and extended with (finite chains of) idle transitions, and shows
that they are visible-bisimilar to the computation tree they derive from.
Section 5.2 defines the computation tree corresponding to the BPE
method we outlined in the previous section, as a particular instance of
this class of derived computation trees. Section 5.3 expresses a constraint
system whose solutions are bounded execution paths of the computation
tree produced by BPE. Section 5.4 shows how to handle traces which
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contain a cycle. Section 5.5 gives conclusions.

5.1 Problem Theory

5.1.1 Bounded Model Checking

This section presents Bounded Model Checking (BMC), which uses
SAT-solvers as the underlying computational device [BCC+03]. Given a
transition systemM and a property f , the idea of BMC is to characterize
the set tr(k,M,¬f) of error paths of length k. The set is represented as
a propositional formula. Then, the emptiness check of tr(k,M,¬f) is
entrusted to a SAT-solver.

This formula is obtained by combining a finite unfolding of the
system’s transition relation and an unfolding of the negation of the
property being verified. The latter is obtained on the basis of expansion
equivalences, such as pUq ⇔ q∨(p∧X(pUq)), which allow us to propagate
across successive states the constraints corresponding to the violation
of the LTL property. If no counterexample is found, k is incremented
and a new execution path is searched. This process is continued until a
counterexample is found or a fixed limit is reached.

BMC allows us to check LTL properties on a transition system. Since
BMC works on finite paths, an approximate bounded semantics of LTL is
defined. Intuitively, the bounded semantics treats differently paths with
a back-loop (c.f. Figure 5.1(a)) and paths without such a back-loop (c.f.
Figure 5.1(b)). The former is an infinite path formed by a finite number
of states. In this case the classical semantic of LTL can be applied. In
contrast, the latter is a finite prefix of an infinite path. In some safety
properties, such a prefix π is sufficient to show that a path violates a
property f . For instance, let f be the property Gp. If π contains a state
which does not satisfy p then all paths which start with the prefix π
violate Gp.

Let M be a transition system. Let f be an LTL property. Let k be
a natural number. The set tr(k,M,¬f) contains all the paths π of M
which respect one of the two following conditions:

(1) π is a path of length k, and all infinite paths of M which have π
as a prefix necessarily violate property f .
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(a) A path with a back-loop (b) A path without a back-loop

Figure 5.1: The two cases for a bounded path [BCC+03].

(2) π is an infinite looping path which does not respect the LTL
property f . It can be decomposed into a prefix p of length k, and
a back-loop from the last state of p to any state of p.

Definition 5.1 (tr(k,M,¬f)). Given a transition system M = (S,R, i,
L), an LTL formula f , and a bound k ∈ N, tr(k,M,¬f) ⊆ tr(k,M) is
a set of paths such that all paths π = s0

a0−−→ s1
a1−−→ . . .

al−1−−−−→ s`
a`−−→

. . .
ak−1−−−−→ sk ∈ tr(k,M,¬f) satisfy one of the following conditions:

(1) all infinite paths of M which have π as a prefix necessarily violate
the property f .

(2) There exists a ` ∈ [0, . . . , k] such that sk
ak−−→ s`. Moreover, the

infinite path s0
a0−−→ s1

a1−−→ . . .
al−1−−−−→ s`

a`−−→ . . .
ak−1−−−−→ sk

ak−−→
s` . . . does not respect the LTL property f .

The set tr(k,M,¬f) is represented by the propositional formula
[[k,M,¬f ]] which is constructed as follows:

Definition 5.2 (BMC encoding). Given a transition system M =
(S,R, I, L), an LTL formula f , and a bound k ∈ N, the set tr(k,M,¬f)
is encoded by the following propositional formula:

[[k,M,¬f ]] =

I(0)∧
i=k−1∧

i=0
R(si, si+1) ∧

(
[[k,¬f ]] ∨

`=k∨
`=0

([[`, k,M ]] ∧ [[`, k,¬f ]])
)

where:

• I(0) ∧
∧i=k−1

i=0 R(si, si+1) represents the path prefixes π of M of
length k.
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• [[k,¬f ]] represents the paths π = s0
a0−−→ s1

a1−−→ . . .
ak−1−−−−→ sk of

M of length k which respect the following property: all infinite
paths π′ = s0

a0−−→ s1
a1−−→ . . .

ak−1−−−−→ sk
ak−−→ sk+1

ak+1−−−−→ sk+1 . . .
which have π as a prefix violate the property f .

• [[`, k,M ]] is true if and only if there is a transition from sk to s`,
i.e. sk

ak−−→ s`.

• [[`, k,¬f ]] represents infinite paths s0
a0−−→ s1

a1−−→ . . .
al−1−−−−→

sl
a`−−→ . . .

ak−1−−−−→ sk
ak−−→ s` which do not respect the LTL

property f .

It is shown in [BCC+03] that M 6|= f if and ony if there is a k ≥ 0
such that [[k,M,¬f ]] is satisfiable. Actually, A. Biere et al. [BCC+03]
show the following result. For an upper bound K which depends on f
and M , if for all k ≤ K tr(k,M,¬f) is empty then M satisfies the LTL
property f .

Given a propositional formula p produced by the BMC encoding, a
SAT-solver decides if p is satisfiable or not. If it is, a satisfying assignment
is given that describes the path violating the property. Most of the SAT-
solvers apply a variant of the Davis-Putnam-Logemann-Loveland (DPLL)
algorithm [DLL62] to resolve this NP-complete problem. Intuitively,
DPLL performs alternatively two phases. The first one proceeds by
case-splitting, i.e. it chooses a value for some variable. The second one
propagates the implications of this decision that are easy to infer. This
method is known as unit propagation. The algorithm backtracks when a
conflict is reached. The performance of the DPLL algorithm essentially
depends on the number of the propositional variables, but also on the
amount of case-splitting and backtracking.

In this chapter, the proposed BMC method builds a propositional
formula which is well-suited for the DPLL algorithm, in the sense that less
case-splitting occurs than with the classical BMC method. Suppose that
we want to find a satisfying assignment for the path s0

a0−−→ s1 . . . and
that s0 is a deterministic state. Once the values of variables representing
s0 are completely decided, the values of variable representing s1 can
be completely decided by the unit propagation phase. Because s0 is
a deterministic state, there is exactly one possibility for the value of
variable representing s1.
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5.1.2 Computation Tree Revisited

This section presents a variant of the PartialExploration approach (c.f.
Section 3.2.2), called the BoundedPartialExploration (BPE) method.
In contrast to the original PartialExploration, which performs partial
expansions as long as possible, our BPE method imposes a fixed number
n of partial expansions for each safe transition relation. If less than n
successive steps are enabled for some process, invisible idle transitions
are performed instead. Figure 5.2 illustrates the resulting computation
tree, for two processes with n = 3 transitions each.

...
R

R1 else idle

R1 else idle

R1 else idle

R0 else idle

R0 else idle

R0 else idle
R

R1 else idle

R1 else idle

R1 else idle

R0 else idle . . .
R0 else idle depth = 1

R0 else idle depth = 0

Figure 5.2: BPE(M, 3) with two processes and n = 3.

This approach ensures that, at a given depth in the execution, the
same (partial or global) transition relation is applied to all states, which
greatly simplifies the encoding and resolution of this exploration like a
bounded model checking problem using SAT-solvers.

Partial Order Reduction of Computation Trees

We recall that a computation tree is also a transition system. Hence,
Theorem 2.20 relative to fully forming states remains applicable to compu-
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tation trees. Let T = (A,AP, S,R, i, L) be a computation tree with a safe
process model {R0, R1, . . . , Rm−1}. Let TR = (AR, APR, SR, RR, i, LR)
be a computation tree such that TR is a sub-transition system of T . Let
AP ′ be a subset of AP . If all the states sr of SR are fully forming states
with respect to AP ′, the safe process model {R0, R1, . . . , Rm−1} and the
relation transition R then TR is stuttering-equivalent to T .

Idle-Extension of Computation Trees

Given a computation tree T , the idle-extension consists in adding a finite
(possibly null) number of idle transitions on states of T , giving Tidle.
Intuitively, an idle transition is a transition which does nothing and so
does not modify the current state.

Definition 5.3 (Idle-Extension). Given a computation tree T = (A,AP,
S,R, i, L), an idle-extension of T is a computation tree Tidle = (A∪{idle},
AP, Sidle, Ridle, i, Lidle) where idle 6∈ A, S ⊆ Sidle, L ⊆ Lidle and the
following conditions hold:

(1) For all states s, t of S, There is a transition s a−−→ t in T if and
only if there is a path s idle−−−→ s1

idle−−−→ s2
idle−−−→ · · · idle−−−→ sn

a−−→ t
in Tidle such that L(s) = Lidle(s) = Lidle(s1) = · · · = Lidle(sn) in
Tidle.

(2) For all states s, t of Sidle where there is no transition s′ idle−−−→Ridle s,
there is a path s idle−−−→ s1

idle−−−→ · · · idle−−−→ sn
a−−→ t in Tidle such

that a 6= idle if and only if s ∈ S, t ∈ S, and s a−−→ t in T .

(3) There is no finite or infinite maximal path in Tidle: s0
idle−−−→

s1
idle−−−→ s2 . . .

The first condition defines in which context an idle transition can be
added. The second and third condition ensure that no more than the
necessary states are added. In the sequel, we prove that an idle-extension
of a computation tree T is visible-bisimilar to T and so respects the same
CTLX properties.

Given a state s ∈ S, we write s idle∗−−−−→ si when a sequence s idle−−−→
s1

idle−−−→ . . .
idle−−−→ si exists in Tidle. We call si an idle-successor of
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s. Moreover, s is the idle-origin of si. Note that the idle transition
is invisible according to this definition. Since the idle-extension is a
tree, two different idle-successors si are never shared between multiple
idle-origins.

Theorem 5.4. If the computation tree Tidle is an idle-extension of the
computation tree T , then T and Tidle are visible-bisimilar.

Proof. To prove the theorem, we define B ⊆ S×Sidle such that (s, si) ∈ B
if and only if si is an idle-successor of s. We will prove that B is a visible
bisimulation between T and Tidle. Firstly, we notice that for all s ∈ S,
(s, s) ∈ B, so (i, i) ∈ B.

Secondly, we suppose two states s ∈ S and si ∈ Sidle such that
(s, si) ∈ B and check that the three conditions of Definition 2.9 are
satisfied for B and B−1. By definition of B, si is an idle-successor of s.

(1) L(s) = Lidle(si) by Definition 5.3.

(2) We separately treat the two cases:

B: If s a−−→ t in T , then by definition there is a path s idle∗−−−−→ sn
a−−→

t in Tidle such that B(s, s), B(t, t), and ∀j ∈ [1, . . . , n]·(s, sj) ∈
B.

B−1: If si
a−−→ t in Tidle then either

a = idle: so a is invisible, and t is another idle-successor of s
so B(s, t), or

a 6= idle: so si is the last idle-successor of s. By definition,
s

a−−→ t in T , with (t, t) ∈ B.

(3) We separately treat the two cases:

B: Suppose there exists an infinite path t0
a0−−→ t1

a1−−→ t2 · · · in
T , where s = t0, all ai are invisible, and ∀j ∈ N · (tj , si) ∈ B.
Therefore, ∀j ∈ N · tj

idle∗−−−−→ si and all tj are idle-origins
of si. Because Tidle is a tree, si has only one idle-origin,
otherwise there would be more than one path that reach
si. Hence, ∀j ∈ N · tj = s, and so there is a cycle s a0−−→
s. According to Definition 5.3, it is impossible, because by
definition computation trees do not permit such cycles. In
consequence, this case never happens.
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B−1: Suppose there exists an infinite path t0
a1−−→ t1

a2−−→ t2 · · ·
in Tidle, where si = t0, all ai are invisible and ∀j ∈ N ·
(s, tj) ∈ B. Therefore, ∀j ∈ N · s idle∗−−−−→ tj and all tj are
idle successors of s. From that and because Tidle is a tree,
there is an infinite sequence of idle actions: s = t0

idle−−−→
t1

idle−−−→ t2 · · · . According to Definition 5.3, it is impossible.
In consequence, this case never happens.

5.2 The Bounded Partial Exploration Method

In order to accelerate the SAT procedure, we want to consider a modified
computation tree Tidle derived from a given transition system M . The
computation tree Tidle has the following particularity: the same (possibly
partial) transition relations are applied to all states at a given depth
across the tree (see Figure 5.2 of page 98).

This result can be obtained by applying the BPE function, which is
a variant of the PartialExploration algorithm (c.f. Section 3.2.2). For the
simplicity of the arguments, this section and Section 5.3 considers only
the case of finite traces without back-loops (c.f. Section 5.1.1). Section 5.4
explains how to reason about back-loops.

We consider a transition system M = (S,R, i, L) with a safe process
model {R0, R1, . . . , Rm−1} (c.f. Section 2.4.2). For a predetermined
natural number n, our BPE function expands exactly n safe transitions
of R0, then n safe transitions of R1, . . . , then n safe transitions of
Rm−1. If less than n safe transitions are allowed, then idle transitions are
performed instead. Then, a full expansion occurs even if there are safe
transitions remaining. The computation tree produced by BPE(M,n) is
defined in Listing 5.1, where BCT(s, t, d) computes the transition relation
from state t at depth d using transitions from state s.

Given a transition system M and its computation tree T , the compu-
tation tree produced by the BPE function is an idle-extension of a partial
order reduction of T . It is therefore visible-bisimilar to T . Actually, it
jointly applies both methods of Section 5.1.2. (c.f. Figure 5.3).

We notice that an infinite computation tree is created. However,
we point out that this is not a problem because our bounded model
checking algorithm will only explore this tree down to a bounded depth k.
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Moreover, we also notice that when n equals 0 no partial-order reduction
is performed and the resulting computation tree is the same as the
original computation tree. Figure 5.3(b) illustrates the result of applying
one full cycle of BPE to the computation tree of Figure 5.3(a), with
two processes and n = 3. The gray arrows of Figure 5.3(a) represent
transitions which are ignored by the partial expansion.

Listing 5.1: BPE Function
1 BPE(M=(S, R, i, L), {R0, R1, . . . , Rm−1}, n) = (S′, R′, i′, L′)
2 where
3
4 S′ is an infinite set of states ,
5 R′ = BCT(i, i′, 0),
6 i′ is a fresh state ,
7
8 BCT(s, t, d) {
9 i := d div(m · n + 1)

10
11 if i < m ∧ s a−−→ s′ ∈ Ri then
12
13

⋃
(s,a,s′)∈Ri

{
{t a−−→ t′} ∪ BCT(s′, t′, d + 1)

}
such that

14 t′ is a fresh state
15
16 else if i < m ∧ enabled(s, Ri) = ∅ then
17
18 {t idle−−−→ t′} ∪ BCT(s, t′, d + 1) where
19 t′ is a fresh state
20
21 else
22

⋃
(s,a,s′)∈R

{
{t a−−→ t′} ∪ BCT(s′, t′, i + 1)

}
such that

23 t′ is a fresh state.
24 }
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s0 s1 s2 s3

s4

s5

s6

R0 R0 R1

R

R

R

s0 s1 s20 s21 s30 s31 s32
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s5

s6

R0 R0 idle R1 idle idle
R

R

R

Partial Expansion Full Expansion

depth = 0 1 2 3 4 5 6 7

(a) Computation
Tree of M

(b) BPE(M, 3)

Figure 5.3: Computation tree of M vs BPE(M, 3), if s and s′ are linked
by a dashed line then (s, s′) ∈ B and (s, s′) ∈ B−1
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5.3 Applying BMC With Partial Order Reduc-
tion

This section describes the actual bounded model-checking problem used
in our approach. This problem encodes bounded executions of a compu-
tation tree resulting from a bounded partial exploration. This kind of
exploration is defined in the previous section.

Let M = (S,R, i, L) be a transition system with a safe process model
{R0, R1, . . . , Rm−1}. Let f be an LTLX property. Let n and k be two nat-
ural numbers. Our approach uses a variant of the BMC method presented
in [BCC+03]. Intuitively, it constructs the set tr(k,BPE(M,n),¬f).
This set contains the ”faulty” paths of length k which result from a
bounded partial exploration of the computation tree of M . This set is
represented by the propositional formula [[n, k,M,¬f ]]BP E . Contrary
to the classical bounded model checking methods which use a single
transition relation to carry out the required computation on the state
space, we define m + 1 transition relations. One is the full transition
relation R used in Phase-2. The others used to perform partial expansion
are derived from the safe process model {R0, R1, . . . , Rm−1}. Given a
relation transition Ri, a Ridle

i transition relation is created. It contains
all the safe transitions of Ri. Moreover, it contains idle transitions on
states where no such safe transitions are enabled. Given two states s, t
and an action a, (s, a, t) ∈ Ridle

i if and only if either {a} ∈ enable(s,Ri)
and s a−−→ t, or enable(s,Ri) = ∅, a = idle, and L(s) = L(t). Given the
number of transition relations m in the process model and the parameter
n, we know that each Phase-1/Phase-2 cycle performs m · n+ 1 steps: n
partial expansions for each of the m safe transition relation plus one full
expansion. We know which phase is used in the unfolding process at each
depth i . Furthermore, if Phase-1 is performed at i, we also know which
transition relation is being unfolded (c.f. Figure 5.2). The transition
relation RBP E(i, s, a, s′) expanded at level i is defined as follows:

Definition 5.5 (RBP E(i, s, a, s′)). Given M = (S,R, s0, L) with a safe
process model {R0, R1, . . . , Rm−1}. Let c = m · n + 1, i ∈ N, s, s′ ∈ S,
and a ∈ A:

RBP E(i, s, a, s′) :=
{
R(s, a, s′) if i mod c = m · n (Phase-2)
Ridle

(i mod c) div n(s, a, s′) otherwise (Phase-1)
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Definition 5.6 (BPE encoding). Let M be a process model which con-
tains m processes, f be an LTLX property and n, k ∈ N:

[[n, k,M,¬f ]]BP E := I(0) ∧
i=k−1∧

i=0
RBP E(i, si, a, si+1) ∧ [[k,¬f ]]

When the propositional formula [[n, k,M,¬f ]]BP E is built, a deci-
sion procedure is used to check its satisfiability. An error is found if
[[M,¬f ]]BP E

k,n is satisfiable. The validity of this method stems from the
following observations. By comparing the construction of BPE(M, n) and
[[n, k,M,¬f ]]BP E we show that the latter is the BMC encoding of the
former i.e. [[n, k,M,¬f ]]BP E = [[BPE(M,n),¬f ]]k (restricted to finite
traces). The rest derives from the validity of BMC and BPE, as follows:

Theorem 5.7. Let M be a transition system with a safe process model
{R0, R1, . . . , Rm−1}, CT(M) be the computation tree of M, f be an LTLX

formula, and n ∈ N. There exists k ≥ 0 such that [[k, n,M,¬f ]]BP E if
and only if M 6|= f

Proof. blable

1. There exists a k such that [[k,BPE(M,n),¬f ]] is satisfiable if and
only if BPE(M,n) 6|=k f (c.f. Theorem 2 of [BCC+03]).

2. There exists a k such that BPE(M,n) 6|=k f if and only if BPE(M,
n) 6|= f (c.f. Theorem 1 of [BCC+03]).

3. BPE(M,n) 6|= f if and only if CT (M) 6|= f because BPE(M,n)
is visible bisimilar to CT (M) (c.f. Section 5.2).

4. CT (M) 6|= f if and only if M 6|= f by construction of computation
trees.

5.4 BMC with Back-loops

This section explains how to extend the BPE approach when back-loops
are taken into account. Figure 5.4 represents a path π which contains a
back-loop. We see that this finite loop induces an infinite path which
does not belong to the set resulting from BPE(M, 2).
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s0 s1 s2 s3 s4 s5 s6 s7 s8

Ridle0 Ridle0 Ridle1 Ridle1 R Ridle0 Ridle0 Ridle1

R

k1 k2

Figure 5.4: A finite path with a back-loop.

This path belongs to the computation tree presented in Figure 5.5.
All the execution paths start with a prefix of length k1 = 3 of the form

s0
Ridle0−−−−→ s1

Ridle0−−−−→ s2
Ridle1−−−−→, followed by an infinite expansion of the

loop of length k2 = 6: s3
Ridle1−−−−→ s4

R−−→ s5
Ridle0−−−−→ s6

Ridle0−−−−→ s7
Ridle1−−−−→

s8
R−−→ s3.
Given a process modelM = (S, T, i, L) with m processes, and lengths

k1 and k2, we can build variants of BPE(M,n) that correspond to the
computation tree of Figure 5.5. Given a computation tree T, these
variants are still idle-extensions of partial-order reductions of T, hence
stuttering-equivalent to M . We can then construct a complete version
of [[n, k,M,¬f ]]BP E with back-loops, similar to Definition 5.2 of Sec-
tion 5.1.1.

In order to satisfy the LTL bounded semantics presented in Sec-
tion 5.1.1, the full transition relation R must be used to check whether
there exists a back loop or not. If a transition relation Ridle

j was used
instead, we could have a loop that does not contain a Phase-2 expansion,
thus postponing some transitions indefinitely.

5.5 Conclusion

In this chapter, we constructed the BPE bounded model checking algo-
rithm. It checks whether a transition system M contains any traces of
a fixed length k which violate an LTLX properties f . It translates this
problem into a propositional formula [[n, k,M,¬f ]]BP E which is passed
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Ridle0

Ridle0

Ridle1

R

R

prefix (k1)

loop 1 (k2)

loop 2 (k2)

... ...

Figure 5.5: variant of BPE(M,n).
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on to a SAT-solver. If [[n, k,M,¬f ]]BP E is satisfiable, an evidence that
M does not verify f is found. The encoding of [[n, k,M,¬f ]]BP E is is
inspired by our PartialExploration algorithm. As shown from experimen-
tal results detailed in Chapter 7, this encoding is well suited for checking
asynchronous models because it does not encode all the possible inter-
leavings. By doing so, it reduces the search space which the SAT-solver
has to deal with.

The ideas behind the BPE algorithm are intuitive. They consist in
successively applying a fixed number n of partial expansions followed
by a full expansion. On the other hand, our proof of correctness of the
BPE algorithm is quite technical. For instance, it reasons about modified
computation trees instead of transitions system. By consequence, an
important part of this chapter was devoted to show that the BPE
algorithm is correct.

With hindsight, we have the intuition that other approaches are pos-
sible to show the correctness of the BPE algorithm. For instance, one of
them consists in showing that the propositional formula [[n, k,M,¬f ]]BP E

encodes the set errors paths of length k of a reduced graph MR which is
stuttering-equivalent to M . This opens the doors for future, challenging
theoretical research.



Chapter 6

The Milestones Symbolic
Model Checker

This chapter is devoted to the Milestones model checker [VP11b]. Its
goal is to concretely implement the algorithms presented in the previous
chapters. It defines a language for describing transition systems. It
combines all three approaches presented in the chapters 3, 4, and 5.

Milestones is a model checker which was developed from scratch with
the Scala programming language [OSV08]. It uses two third-party tools:
the Buddy BDD library [LN08], and the Yices SMT solver [DdM06]. We
mainly chose to restart from scratch to control all the numerous design
choices, from the chosen programming language to the way the tools are
invoked. We took great care to produce an implementation which contains
as few bugs as possible. To achieve that goal, we applied a rigorous
development process. In particular, we divided the implementation into
well-defined sub-problems. Each sub-problem was specified precisely
before it was implemented, including defining invariant for all non-
trivial loops. The main limitation of our approach comes from the
fact that Milestones defines it own language, so that we cannot take
advantage of the huge number of already developed model in other
languages. Finally, the current version of Milestones does not yet provide
counter-example when such properties are violated. It is not essential for
assessing and comparing the new algorithms constructed in this thesis.
However, the counter-example generation is mandatory for any fully-
featured model checkers. To be added, the counter-example generation
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requires some engineering efforts, but it does not present any technical
novelties [CGMZ95].

We designed the Milestones language in such a way that it has
a simple to understand semantics. A Milestones program defines a
system composed of several processes which manipulates bounded integer
variables. Processes can communicate through global variables, and
synchronize by rendez-vous.

The language of Milestones and NuSMV are similar in the sense
that both define transition systems, constructed with the help of a finite
number of variables, and using labeled transition relations. Actually, the
NuSMV’s input variables (IVAR) essentially amount to transitions labels.
Both languages offer the possibility to define more than one initial state.
However, the NuSMV language is richer than the Milestones one. It
provides a richer data type support, a more expressive expression syntax,
and a possibility to define a hierarchy of processes. Nevertheless, the
Milestones language offers a built-in mechanism of synchronization by
rendez-vous which is not present in NuSMV.

We now make a brief comparison between the Promela language
of Spin and the one of Milestones. Spin is an explicit model checker.
Its language is inspired by the guarded command language which was
introduced by E. Dijkstra [Dij76]. It is procedural. Its syntax defines rich
control flow statements such as loop statements, conditional statements,
and dynamic creation of processes. None of these control flow statements
are defined in the syntax of Milestones. Therefore, Promela is higher-level
than the Milestone language. Conversely, Milestones language is simpler
than Promela and it has a simpler semantics.

In order to evaluate our approaches, Milestones can translate one
of its program P into a NuSMV program [CCGR99] or into a Promela
program [Hol97]. To make the comparison as fair as possible, the
translation has been turned to ensure that when the program P contains
a unique initial state, the resulting state machines are exactly the same
as the one generated by Milestones. In the case of NuSMV, the generated
BDDs are the same as well.

The remainder of this section is structured as follows. Section 6.1
describes the feature provides by Milestones. Section 6.2 presents the
Scala programming language, the Buddy BDD library and the Yices
SMT solver that are used by Milestones. Section 6.3 describes the syntax
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and the semantics of the Milestones language. It also explains how BDDs
can be constructed from Milestones programs. Section 6.4 describes the
Milestones part which verifies temporal properties. Section 6.5 describes
the Milestones part which translates Milestones systems into a NuSMV
systems or into a Spin systems. Section 6.6 gives conclusions.

6.1 Features of Milestones
This section introduces the Milestones model checker. We start by
presenting its features. Then, we explain how it is organized. Figure 6.1
graphically represents in a single picture these two points.

Milestones defines its own language for describing systems. We
explain this language in Section 6.3. To verify such a system, Milestones
provides a set of command-line tools. Twelve commands are provided:
two for checking CTL properties, three for checking LTL properties, two
for checking deadlocks, two for computing the reachable state space, and
finally two for translating a Milestones system into a NuSMV program
or into a Spin program.

All the command-line tools start by parsing a provided program.
Then, various syntactic checks are performed. For instance, it is checked
that all variables which are referred are declared. Afterwards, a flattened
Milestone program is created. It contains the instantiation of the variables
and the processes. It is a compact representation of the transition system
M which will be verified. The next step depends of the command-line
which is executed. Here are the possible choices:

• When set-based techniques are applied, M is translated into BDDs.
Then, it is possible to compute the reachable state space of M , to
verify if M contains some deadlocks, to check whether M respects
some CTL properties, and finally to check whether M respects
some LTL properties. There exist two command-line tools for each
of these operations, one with POR and one without.

• BMC techniques can be applied to check an LTL property f . In
this case, M and ¬f are translated into a propositional formula.
The satisfiability of this formula is then checked. According to
the result of this check, the tool reports an error or not. As with
the set-based approach, there exist two command-line tools which
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6.2. Development Environment 113

perform bounded model checking, with or without applying POR
methods.

• The last two tools allow M to be translated into a NuSMV system
[CCGR99] or into a Promela system [Hol97].

6.2 Development Environment

In this section, we present the Scala programming language [OSV08]
which is used to develop Milestones, as well as the two third-party
components which are used by Milestones: the Buddy BDD library to
represent sets and the Yices solver to check if a propositional formula is
satisfiable.

The programming language which was used to develop Milestones is
Scala. We transcribe here a description of the Scala language which is
taken from the Scala website [EPF12]. This description summarizes in a
few lines why we make this choice.

Scala is a general purpose programming language designed
to express common programming patterns in a concise, el-
egant, and type-safe way. It smoothly integrates features
of object-oriented and functional languages. Code sizes are
typically reduced by a factor of two to three when compared
to an equivalent Java application. Existing Java code and
programmer skills are fully re-usable. Scala programs run on
the Java VM, are byte code compatible with Java so you can
make full use of existing Java libraries or existing application
code. You can call Scala from Java and you can call Java
from Scala, the integration is seamless.

With hindsight, we experience that working with such a rich language
has both advantages and drawbacks. On the one hand, this richness was
exploited to write a concise source code. For instance, Scala offers a
mechanism of class pattern matching which is very helpful to decompose
CTL and LTL expressions. On the other hand, this richness makes the
semantic of Scala not easy to master. Therefore, the time saved on one
side was lost on the other.
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Milestones represents the sets which are manipulated by means of
BDDs. For that, it uses the Buddy BDD library [LN08]. It is a well-known
BDD library which was developed by J. Lind-Nielsen, as part of his Ph.D.
about model checking of finite state machines [LN00]. The package has
evolved from a simple introduction to BDDs to a full-blown BDD package
with all the standard BDD operations. In practice, Buddy is simple to
use and provides an efficient BDD package implementation [LNAH+01].

In the context of BMC, we use the Yices SMT solver [DdM06]. Yices
is both an SMT solver and a SAT solver that decides the satisfiability
of arbitrary formulas containing uninterpreted function symbols with
equality, integer arithmetic, fixed-size bit-vectors, etc. We decide to use
Yices because it has a simple input language. This language allows one to
easily encode the bounded integer variables manipulated by Milestones
as fixed-size bit-vectors. In practice, Yices is an efficient SMT solver.
For instance, Yices took first place in seven of the twelve divisions of
SMT-COMP’07 competition, and second place in three more [BDOS08].

We now provide some statistics about the source code of Milestones.
It is organized in seven packages. A package is dedicated for each of
the following concepts: the parser, the flattened model, the temporal
expressions, the BDDs, the set-based verification, the BMC verification,
and the translation into Spin and NuSMV. Those packages are organized
into 66 files, around 150 methods, and around 5000 lines of code.

6.3 Input Language

Milestones defines a language for describing transition systems. It is
designed to model systems which are composed of a finite number of
processes. This section explains the syntax and the semantics of a
Milestones program. Moreover, we explain how BDDs are generated
from such a system.

6.3.1 Syntax of Milestones Systems

A Milestones system is composed of three parts:

1. The declaration of the global actions and the global variables.
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2. The definition of several process types. Each process type is used as
a blueprint to create instances of itself. Each process type defines
local actions and local variables. Besides, it specifies local guarded
commands which define the behavior of processes of this type.

3. The main part creates particular instances of the process types. The
main part is also in charge of defining global guarded commands
which will be used during rendez-vous synchronizations.

To make an analogy with the object-oriented programming languages, § 2
plays the role of class definition, and § 3 corresponds to object creations.

We now provide the grammar which is used to define a Milestones
system. Listing 6.1 shows the Milestones system of the running example
presented in Chapter 2 (c.f. page 12). This grammar is a simplified
version of the real one. Actually, for clarity, we hide some details. For
instance, we suppose that all expressions are well parenthesized. In
reality, some usual priority rules between operators have been fixed.
Moreover, we do not specify the syntax of the CTL and LTL properties,
but in the sequel we discuss it.

// PROGRAM
SYSTEM → ACTIONS

VARIABLES
(PROC_TYPE)*
MAIN
CTL
LTL

// PROCESS TYPE
PROC_TYPE → “LOCAL” ID

ACTIONS
VARIABLES
LCASE
SYNC

“END”

// MAIN PART
MAIN → “MAIN”

PROC_INST
GCASE

“END”

PROC_INST → “PROC”
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(ID “:=” ID[CONST])*
“END”

// G. COMMANDS
LCASE → “CASE”

(“[” CONST “]” “[” ID “]” BEXPR “:” ASS)*
“END”

GCASE → “CASE”
(“[” ID “]” BEXPR “:” ASS)*

“END”

ASS → (ID “:=” MEXPR)*

// ACTIONS
ACTIONS → “ACTIONS” (ID)* “END”

SYNC → “SYNC” (ID)* “END”

// VARIABLES
VARIABLES → “VARIABLES”

(ID “:” CONST “:” [ “:=” CEXPR])*
“END”

// EXPR
ID → an identifier
CONST → a natural number

CEXPR → CONST |
“(” CEXPR MOP CEXPR “)”

MEXPR → CONST |
ID | ID “.” ID | ID “[” CEXPR “]” “.” ID
“(” MEXPR MOP MEXPR “)”

BEXPR → “true” | “false” |
“¬” “(” BEXPR “)” |
“(” BEXPR BOP BEXPR “)”
“(” MEXPR EOP MEXPR “)”

MOP → + | − | × | / | %
EOP → = | 6= | < | > | ≤ | ≥
BOP → ∧ | ∨ | =⇒ | ⇔

// PROPERTIES
CTL → CTL properties

LTL → LTL properties
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Listing 6.1: Running example in the Milestones Language

1 ACTION
2 Gpp; GE0; xExMy;
3 END
4
5 VARIABLE
6 g : 1 := 0;
7 END
8
9 LOCAL A

10 ACTION
11 Xpp; Zpp;
12 END
13
14 VARIABLE
15 pc: 2 := 0;
16 x: 1 := 0;
17 z: 1 := 0;
18 END
19
20 CASE
21 [0] [Xpp] true : pc := 1; x := x + 1;
22 [1] [Zpp] true : pc := 2; z := z + 1;
23 [2] [xExMy] true :
24 END
25
26 SYNC
27 xExMy;
28 END
29 END
30
31 LOCAL B
32 ACTION
33 Ypp;
34 YE0;
35 END
36
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37 VARIABLE
38 pc: 1 := 0;
39 y: 1 := 0;
40 END
41
42 CASE
43 [0] [Ypp] g == 0 : pc := 1; y := y + 1;
44 [1] [YE0] g == 0 : pc := 0; y := 0;
45 [1] [xExMy] true :
46 END
47
48 SYNC
49 xExMy;
50 END
51 END
52
53 GLOBAL
54 PROC
55 a: A[1];
56 b: B[1];
57 END
58
59 CASE
60 [Gpp] a[0]. pc == 2 & b[0]. pc == 1 & g == 0:
61 g := g + 1;
62 [GE0] a[0]. pc == 2 & b[0]. pc == 1 & g == 1:
63 g := 0;
64 [xExMy] a[0]. pc == 2 & b[0]. pc == 1:
65 END
66 END
67
68 CTL
69 AG EF (g == 1);
70 END
71
72 LTL
73 F(G g == 1);
74 END
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Listing 6.2: Milestones program T

1 ACTION a0, . . . , aa END
2
3 VARIABLES
4 VAR_DECL0
5 . . .
6 VAR_DECLv
7 END
8
9 PROC_TYPE0

10 . . .
11 PROC_TYPEp
12
13 MAIN
14 PROC_INST0
15 . . .
16 PROC_INSTj
17
18 CASE
19 ggc0
20 . . .
21 ggch

22 END
23 END

6.3.2 Semantic of Milestones Systems

From a Milestones program T defined in Listing 6.2, we construct the
following 6-tuple (Ag, Vg, Pg, Gg, Cg, Lg) where:

• Ag = {a0, a1, . . . , aa} is a set of global actions (c.f. Listing 6.2,
line 1).

• Vg = (v0, v1, . . . , vv) is a sequence of global variables. They are de-
fined by the VAR_DECLi declarations (line 3). For each VAR_DECLi
= ‘vi : nbri [:= Cexpri]’ a global variable is defined, where vi, nbri,
and Cexpri are respectively the identifier vi of the variable, the
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Listing 6.3: Milestones Process Type PTypei

1 ACTION a0, . . . , aa′ END
2
3 VARIABLES
4 VAR_DECL0
5 . . .
6 VAR_DECLv′

7 END
8
9 CASE

10 lgc0
11 . . .
12 lgch′

13 END
14
15 SYNC s0, . . . , ss′ END

number of bits on which vi is encoded, and a mathematical expres-
sion which contains only constants but not variables. Each variable
vi ∈ Vg has a finite domain domain(vi) = [0 . . . 2nbri [. Besides, a
default set default(vi) is also defined. If a default expression Cexpri
is provided, default(vi) = {value(Cexpri)} where value(Cexpri) is
the evaluation of Cexpri, otherwise default(vi) = domain(vi).

• A sequence of processes Pg is defined by the list of declarations:
PROC_INSTi = ‘namei := PTypei idi [nbri]’ (c.f. Listing 6.2,
line 14). Pg contains nbr0 process of type PType0, followed by
nbr1 process of type PType1, . . . . Each process is a 5-tuple
Pi = (Ai, Vi, Gi, YI , pci). The set Ai = {a0, . . . , aa′} (c.f. Listing 6.3,
line 1) contains the local action of Pi. The set Vi = {v0, . . . , vv′}
(line 3) contains the local variables of Pi. It is created in a similar
way as the global variables. The set Yi = {a0, . . . , aa′ , s0, . . . , ss′}
contains the local actions on which Pi is synchronized. On the
one hand, Yi has local actions that are not synchronized with any
other processes. On the other hand, it is also synchronized on
some global actions {s0, . . . , ss′} (line 15). The variable pci ∈ Vi
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is a distinguished local program counter variable. Its identifier is
necessarily ‘pc’. Each process contains its own instances of the
local actions and variables. The guarded commands of Gi refer to
those instances, as well as the global actions and variables.
The sequence of processes Pg is required to generate both a tran-
sition relation and a process model of a system T . To construct
them, we also define the sequence var(T ) of all the global and local
variables. It starts by the global variables of the system, followed
by the local variables V0 of P0, followed by the local variables V1 of
P1, . . . . The set act(T ) which contains the local and global actions
of T is also defined.

• The global guarded commands Gg = {ggc0, . . . , ggch} (Listing 6.2,
line 18) and the local guarded commands Gi = {lgc0, . . . , lgch′}
of each process Pi (c.f.Listing 6.3, line 9) are used to generate a
transition relation. Each local guarded command has the following
form [pc] [action] condition : assignments where:

– pc ∈ domain(pci).
– action is an action a ∈ (Ag ∪Ai).
– condition is a BEXPR expression constructed from the vari-

ables belonging to (Vg ∪ Vi).
– assignments is a list of assignments u0 := e0, u1 := e1, . . . ,

uu := eu. Each ui is a distinct variable of (Vg ∪ Vi). Each ei
is a MEXPR expression which only refers to the variables of
(Vg ∪ Vi).

On the one hand, the local actions generate transitions which are
executed by only one process. On the other hand, the global actions
generate transitions which are executed synchronously by several
processes. To avoid that a global variable is assigned more than once
during a rendez-vous, a local guarded command which refers to a
global action can only refer to the local variables of its process Each
global guarded has the form [action]condition : assignments
where:

– action is an action a ∈ Ag,
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– condition is a BEXPR expression constructed from the vari-
ables of the system.

– assignements is a list of assignments u0 := e0, u1 := e1, . . . ,
uu := eu. Each ui is a distinct variable of Vg. Each ei is a
MEXPR expression which uniquely refers to the variables of
the system.

• Cg is a sequence CTL formulae and Lg is a sequence LTL formulae.
The syntaxes of LTL and CTL properties correspond to their math-
ematical definition presented in Section 2.2.1. All the propositions
which appear in a Milestones formulae are also BEXPR. Moreover,
they only refer to global variables. For instance, the LTL Milestones
formula FG (g == 1) contains the Boolean expression g == 1 which
is also considered as an atomic proposition.

The object Vg and Pg are sequences because the induced order of
these sequences is useful to create the variable order of the generated
BDDs. Cg, Lg are sequences so as to check those properties in the same
order they appear in the system.

Given a valuation s of the variables, the MEXPR (or BEXPR) ex-
pression e can be evaluated to a natural number (or to true or false). In
the sequel, the states of the generated transition system will naturally
provide such a valuation which is noted value(s, e). To deal with finite
domains, the expressions are evaluated with the help of modular arith-
metic. For instance, if the domain of x is {0, . . . , 3}, the value of x is 3,
the domain of y is {0, . . . , 15}, and the value of y is 12, the evaluation
of 2x+ y proceed as follows. The domain of x is coerced to {0, . . . , 15}.
Then, 2x is evaluated to 6. The resulting expression 6 + y evaluates to
18, which is again coerced to {0, . . . , 15}, giving 2.

6.3.3 Transition System Construction

Given a 6-tuple T = (Ag, Vg, Pg, Gg, Cg, Lg) generated from a Milestones
program, we now describe how a transition system M = (A,AP, S,R, I,
L) is generated:

• A = act(T ).
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• AP is the infinite set of Boolean expressions generated by the
BEXPR rule.

• S is the cross product of the domains of the variables of var(T ) =
(v0, v1, . . . , vw), i.e.S = {domain(v0)× · · · × domain(vw)}. Because
each domain is finite, S is also finite. We notice that each state s
defines a valuation of the variables of var(T ).

• R is defined by means of the global and local guarded commands.
A local guarded command [pc] [action] cond : assignments of
a process Pi can be rewritten as follows [a] (pci = pc) ∧ cond :
assignments. Actually, the [pc] part is helpful to create the process
model but not the transition relation, so we consider reduced local
guarded command of the form [a] cond : assignments.
For each action a ∈ act(T ), a set of transitions Ra ⊆ {s

a−−→ t} is
generated. Ra contains all the transitions from s to t which satisfy
the following conditions, and only those.

(1) For all processes Pi synchronized on a, there exists a local
guarded command [a] cond: u0 := e0, u1 := e1, . . . , uu := eu in
Gi such that value(s, cond) = true. For each variable uk which
appears in the left side of an affectation, value(t, uk) = value(s,
ek). For each variable v of the systems which does not appear
in the left side of an affectation: value(s, v) = value(t, v).

(2) For all processes Pi which are not synchronized on a, and for
each local variable vi ∈ Vi: value(s, vi) = value(t, vi).

(3) If a is a global action, there exists a global guarded com-
mand [a] cond: u0 := e0, . . . , uu := eu in G such that value(s,
cond) = true. For each variable uk which appears in the left
side of an affectation, value(t, uk) = value(s, ek). For each
global variable v ∈ Vg which does not appear in the left side
of an affectation, value(s, v) = value(t, v).

The whole relation transition R is the union of the Ra, i.e.R =⋃
a∈act(T )Ra.

• I is the cross product of the default set of var(T ) = (v0, v1, . . . , vw),
i.e.I = {default(v0)× default(v1)× · · · × default(vw)}.
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• L : S → 2AP : s→ {ap ∈ AP | value(s, ap) = true}.

6.3.4 Process model Construction

In the previous section, a transition system is constructed from a Mile-
stones program. This section explains how a process model (c.f. Sec-
tion 2.4.2) is extracted from such a program. We firstly define the
concept of safe guarded command. A safe guarded command is a local
guarded command which only refers to a local action and local variables.
Intuitively, a safe guarded command of any process generates transitions
which are independent of the transitions generated from other processes.

Definition 6.1 (Safe Guarded Command). Given a process Pi, each of
its local guarded command [a] cond:u0 := e0, . . . , uu := eu is safe if and
only if it satisfies the following three conditions:

(1) The cond expression only refers to local variables of Pi.

(2) Each variable uk which appears in a left part of an assignment is a
local variable.

(3) Each expression ek which appears in a right part of an assignment
refers only to local variables.

Then, the concept of safe action is defined. Intuitively, all safe actions
respect the partial order condition C1 (c.f. Section 2.4.1). We notice
that the inverse is not necessarily true. Furthermore, all safe actions are
invisible (c.f. Definition 2.6) with respect to all CTL and LTL properties
because they only refer to global variables.

Definition 6.2 (Safe action). Given a process Pi = (Ai, Vi, Gi, Yi, pci),
and a local action ai ∈ Ai, ai is a safe action if and only if the following
condition is satisfied.

If ai is referred by a local guarded command g = ‘[pc][ai] cond: ass’
of Gi, then all the local guarded commands ‘[pc] [a] cond : ass’ of Gi with
the same program counter value (pc) than gi are safe guards.

Then, the concept of linear action is defined. Intuitively, all linear and
safe actions a, will allow us to construct an ample set {a} which respects
the two POR conditions C1 and C4. We notice that the inverse is not
necessarily true.
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Definition 6.3 (Linear Action). Given a process Pi = (Ai, Vi, Gi, Yi, pci),
and an action ai ∈ Ai, ai is a linear action if and only if the following
condition is satisfied.

If ai is referred by a local guarded command g = ‘[pc][ai] cond: ass’
of Gi, then it is impossible to find a state s ∈ S and two guarded
commands g1 = ‘[pc][a1] cond1: ass1’, and ‘[pc][a2] cond2: ass2’ of Gi

with the same program counter value (pc) such that cond1 and cond2
are both evaluated on s to true.

To determine if an action is linear, on can verify that a set of guards
are disjoint. Milestones uses BDDs to make that check. Actually, the
guard of a guarded command can be represented by a BDD. To verify
whether two guards are disjoint, we check that the intersection of the two
corresponding BDDs is empty. It is well-known that in general this check
is an NP-complete problem, but in practice, this check is performed fast
because the conditions are small and refer to a small number of variables.
Nevertheless, Milestones can disable this check and assume that all safe
guarded commands are also linear.

For each process Pi, a set Asi = {ai ∈ Ai | ai is safe} is constructed.
One can see that As = {As0 , As1 , . . . , Asn0

} is a safe process model
because all the action sets Asi contain only actions which are invisible
and respect the POR condition C1 (c.f. Section 2.4.1).

For each process Pi, a set Ali = {ai ∈ Ai | ai is safe ∧ ai is linear}
is constructed. One can see that the set Al = {Al0 , Al1 , . . . , Aln0

} is a
safe and linear process model because all the actions set Ali contain only
transitions ai which are invisible and such that {ai} respects the POR
condition C1.

6.3.5 From Transition systems to BDDs

In this section we suppose a transition system M = (A,AP, S,R, I, L)
generated from a Milestones system T . In order to perform the set-based
verification of M , it is encoded into BDDs (c.f. Section 2.5.3).

To encode the transition relation R into a BDD, a second set V ′
of variables is needed. V and V ′ are disjoint. The variables V will be
used to represent the source states. The variables set V ′ will be used to
represent the target states. Based on V and V ′, for each action ai ∈ A a
Boolean formula Fai over (V ∪V ′) is constructed. It is a BEXPR formula
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(c.f. Section 6.3.1). It is used to characterize the set of transitions labeled
with ai, i.e. Rai . The formula Fai is constructed in such a way that
given two states s and t, it is evaluated to true if and only if s a−−→ t
belongs to Rai . Based on that, a Boolean formula F which represents
R is constructed. To keep track of which action is executed, one more
variable vaction 6∈ (V ∪ V ′) is required. The domain of vaction is A. The
formula F is constructed as follows F =

∨
ai∈A (vaction = ai ∧ Fai). Then

F is expanded into a Boolean representation Fp. Finally Fp, is converted
into a BDD which represents R.

To encode the initial states I into a BDD, for each variable vi ∈ var(T )
a BEXPR expression Hvi is constructed. It is used to characterize the
set of initial value of vi. The formula Hvi is constructed in such a way
that given a value v, it is evaluated to true if and only if v ∈ default(vi).
Based on that, the Boolean formula H which represents I is constructed,
i.e. H =

∧
vi∈V Hvi . Then H is expanded into a Boolean representation

Hp which is converted into a BDD representing I.

L is not encoded as such into BDDs. But, given a valid BEXPR
formula f , BDDs allows us to easily compute the set of states which
satisfies the formula f , i.e. {s ∈ S | value(s, f) = true}

S, A and AP are not explicitly encoded into BDDs because the model
checking algorithms do not use them.

We now present the order of the variables which is generated from
a Milestones system T . This system defines two sequences of variables
var(T ) = (v0, v1, . . . , vw), and its primed version var′(T ) = (v′0, v′1, . . . , v′w)
which is used to encode the relation transition. It also defines the
vaction variable which is used to encode the performed actions. Accord-
ing of the size of the variables, those two sequences are transformed
into two sequences of Boolean variables bvar(T ) = (b0, b1, . . . , bb) and
bvar′(T ) = (b′0, b′1, . . . , b′b). The Boolean sequence bvar(T ) firstly starts
by the Boolean variables which encode v0, followed by the Boolean vari-
ables which encode v1, . . . . The sequence bvar′(T ) is constructed in the
same way but with the primed variables. The vaction variable is encoded
by the sequence of Boolean variables (ba

0, b
a
1, . . . , b

a
c ) where c depends

on the size of domain(vaction). The order of the variables applies the
interlaced method of Section 2.5.4: ba

0 ≺ ba
1 ≺ · · · ≺ bc

a ≺ b0 ≺ b′0 ≺ b1 ≺
b′1 · · · ≺ bb ≺ b′b.
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6.4 Verification
Given a transition system M produced from a Milestones system T =
(Ag, Vg, Pg, Gg, Cg, Lg), Milestones provides the following command-line
tools:

1. The state space ofM is computed by the command computeReacha-
ble. It has two modes. During the search, the first mode ensures
that all the reached states are expanded only once by keeping
a frontier. The second mode does not keep any frontier, but
instead, at each step, it computes the post-image of all the states
which has already been reached. It stops when a fixed-point which
characterizes the reachable state space is reached.

2. The command checkMDeadlock has the same modes as the com-
mand computeReachable. It verifies that M does not contains any
deadlocks.

3. The state space of a reduced version MR of M is computed by the
command computeReducedReachable. It applies the PartialExplo-
ration algorithm. Its main options concern the properties that MR

preserves (deadlocks, CTL, or LTL properties), and the version of
the PartialExploration algorithm which is considered: (1), (2), or
(3). (c.f. Section 3.2.1).

4. The command checkMRDeadlock verifies that the MR produced
by the computeReducedReachable command does not contain any
deadlocks. It has the same options as the command computeRedu-
cedReachable.

5. The command checkCTL verifies that M satisfies the CTL proper-
ties of sequence Cg. It applies the classical CTL symbolic model
checking algorithm presented in Section 2.5.1

6. The command checkCTLWithPOR verifies that M satisfies the CTL
properties of sequence Cg. Its main option allows us to choose the
version of the PartialExploration algorithm which is considered:
(1), (2), or (3).

7. The command checkLTL verifies that M satisfies the LTL prop-
erties of the sequence Lg. For achieving its goal, it applies the
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LTL symbolic model checking of [CGH97] which is presented in
Section 4.1.3.

8. The command checkLTLWithPOR verifies that M satisfies the LTL
properties of the sequence Lg. It performs the evalCTLX algorithms
presented in Chapter 4. Its main option allows us to choose the
version of the PartialExploration algorithm which is considered:
(1), (2), or (3).

9. The command boundedCheckLTL looks for a trace of some length
k of M which violates the LTL properties of the sequence Lg. For
achieving its goal, it applies the classical LTL bounded model
checking algorithm of a. Biere et al [BCC+03] which is presented
in Section 5.1.1.

10. The command boundedCheckLTLWithPOR looks for a trace of some
length k ofM which violates the LTL properties of the sequence Lg.
For achieving its goal, it applies our LTL bounded model checking
algorithm BPE (c.f. Chapter 5).

Listing 6.4 shows the output of the reachable command on our running
example. We make the printed information as clear as possible.

6.5 Exporting to Promela and NuSMV
Milestones can translate its models into NuSMV [CCGR99] (command
translateIntoNuSMV) or into Promela, the language used by Spin
[Hol97] (command translateIntoPromela). It is important to compare
the new approaches presented in this thesis to state-of-the-art implemen-
tations of POR and symbolic model checkers. Spin and NuSMV are the
most widely used model checkers. NuSMV is a symbolic model checker.
It can verify for example both CTL and LTL properties. As for Spin,
it is an explicit model checker featuring POR methods which can check
LTL properties among other things.

6.5.1 NuSMV translation

Milestones is able to translate a Milestones program T into an equivalent
NuSMV system. The two systems are equivalent because they define the
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Listing 6.4: Verbose output of the ComputeReachable command
1 Mi l e s tones s t a r t e d
2
3 . / t h e s i s / running_ex . mil system parsed
4 f l a t t e n e d system created
5
6 # of a v a i l a b l e nodes = 2000000
7 cache s i z e = 80000 (# o f nodes )
8 t r a n s i t i o n r e l a t i o n c r e a t i o n takes 9 m i l l i s e c o n d s
9 t r a n s i t i o n r e l a t i o n 79 (#nodes )

10 bdd r e p r e s e n t a t i o n c rea ted
11
12 Reachable computation s t a r t e d
13 LFP i t e r : 0 , reach s i z e : 7 , #s t a t e s : 1 . 0 , #nodes used : 341
14 LFP i t e r : 1 , reach s i z e : 12 , #s t a t e s : 3 . 0 , #nodes used : 372
15 LFP i t e r : 2 , reach s i z e : 13 , #s t a t e s : 5 . 0 , #nodes used : 404
16 LFP i t e r : 3 , reach s i z e : 12 , #s t a t e s : 6 . 0 , #nodes used : 428
17 LFP i t e r : 4 , reach s i z e : 17 , #s t a t e s : 7 . 0 , #nodes used : 441
18 LFP i t e r : 5 , reach s i z e : 17 , #s t a t e s : 7 . 0 , #nodes used : 443
19 # LFP i t e r a t i o n s = 6
20 Reachable computation ended a f t e r 19 m i l l i s e c o n d s
21
22 The f u l l s t a t e space conta in s 7 s t a t e s
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same transition system. Before presenting the translation mechanism,
we recall that T is transformed into a flattened model. Then, a BEXPR
expression H which encodes the initial states induced by T is constructed.
Moreover, a BEXPR expression F which encodes the transition relation
induced by T is produced.

The NuSMV language defines the “INIT Boolean_expression” state-
ment, and the “TRANS Boolean_expression” statement. They are
respectively used to define the initial states and the relation transition
of a system. Actually, the Boolean expressions which are associated to
the INIT statement and the TRANS statement correspond to H and
F . Roughly speaking, the Milestones BEXPR is a sub-language of the
NuSMV Boolean expressions. Thus„ it is easy to translate the Mile-
stones BEXPR into a NuSMV Boolean expression. Finally, the resulting
NuSMV system is composed of four distinct parts:

1. The IVAR part which declares the actions of the system.

2. The VAR part which declares the variables of the system.

3. The INIT part which encodes the initial states of the system with
a Boolean expression.

4. The TRANS part which encodes de transition relation of the system
with a Boolean expression. This Boolean expression contains two
versions of each variable x. The source state is represented by x,
and the target state is represented by next(x) .

Listing 6.5 shows the NuSMV system generated from our running exam-
ple.

Because BDD variable ordering can considerably influence the size of
BDDs (c.f. Section 2.5.4), and thus the performance of the algorithm,
a file which represents this order is generated. This file can be used by
NuSMV to construct its BDDs. Together, these allow a close and fair
comparison between Milestones and NuSMV.

6.5.2 Spin translation

Milestones can translate a program T into a Promela system. Listing 6.2
shows a part of the translation of our running example. The Promela
model can be decomposed into three parts: the declarations of the
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Listing 6.5: Form of the Generated NuSMV File
1 MODULE main
2
3 IVAR
4 a c t i o n : {Gpp, Gmm, xExMy, Xpp , Zpp , Ypp , Ymm} ;
5
6 VAR
7 g : 0 . . 1 ;
8 x : 0 . . 1 ;
9 y : 0 . . 1 ;

10 z : 0 . . 1 ;
11 a_pc : 0 . . 4 ;
12 b_pc : 0 . . 2 ;
13
14 INIT g = 0 & x = 0 & y = 0 & z = 0 & a_pc = 0 & b_pc = 0 ;
15
16 TRANS
17 a c t i o n = Xpp & a_pc = 0 &
18 next ( g ) = g & next ( a_pc ) = 1 & next ( x ) = 1 & next ( z ) = z &
19 next (b_pc) = b_pc & next ( y ) = y
20
21 | a c t i o n = Zpp & a_pc = 1 &
22 next ( g ) = g & next ( a_pc ) = 2 & next ( x ) = x & next ( z ) = 1 &
23 next (b_pc) = b_pc & next ( y ) = y
24
25 | a c t i o n = Ypp & b_pc = 0 &
26 next ( g ) = g & next ( a_pc ) = a_pc & next ( x ) = x & next ( z ) = z &
27 next (b_pc) = 1 & next ( y ) = 1
28
29 | a c t i o n = Ymm & b_pc = 1 & g = 0 &
30 next ( g ) = g & next ( a_pc ) = a_pc & next ( x ) = x & next ( z ) = z &
31 next (b_pc) = 0 & next ( y ) = 0
32
33 | a c t i o n = Gpp & a_pc = 2 & b_pc = 1 & g = 0 &
34 next ( g ) = 1 & next ( a_pc ) = a_pc & next ( x ) = x & next ( z ) = z &
35 next (b_pc) = b_pc & next ( y ) = y
36
37 | a c t i o n = Gmm & a_pc = 2 & b_pc = 1 & g = 1 &
38 next ( g ) = 0 & next ( a_pc ) = a_pc & next ( x ) = x & next ( z ) = z &
39 next (b_pc) = b_pc & next ( y ) = y
40
41 | a c t i o n = xExMy & a_pc = 2 & b_pc = 1 &
42 next ( g ) = g & next ( a_pc ) = a_pc & next ( x ) = x & next ( z ) = z &
43 next (b_pc) = b_pc & next ( y ) = y
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variables (line 12), the initialization (line 27), and the transition relation
(line 36).

Because Milestones allows us to perform parallel assignments, while
Promela does not, for each Milestones variable v of var(T ), two Promela
variables v and v′ are declared. Each new variable v′ is initialized to
0. Each original variable v is either initialized to 0 or to another value
default v when its default value is provided. The original variables v and
their copies simulate parallel assignments. Given the sequence of variable
var(T ) = (v1, . . . vv), the parallel assignments u0 := e0, . . . , uu := eu
can be simulated as follows u′0 := e0, . . . , u′u := eu, u0 := u′0, . . . , u

′
u :=

uu, u′0 := 0, . . . , u′u := 0. The variables of V ′ are initialized and always
reset to 0, to avoid producing spurious additional states.

Milestones allows us do declare more than one initial state, while
Promela does not. Given a Milestones system, we distinguish two cases:

1. If the induced transition system M contains only one initial state,
the Promela program produced by Milestones induces a transition
system which is isomorphic to M .

2. If the induced transition system M contains more than one initial
state, the Promela program generates a transition system MP

which contains one more state than M , and so M and MP are not
isomorphic. As a consequence, M and MP might not respect the
same LTL properties. Actually, the generated Promela program
contains an additional initial state iP0 , and the Promela transition
relation contains a transition iP0 −−→ i for each initial state i of the
Milestones program. As a consequence, that the reachable state
space of the Promela system contains one more state than the
one of the Milestones program. Another consequence is that the
generated transition system might not be visible-bisimilar of the
original transition system. For instance, the two systems which
are presented at Figure 6.3 are not visible-bisimilar. Indeed, the
Milestones system does not satisfy the property “E[x = 0 U x = 1]”
while the Promela model does.

Before presenting the translation of the relation, we recall that a
program T is composed of a set of processes Pg. For each action a ∈
act(T ) a subset of processes P ′g ⊆ Pg are synchronized on a. Each
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Listing 6.2: Form of the Generated Promela File
1 bool TURN_POR_Off = true ;
2
3 i n l i n e __copy__( ) {
4 g = g_0 ;
5 a [ 0 ] . pc = a [ 0 ] . pc_0 ;
6 a [ 0 ] . x = a [ 0 ] . x_0 ;
7 a [ 0 ] . z = a [ 0 ] . z_0 ;
8 b [ 0 ] . pc = b [ 0 ] . pc_0 ;
9 b [ 0 ] . y = b [ 0 ] . y_0 ;

10 }
11 . . .
12 l o c a l unsigned g_0 : 1 = 0 ;
13 l o c a l unsigned g : 1 = 0 ;
14
15 typede f A__TYPE {
16 unsigned pc : 2 = 0 ;
17 unsigned pc_0 : 2 = 0 ;
18 unsigned x : 1 = 0 ;
19 unsigned x_0 : 1 = 0 ;
20 unsigned z : 1 = 0 ;
21 unsigned z_0 : 1 = 0 ;
22 }
23 l o c a l A__TYPE a [ 1 ] ;
24 . . .
25
26 i n i t {
27 atomic {
28 g = 0 ;
29 a [ 0 ] . pc = 0 ;
30 a [ 0 ] . x = 0 ;
31 a [ 0 ] . z = 0 ;
32 b [ 0 ] . pc = 0 ;
33 b [ 0 ] . y = 0 ;
34 }
35
36 do
37 . . .
38 /∗∗∗∗Gpp∗∗∗∗/
39 : : atomic {
40 a [ 0 ] . pc == 2 & b [ 0 ] . pc == 1 && g == 0 && TURN_POR_Off −>
41 i f : : b [ 0 ] . pc == 1 −> f i ;
42 i f : : a [ 0 ] . pc == 2 −> f i ;
43 i f : : a [ 0 ] . pc == 2 & b [ 0 ] . pc == 1 && g == 0 −>
44 g_0 = 1
45 f i ;
46 __copy__( )
47 __reset__ ( )
48 }
49 . . .
50 od ;
51 }
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x = 1

x = 0

ai

(a) Milestones System

x = 0

x = 1

x = 0
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ax=0

ax=1

(b) Generated Promela System

Figure 6.3: Two non Visible-bisimilar Systems

process Pi ∈ P ′g defines a set of guarded commands Gi. A subset
G′i = {‘[action][pc]cond : assign’ ∈ Gi | action = a} of Gi contains
guarded commands which are synchronized on a. The transition relation
is constructed based from those subsets Gi’s. Actually, for each a of
act(T ), a guarded command which has the following form is produced:

1 : : atomic { CONDa −>
2 /∗ Trans la t i on o f the guarded commands o f p r o c e s s Pi ∗/
3 /∗ which are synchron ized on a , and so which belong to ∗/
4 /∗ G′i = {[a][pc0]cond0 : assign0, [a][pc1]cond1 : assign1, . . .} ∗/
5 i f
6 : : pci = pc0 & cond0− > assign0
7 : : pci = pc1 & cond1− > assign1
8 . . .
9 f i ;

10
11 /∗ Trans la t i on o f the guarded commands o f p r o c e s s Pj ∗/
12 i f . . . f i ;
13
14 /∗ I f a i s a g l o b a l a c t i o n ∗/
15 i f . . . f i ;
16 }

This guarded command is atomic in order to simulate the parallel
assignment which is performed by the transitions labeled a. The guard
CONDa is true if and only if all the processes which are synchronized on
a are able to perform a. Then, for each process Pi which is synchronized
on a, an “if . . . fi” statement is created. It naturally encodes the non-
deterministic actions performed by Pi when a is fired. Actually, those
actions are defined by means of guarded command in both Milestones
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and Spin. Hence, the guarded commands of Pi which are labeled by a,
are translated into guarded commands of Spin. If a is a global action,
a final “if . . . fi” statement is needed to simulate the non-deterministic
assignment of the global variables. Finally, all the guarded commands
which are generated from all the Fa formulae are put into a “do . . . od”
Promela loop to simulate the whole transition relation.

To summarize, given a Milestones program which induces a transition
system M = (A,AP, S,R, I, L), Milestones encodes M into a Promela
program which induces a system MP = (SP , RP , ip, L). For each s ∈ S,
there is a corresponding sp ∈ SP . For each action a ∈ A, s a−−→R s′ if
and only if sp −−→RP s

′
p. Moreover, if I = {i} then i corresponds to ip.

Therefore, we claim that the generated Promela model defines almost the
same state machine as the Milestones system, except for one more state
which is necessary to correctly initialize the variables. As long as the two
systems are visible-bisimilar, or as long as there in only one initial state,
we have good support for fair comparison between Spin and Milestones.

6.6 Conclusion

In this chapter, we introduced the Milestones model checker which
combines POR methods and symbolic model checking approaches. It
implements all the algorithms presented in Chapter 3, 4, and 5, and their
different variants, as well as other existing approaches for comparison. It
provides us with a suitable environment to experiment and compare the
algorithms presented in the previous chapters. Milestones defines its own
simple language to model real systems into Milestones programs. The
language is simple in the sense that it is low level and it has a simple
to understand semantics. On such systems, the following features are
provided:

• Computation (with or without POR) of the reachable state space
by applying set-based approaches.

• Deadlock detection (with or without POR) by applying set-based
approaches.

• CTL verification (with or without POR) by applying set-based
approaches.
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• LTL verification (with or without POR) by applying set-based
approaches or BMC approaches.

• Translation into a NuSMV systems or a Spin systems.

Milestones was developed from scratch in Scala. It uses the Buddy
BDD library and the Yices SMT solver. Doing so gives us the ability
to make all design and development choices. Another approach could
have been to extend another existing tool. In this case, all these design
and development choices would have been limited. On the other hand,
we could have benefited of all the already developed features. As an
example, although Milestones is able to check temporal properties, it
needs to be extended by adding generation of counter-examples for failed
properties.



Chapter 7

Experimental Evaluation

To assess the effectiveness and the scalability of the algorithms evalCTLX
of Chapter 3, evalLTLX of Chapter 4, and BPE of Chapter 5 as imple-
mented in Milestones, we applied them to four examples. For each of
the examples, we start by giving some statistics on its reachable state
space. Then, we verify on it a number of CTL or LTL properties with
one or more of the different methods developed in this thesis, as well as
comparable methods from other authors. All the tests have been run on
a 2,16 GHz Intel Core 2 Duo with 2 GB of RAM memory. Here is a brief
description of the presented examples:

• the TT system which models a turntable,

• the EL system which manages the elevators of a twelve-floor build-
ing,

• the CP system which models a small cash machine network,

• the PC system which models a simple producer consumer system.

Table 7.1 gives, for each example, the number of processes which are
involved and the size of its reachable state space of this system. When a
number n is provided, it means that the system is scalable. In that case,
the number of processes which compose the system depends on n.

The remainder of this section is structured as follows. In Section 7.1,
we clarify the conventions used through this chapter. In Section 7.2, we
verify a variant of the turntable system which is described in [BTW+05,

137
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Table 7.1: Summary Of the four presented examples

System n # of processes # states
TT 40 n + 3 ≈ 10 · 1037

EL — 8 ≈ 10 · 1022

CP — 6 ≈ 10 · 1010

PC 20 2 n ≈ 10 · 1039

Mat06]. In Section 7.3, we check a variant of the elevator system which
is described in [RAO92]. In Section 7.4, we test a cash point system
which is described in [DOP00]. In Section 7.5, we model and verify a
producer-consumer system which is modeled from scratch. Section 7.6
provides conclusions.

7.1 Naming Conventions
For each of the four systems, we compute the reachable state space with
three different methods:

• The BFS method performs a symbolic BFS. At each step, it ex-
pands a frontier which contains the states which have not yet been
processed.

• The PE method computes the reachable state space with the
PartialExploration approach. It produces a reduced state space
which preserves CTL∗X properties.

• The PE(dead) is a variant of PartialExploration approach. It com-
putes the reachable state of a reduced state space which preserves
deadlocks. This approach is similar to the one of the PartialEx-
ploration algorithm, but at each step its frontier contains only the
states which were not explored before. Therefore, it might violate
the cycling POR condition C3 (c.f. Section 2.4.1). It takes as
input a transition system with a safe and linear process model.
It computes the reachable state of a reduced state space which
preserves deadlocks. By doing so, we hope a bigger reduction that
one obtained with the normal PartialExploration approach.
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We mainly perform those computations for two reasons. On the one
hand, it gives us some precious information about the system, e.g. size
of the system, or whether the system contains any deadlocks. On the
other hand, we recall that the evalCTLX algorithm is composed of two
phases. The first one performs forward model checking, then the second
one performs backward model checking. Hence, the worst-case time
complexity of the evalCTLX algorithm is the addition of the worst-case
time complexity of the first and the second phase. Concerning the
worst-case time complexity of the first phase, it is easy to see that it is
equivalent to visit the whole reduced state space. Therefore, computing
the whole reduced state correspond to this case.

Here, we enumerate the information we have collected:

• the computation time in seconds (time)

• the number of states (#states)

• the number of post-image computations (#post)

• the number of BDD nodes needed to represent the reachable state
space (reach #nodes)

• the average number of BDD nodes needed to represent the succes-
sive frontiers (avg #nodes)

• the maximum number of BDD nodes needed to represent the
successive frontiers (max #nodes)

• the number of BDD nodes needed to represent the whole relation
transition R (#R).

• the maximum number of BDD nodes needed to represent a relation
transition Ri of the generated process model (max #Ri).

The properties are verified with either Milestones (c.f. Chapter 6), NuSMV
2.4.3 [CCGR99] specifying the two options -dcx and -df, or Spin 5.2.2
[Hol97]. For each property, if nothing is mentioned, it is verified with
Milestones. We use one or more of the following BDD-based methods to
verify the CTL properties:

• The evalCTLX method corresponds to our evalCTLX algorithm of
Section 3.2.1).
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• The BWD method corresponds to the classical backward CTL
model checking algorithm of [CGP99] as implemented in NuSMV
but executed in Milestones.

• The FWD method corresponds to the forward CTL model checking
algorithm of Iwashita et al [INH96] executed in Milestones.

• NuSMV is equivalent to BWD but executed in NuSMV.

We use one or more of the following BDD-based methods to verify the
LTL properties:

• The evalLTLX method corresponds to our evalLTLX algorithm of
Section 4.2.

• The evalLTLX(BWD) method corresponds to a variant of the
evalLTLX algorithm which uses the backward CTL model checking
to perform the fair cycle detection.

• The BWD method corresponds to the LTL model checking algo-
rithm of [CGH97] which looks for fair cycles with the classical
backward CTL model checking algorithm in Milestones.

• The FWD method corresponds to the LTL model checking algo-
rithm of [CGH97] but the fair cycles are checked with the forward
CTL model checking algorithm of [INH96] in Milestones.

• NuSMV is equivalent to BWD but executed in NuSMV.

• SPIN means that the LTL properties are verified with Spin which
applies POR principles.

We use one or more of the following bounded model checking methods
to verify the LTL properties:

• The BMC+BPE method corresponds to the BoundedPartialExplo-
ration algorithm of Chapter 5.

• The BMC method corresponds to the bounded model checking
algorithm of [BCC+03] in Milestones.

• BMC+NuSMV is equivalent to BMC but executed in NuSMV.
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7.2 The Turntable System

This section applies model checking verification to an adaptation of the
turntable system which is described in [BTW+05, Mat06]. We call this
system the TT system. We start by computing its reachable state space
and giving the statistics which are described in the previous section.
Then, we check some CTL properties with Milestones and NuSMV.
Afterwards, we check some LTL properties with Milestones, NuSMV,
and Spin. Note that we have tried to apply bounded model checking on
this example, but it failed to find any errors. Actually, the properties
we checked require a long trace to be discovered. Due to performance,
BMC are not able to deal which such long traces on the TT system.

The TT system consists of a round turntable which has n+ 3 slots:
an input place, an output place, n drills and a testing device. Each of
these slots can hold a single product. The turntable transports products
between the input position, the drills, the testing device and the output
position. The drills drill holes in the products. After being drilled, the
products are delivered to the tester, where the depth of the holes is
measured, there is a possibility for the drilling to have gone wrong. The
original model was described in LOTOS, a formal specification technique
based on process algebras [ISO88]. We manually translated the LOTOS
system into a Milestones program. Moreover, it had only one drill;
we extended it to represent an arbitrary number of drills. Figure 7.1
graphically represents the turntable system.

test

output
input

drill1

drill2

drill3. . .drilln

Figure 7.1: The Turntable System

The Milestones program is 442 lines long. Its is composed of n+ 4
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processes which are used to model the slots and the turntable itself. We
define five process types, one for each type of component: input place,
output place, drill, testing device, and turntable. They communicate
together via global variables, and they synchronize with each other which
global actions. Statistics about the state space computation of the TT
system are presented in Table 7.2. We discuss the instantiation of the
system which contains 40 drills. First of all, we observe that the PE
approach and the PE(dead) approach have similar performance. This is
surprising because the PE(dead) approach uses fewer restrictive POR
criteria and was therefore expected to perform better. While the BFS
approach takes around 34 minutes to visit around 1037 states, the PE
approach needs about 24 seconds to visit more or less 1,6 · 1008 states.
The BFS approach approximately performs 5 times fewer post-image
computations, but they involve BDDs which are in average 7 times bigger
that the ones which are manipulated by the PE approach. In the end,
the reduced state space is encoded with a BDD 7 times larger than the
state space in its entirety. This suggests that, at least for this model, it
would be counter productive to firstly compute a reduced state space,
and then verify a property within this reduced state space.

7.2.1 CTL Verification

We have verified thirteen properties from [Mat06] on the TT system.
[Mat06] expresses these properties in regular alternation-free µ-calculus
[MS03], and verifies them with the CADP toolset: Evaluator [FGK+96,
GJM+97]. We manually translate the regular alternation-free µ-calculus
formulæ properties into CTL. Afterwards, we checked that the TT system
verifies those CTL properties.

For instance, property p6 states that if a piece is well drilled, no
alarm will be raised before the piece is removed. Property p11 states
that each piece will be removed from the turntable after it is tested, p6
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Table 7.2: Statistics for the reachable state space computation of the TT
system . “–” indicates that the computation did not end within 5 hours.
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and p11 are expressed in CTL as follows.

wd ≡ the piece which is in the testing slot is well drilled (7.1)
turn ≡ the turntable has just made a turn (7.2)
rem ≡ the piece which was in the output slot was just removed (7.3)
rea ≡ the alarm is resonating (7.4)
test ≡ the piece which in on the test slot is tested (7.5)
p6 ≡ ¬EF (wd ∧ E [¬turn U (turn ∧ E [¬rem U rea])]) (7.6)
p11 ≡ ¬ (EF (test ∧ ¬EFrem)) ∧ ¬ (EF (test ∧ E [¬rem U turn])) (7.7)

For all properties, we obtain similar results with NuSMV and the
BWD approach of Milestones, and NuSMV tends to be a bit faster
than Milestones. For 11 of the 13 properties, the evalCTLX algorithm
outperforms the classical backward CTL algorithm. However, for p1 and
p2 which have a similar shape to p6, the classical method is approximately
30 times faster than the evalCTLX algorithm. Unfortunately, we do
not have an explanation for such a difference. We also notice that, on
our Turntable system, the forward approach of [INH96] is less efficient
than the classical method, taking exception from the general observation
reported in [INH96].

Table 7.3 and Table 7.4 respectively show the times for the verification
of properties p6 and p11. When the turntable has 40 drills, p6 property is
checked approximately 13 times faster and p11 is checked approximately 8
times faster with the PartialExploration method than with the backward
method. On the other hand, if there are only a few drills, the backward
method runs faster.

7.2.2 LTL Verification

We have verified six properties: four properties that the system satisfies,
and two properties which are not fulfilled. We obtained similar curves
for the six properties. For instance, the property T3 states that if in the
future there is a piece which is not well drilled, the alarm will necessarily
go off. Here is the translation of this property in LTL:

G [F ¬wd =⇒ F rea]. (7.8)
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Table 7.3: Verification times (in seconds) for properties p6 of the TT
model, using NuSMV (NuSMV) and Milestones using standard backward
exploration (BWD), FwdUntil (FWD) and evalCTLX (evalCTLX).

# drill property p6
NuSMV BWD FWD evalCTLX

1 0,04 0,04 0,02 0,06
2 0,06 0,08 0,05 0,09
3 0,12 0,13 0,08 0,12
4 0,15 0,18 0,11 0,16

10 0,63 0,72 1,00 0,38
20 4,20 4,86 9,78 0,87
30 12,01 14,08 36,04 1,48
40 33,17 35,10 93,63 2,61

Table 7.4: Verification times (in seconds) for properties p11 of the TT
model, using NuSMV (NuSMV) and Milestones using standard backward
exploration (BWD), FwdUntil (FWD) and evalCTLX (evalCTLX).

# drill property p11
NuSMV BWD FWD evalCTLX

1 0,04 0,04 0,08 0,10
2 0,07 0,07 0,16 0,15
3 0,09 0,10 0,19 0,19
4 0,12 0,13 0,28 0,26

10 0,65 0,71 1,13 0,64
20 6,22 7,26 10,41 1,64
30 18,55 22,65 28,32 2,81
40 35,23 40,73 72,46 4,97
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Figure 7.2 compares the times for the verification of property T3. We
observe that within a limit of 1000 seconds, the various approaches are
able to verify a TT system which contains between 6 (NuSMV) and
61 drills (evaLTLX). We also observe that the FWD approach which
does not apply any partial order reduction is able to check a system
composed on 35 drills, and the evalLTLX(BWD) which applies partial
order reduction is only able to check a system composed of 10 drills.
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Figure 7.2: Verification times for the Turntable property T3

7.3 The Elevator System
In this section, we model and verify an elevator system which is inspired
from the one presented in [RAO92]. Hereafter, we name this system
the EL system. We choose the EL system because its initial states are
very broadly unconstrained, yielding 412 ≈ 1,5 · 107 initial states. We do
not model the original system of [RAO92] because it contains real time
constraints which are not easily encodable with the Milestones language.
Moreover, as opposed to [RAO92], we model the behavior of the users,
resulting in very different models overall.

The EL system is in charge of managing a set of elevators which are
all located in a unique building which has x floors. In this section, we
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consider that x is equal to 12. This system is composed of 8 asynchronous
components: three elevators, four users, and one scheduler. The initial
positions of the users are not determined: they might be on any floor.
To get up or down, a user pushes a button at level L. Afterwards, the
scheduler looks for an elevator which will move towards level L. The
scheduler chooses the idle elevator E which is the closest to level L. If
there is more than one such elevator, one is nondeterministically picked
up. On the other hand, if no elevator is idle, the scheduler delays this
task until an elevator is free. When E reaches the floor L, the user gets
into the elevator E and goes to a floor L′ that he wants to reach.

The Milestones program of the EL system consists in a file of 443
lines of code which contains 8 asynchronous components. Table 7.5 shows
statistics about the reachable state space of this model. Concerning the
PE approach, this table confirms the observations of Table 7.2. As for
the PE(dead) method, it performs three times less post-image operations
than the PE approach. On the other hand, it executes around 1.5 times
more post-image computations than the BFS method but with much
smaller BDD encoding the successive frontiers.

Table 7.5: Statistics about the Reachable State Space of the EL System,
#R = 8507, max #Ri = 293

BFS PE(dead) PE
time (s) 912,43 0,706 1,558
#states 3,19 · 1022 6,39 · 1010 3,17 · 1020

#post 171 291 776
#nodes 3 670 2 929 41 002
avg #nodes 88 413 474 408
max #nodes 170 167 1 494 1 494

We verified the three following similarly shaped properties on this
system both in CTL and LTL:

• Whenever a user U0 pushes the elevator button at level L, an
elevator will eventually arrive at level L. This property is not met
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by our system. Hence, it contains a starvation problem.

¬EF EG waitu0 (CTL) (7.9)
¬FG waitu0 (LTL) (7.10)

• Whenever an elevator e0 moves forward a level L, it will eventually
arrive at level L. This property is valid on the EL system.

¬EF EG deste0 6= levele0 (CTL) (7.11)
¬FG deste0 6= levele0 (LTL) (7.12)

• It is impossible that at some point, all the elevators remain busy
forever. This property is also valid on the EL system.

¬EF EG (¬freee0 ∧ ¬freee1 ∧ ¬freee2) (CTL) (7.13)
¬FG (¬freee0 ∧ ¬freee1 ∧ ¬freee2) (LTL) (7.14)

Table 7.6 reports the time for the verification of the previous proper-
ties with various approaches. Concerning the verification of the CTL and
LTL properties with the BDD-based approaches, we notice that there is
a great difference between the running times reported by forward and
backward model checking. Concerning the verification of the property
(7.10) with bounded model checking, we observe that the BPE approach
finds a counter-example faster than the other two approaches, but slower
than the evalLTLX one.

7.4 The Cash-Point System
In this section, we show that contrary to what happens with the EL
system, in some cases the backward model checking approach behaves
much better than the forward model checking approach. Hence, there
is no uniform better choice among those two approaches. As far as we
know, given a problem, there is no general method to predict which
of the backward or the forward approach will perform better on this
problem, but this choice could be made on the basis of some heuristics.
For instance, imagine a transition system M = (S,R, i, L) having only
one initial state, and a CTL property EF p where p is a propositional
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Table 7.6: Running time about the Verification of the EL System. “–”
indicates that the computation did not end within 5 hours.

(7.9) (7.11) (7.13)
BWD 9228,45 8 064,23 8741,96
FWD 1332,04 1 186,40 1 536,24
PE 2,46 2,88 1,48

(7.10) (7.12) (7.14)
BWD — — —
FWD 4440,23 3 240,79 120,51
evalLTLX 10,75 8,32 4,75
BMC 1425,22
BMC+BPE 63,34
BMC+NuSMV 642,23

formula which is satisfied by a great majority of the states in S. In this
case, it seems a good strategy to perform a backward search. Indeed,
the forward approach starts its search from the singleton {i}, while
the backward approach starts its search from L(p) which contains a
great majority of the states. Hence, before even starting, the backward
approach has already discovered a great majority of the states.

To illustrate our point, we model and verify a system of cash points,
hereafter referred as the CP system. It is inspired from the one which
was presented by T. Devir et al. in [DOP00]. It is composed of six
concurrent components: a database server which manages three bank
accounts, four tills, and a fault detector. Each ATM stands idle until a
customer wants to do an operation. When this happens, the customer
puts its bank card which is related to one of the three accounts inside
the ATM. Notice that they might be more than one card per account.
Then, the ATM asks for the pin code which is stored on the card. After
a successful identification, the ATM contacts the database server to lock
the corresponding bank account. Then, the customer can perform one or
more of the following operations.

• view the balance of his accounts;
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• make a withdrawal of cash;

• ask for a statement of its account to be sent by post;

• ask to the database server to unlock the account and then to return
the bank card.

When the customer removes his cards, the ATM stand idle until a next
customer arrives. The database server manages all the data about the
three accounts, and it is not able to deal with more than two requests at
the same time. Besides, it may be unavailable. When this happens, the
fault detector is in charge of dealing with the requests of the four ATMs.
It simply sends an error message.

We modeled the CP system with the Milestones language. It consists
in a file of 358 lines of code. Our implementation contains a deliberate
error. It allows for two or more ATMs to access the same account at
the same time. This error can be found at a depth equal to 19 in the
computation tree of the system. Table 7.7 presents statistics of the
reachable state space computation of CP. We observe the same trends as
the ones observed on the TT system (c.f. Table 7.2).

Table 7.7: Statistics about the reachable state space of the CP System,
#R = 5800, max #Ri = 291

BFS PE(DEAD) PE
time (sec) 3 178,81 349,19 329,29
#states 1,81 · 1010 4,93 · 109 4,93 · 109

#post 99 1 479 1 479
#nodes 927 1 225 1 225
max #nodes 543 250 49 216 49 216
avg #nodes 187 885 17 829 18 027

We check three properties on the CP system. Those properties are
expressed in both CTL and LTL logic.

• The database server never deals with more than two ATMs at the
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same time:

¬EF uds > 2 (CTL) (7.15)
¬F uds > 2 (CTL) (7.16)

• An account is never locked by more than one ATM:

¬EF uc0 > 1 ∨ uc1 > 1 ∨ uc2 > 1 (CTL) (7.17)
¬F uc0 > 1 ∨ uc1 > 1 ∨ uc2 > 1 (LTL) (7.18)

• When a client does an operation with the ATM 0, he eventually
receives an answer:

¬EF (EG op0 6= 0) (CTL) (7.19)
¬F (G op0 6= 0) (LTL) (7.20)

Table 7.8 reports the time for the verification of the previous prop-
erties with various approaches. The backward methods complete veri-
fication much faster than the forward approaches. Besides, the BMC
approaches perform their verification faster than the forward approaches.
Finally, we observe that the fastest tool and technique is NuMV when it
performs BMC without any POR.

7.5 The Producer Consumer System
In this section we analyze more deeply the BPE algorithm:

• We compare the classical BMC method and the BPE method.

• We analyze the influence of the number of times Phase-1 is executed
for each process (i.e. the parameter n).

We model a simple producer-consumer system, or PC system. The
fact that this system is simple does not mean that its verification is simple
as well. Indeed, the resulting transition system is not easily treated by
the BMC approach, but it is more easily checked with classical BDD
model checking. The PC system is a producer-consumer system where
all producers and consumers contribute to the production of every single
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Table 7.8: Statistics about the Reachable State Space of the CP System.

(7.15) (7.17) (7.19)
BWD 10.35 10.45 12.87
FWD 1320,25 1 322,78 1 342,45
PE 248,41 250,14 278,89

(7.16) (7.18) (7.20)
BWD 14,57 6,73 23,34
FWD — — —
evalLTLX 987,35 835,73 901,96
BMC 2,9
BMC+BPE 0,1
BMC+NuSMV 0,01

item. The model is composed of 2m processes: m producers and m
consumers. The producers and consumers communicate together via
a bounded buffer which can contain at most x items. In this section,
we consider that x is equal to 6. This buffer is modeled by a global
variable which represents the number of items which are produced but
not consumed yet. We now describe the producers and the consumers.

• Each producer works locally on a piece p. To that end, the producers
must share tools which are represented by global variables. When
a producer is done, it waits until all producers terminate their task.
When it is the case and when there is a place to the buffer, p is
added to the buffer. Afterwards, the producers start processing
the next piece.

• When the buffer contains an element, consumers remove p from
the buffer, they work on it locally. When all the consumers have
finished their local work, a new cycle will start as soon as another
piece can be removed from the buffer.

The Milestones program consists in a file of 442 lines of code. It contains
m consumer processes and m producer processes. Statistics about its
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state space computation are described in Table 7.9. Again, we observe
the same phenomena as the ones on the TT system (c.f. Table 7.2) and
on the CP system (c.f. Table 7.7)

Five LTL properties, not satisfied by the CP system, have been
analyzed on this system. We describe here two of those properties:

• P1 states that the bounded buffer is always empty.

G buffer = 0 (7.21)

• P2 states that in all cases the buffer will eventually contain more
than one piece.

GF buffer > 1 (7.22)

Table 7.10 and Table 7.11 compare the classical BMC method and
the BPE method when applied to P1 and P2. Notice that BMC proceeds
by increasing depth k until an error is found (c.f. iterative deepening).
Classical BMC quickly runs out of resources whereas our method can
treat much larger models in a few minutes. In regard to the verification
time, we notice that our method significantly outperforms the BMC
method for this example. We also notice that BPE traces are 3,4 to 6,75
times longer. This difference can come both from the addition of the
idle transitions, and the considered paths themselves: contrary to BMC,
our method does not consider all possible interleavings, thus it does not
guarantee finding the shortest error traces.

Table 7.12 analyses the influence of the number of times Phase-1 is
executed for each process (i.e. parameter n). We notice that for a given
number of producers and consumers, n influences in a non-monotonic
way the length of the error execution path, the verification time as well as
the memory used during the verification. n influences the two aspects of
the transformation of the model. On the one hand, the transition system
is more reduced as n is increased due to more partial-order reduction. On
the other hand, the number of added idle transitions is also influenced
by this parameter. When n is increased, the number of Phase-1/Phase-2
cycles on the discovered error path tends towards the minimum number
of unsafe transitions which participate to the violation of the property.
We notice that each time the number of Phase-1/Phase-2 cycles decreases
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Table 7.9: Statistics for the reachable state space computation of the PC
system . “–” indicates that the computation did not end within 5 hours.
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Table 7.10: Statistics of property P1 of the producer-consumer model
using BMC approach and BPE approach with n = 8. m is the number
of producers (resp. consumers), k is the smallest bound for which an
error is found, time is the verification time (in seconds), mem is the
memory used by Yices when the bound equals k (in Megabyte), and #
cycles is the number of cycles: Phase-1/Phase-2. — indicates that the
computation did not end within 8 hours.

BMC property P1 BMC+BPE property P1
m k time (sec) mem k # cycles time (sec) mem
1 10 10 29 34 2 7 30
2 18 44 41 66 2 8 49
3 26 11,679 65 98 2 16 85
4 — — — 130 2 31 122
5 — — — 162 2 43 169
6 — — — 194 2 57 224
7 — — — 226 2 77 288

by one (c. f. n = 4), the cpu time and the memory needed reach a local
minimum. Then the cpu time and the memory used increase until the
number of cycles decreases again.

Figures 7.3 shows that the producer-consumer system is a difficult
problem to tackle with BMC, but it is more easily verified with the
evalLTLX algorithm. Actually, with m = 7, the BPE algorithm takes
approximately 68minutes to find a counter-example of length 1,017, while
the evalLTLX takes only 314milliseconds to show the violation.
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Table 7.11: Statistics of property P2 of the producer-consumer model
using BMC approach and BPE approach with n = 8. m is the number
of producers (resp. consumers), k is the smallest bound for which an
error is found, time is the verification time (in seconds), mem is the
memory used by Yices when the bound equals k (in Megabyte), and #
cycles is the number of cycles: Phase-1/Phase-2. — indicates that the
computation did not end within 8 hours.

BMC property P2 BMC+BPE property P2
m k time mem k # cycles time (sec) mem
1 26 73 33 153 9 122 96
2 44 29,898 131 297 9 211 224
3 — — — 441 9 401 363
4 — — — 585 9 1,238 680
5 — — — 729 9 1,338 983
6 — — — 873 9 1,926 1,438
7 — — — 1,017 9 4,135 1,618
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Figure 7.3: Verification times for the Producer-Consumer property P2
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Table 7.12: Influence of parameter n when the number of producers
(resp. consumers) equals 2. k is the smaller bound for which an error is
found, # cycles is the number of cycles: Phase-1/ Phase-2, TIME is the
verification time (in seconds), and MEM is the memory used by Yices
when the bound equals k (in Megabytes).

property P1 property P2

n k # cycles time mem k # cycles time mem
0 18 18 44 41 44 44 29,898 131
1 35 7 12 41 95 19 855 159
2 45 5 11 40 135 15 235 167
3 39 4 10 47 169 13 305 194
4 51 3 8 47 187 11 217 192
5 63 3 10 50 231 11 375 308
6 75 3 12 57 275 11 381 240
7 87 3 13 58 319 11 583 318
8 66 2 8 49 297 9 211 224
9 74 2 9 57 333 9 240 295
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7.6 Conclusion
In this chapter, we evaluated the new approaches presented in this thesis
on four models. We modeled and verified a scalable turntable system,
an elevator system, a cash point system, and finally a scalable producer-
consumer system. For each of these systems, we computed the whole
state space and two different reduced state spaces. Then, we checked
whether those systems verified various CTLX or LTLX properties.

The reachable state space analysis allows us to make the following
observations:

• Generally, the BDDs which represent the successive frontier are
much smaller when partial order is applied.

• On the contrary, the BDDs which encode the reduced state space
are much bigger when partial order is applied.

• The BDDs which encode the transition relations Ri of a process
model are much smaller that the ones which represents the whole
transition relation R. Generally, they are only composed of a few
hundred nodes.

• Surprisingly, in three of the four examples, the PE(dead) approach
and the PE approach produce identical BDDs.

The previous observations confirm that combining POR and BDD-
based model checking achieves an improvement in regards to classical
BDD-based model checking when one wants to check reachability prop-
erties on asynchronous transition system. Besides, those observations
suggest that firstly computing a reduced state space and secondly per-
forming the verification within this reduced state space can decrease the
performance because the BDDs which encode the reduced state space
are bigger that the ones which encode de whole state space.

The elevator system and the cash point system show that forward,
backward model checking, and BMC are complementary, in the sense
that given a systemM , one may quickly verifyM , while the others might
fail to verify it. As far as we know, there is no general method that
predicts which of the three methods is the most suitable to check M .

This section shows that the methods developed through this thesis
are not applicable on all asynchronous systems. However, for most of
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the systems which have been verified in this chapter, they achieve an
improvement in comparison to classical model checking algorithms.
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Chapter 8

Related Work

In this Chapter, we review some approaches that are related to the
techniques which were introduced in the previous parts of this thesis.
The first three approaches are related to ours because they combine
partial-order reduction (POR) and symbolic method in one way or
another. Then, we review the PhD thesis of T. Jussila which is devoted
to bounded model checking (BMC) of asynchronous systems. It tackles
the same problems as ours but in a different way. For instance, he does
not try to reduce the original transition system. Then, the saturation
method of G. Ciardo is presented [CLS01]. Given a transition system
M , it partitions the transition relation R of M according to a different
dependency relation than the one exploited in our POR approach. As
opposed to POR approaches, it visits the whole reachable state space, but
does this in an unusual way based on the partitioned transition relation.
Then, we cover a technique which translates the fair-cycle detection
problem into a reachability problem. This approach is interesting in the
context of symbolic POR because this problem is a serious challenge
in the context of a breadth-first search, and thus in set-based model
checking.

We re-express those approaches within the same framework and in
the same style as the algorithms of previous chapters. In particular, we
present the algorithms in terms of transition systems, and not in terms of
BDDs or SAT-solvers. Moreover, we remove from the original algorithms
some optimizations which are not relevant to understand them. For
instance, we remove the utilization of caches. We insist that the changes
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we made do not modify the complexity of the algorithms, although the
resulting algorithms can look significantly different from their original
version.

The rest of this chapter is structured as follows. Section 8.1 presents
a symbolic algorithm of R. Alur et al. which applies partial-order re-
duction to check a class of reachability properties referred as local
properties [ABH+97]. Section 8.2 introduces the static partial-order
reduction method of R. P. Kurshan which performs POR at compile
time [KLM+98, KLY02], so that their resulting transition systems can
be verified with symbolic approaches. Section 8.3 introduces a sym-
bolic partial-order algorithm of P. A. Abdulla et al. which checks safety
properties either by backward or forward reachability analysis [AJKP98].
Section 8.4 presents the techniques of T. Jussila to perform BMC of
asynchronous systems [Jus05]. Section 8.5 introduces the saturation
approach of G. Ciardo [CLS01]. Section 8.6 presents the approach of
A. Biere et al. which translates the fair-cycle detection problem into a
reachability problem [BAS02]. Section 8.7 gives conclusions.

8.1 Symbolic Verification of Local Properties

In [ABH+97], R. Alur et al. adapt the partial-order reduction algorithm
“Algorithm 2” of [HGP92]. The authors do not give a name to their
algorithm: we call it the AReduce algorithm. It computes a reduced
transition system which preserves local properties. Intuitively, given a
system with several processes, a local property is a safety property which
refers only to the global variables and the local variables of only one
process. The definition of a local property is quite technical; we refer
the reader to [ABH+97, HGP92] for a precise definition. G. Gueta et al
introduce explicit verification of similar properties in [GFYS07].

They start from a DFS algorithm of [HGP92] to obtain a modified
BFS algorithm. Both only expand a subset ample(s) of enabled transi-
tions at each step. The ample(s) are persistent sets because they respect
the two conditions C0 and C1 of Section 2.4.1. Moreover, they satisfy
the following variant of the cycle condition C3:

C3b If a state s is not fully expanded, then at least one transition in
ample(s) does not lead to an already visited state.
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Because checking a local property amounts to a reachability problem, the
singleton condition C4 which are set for preserving branching properties
is not required. Moreover, we point out that the invisibility condition
C2 is not mandatory either.

Practically, the notion of persistent function, and history function
are first defined. A persistent function is similar but not identical to the
transition relations generated from a process model. It can be seen as
a process model composed of a unique element {A0}. A process model
considers an action a is globally safe or not for all states. Contrarily, a
persistent function considers that an action as either safe or not with
respect to each state where it is enabled. Another difference comes from
the fact that a process model defines more than one ample set per state,
while a persistent function defines only one such ample set. The AReduce
algorithm aims at automatically computing such a persistent Rp. Besides,
Rp has to respect an additional condition which is explained in the next
paragraphs.

In general, the algorithms which compute the reachable state space
of a graph keep track of the already visited states in a set V . A history
function is a mathematical function which models the set of already
visited states V . It associates to each state s all the states of the graph
which have been already visited before it. Alurs’s approach computes a
history function which is never used or returned. Its main purpose is to
simplify the demonstration of the AReduce correctness.

Definition 8.1 (Persistent Function). Given a deterministic transition
system M = (S,R, I, L), a persistent function is a safe transition relation
Rp ⊆ R, i.e. enabled(Rp, {s}) satisfies condition C1.

A trivial persistent function is the whole transition relation R itself, but,
it does obviously not perform any reduction.

Definition 8.2 (History Function). Given a deterministic transition
system M = (S,R, I, L), a function H : S → 2S is a history function if
and only if for all states s, t, u ∈ S:

t ∈ H(s) ∧ u ∈ H(t) =⇒ u ∈ H(s)

A persistent function Rp is ample with respect to a history function H
if and only if for all states s ∈ S, if enabled(R, {s}) 6= enabled(Rp, {s}),
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then there is an action a ∈ enabled(Rp, {s}) and a state t ∈ S such that
s

a−−→RP t, s ∈ H(t), and t 6∈ H(s).

Intuitively, a persistent function Rp is ample with respect to a history
function H if at each step it allows one to reach at least one state
which has not been visited before. Based on that, the link between
persistent functions, history functions, and partial-order reduction is
made as follows.

Theorem 8.3 (c.f. [ABH+97]). Given a transition system M = (S,R,
I, L), a sub-transition system MR = (S,Rp, I, L) of M with a persistent
function Rp, if there exists a history function H which is ample with
respect to Rp then M and MR satisfy the same local properties.

Intuitively, the AReduce algorithm (c.f. Algorithm 8.2) constructs
incrementally both a history function H and a persistent function Rp

which is ample with respect to H. It uses the ChoosePersistent sub-
problem (c.f. Algorithm 8.1) which computes at each step a part of the
persistent function under construction. The authors of [ABH+97] do not
provide any concrete implementation of ChoosePersistent, but instead
give some general principles which could be used. Those principles
are similar to the one which are used to generate a process model in
Milestones (c.f. Section 6.3.4).

We notice that the AReduce algorithm is similar to ImProviso (c.f.
Section 3.1.2). We recall that ImProviso is the starting point of the
methods which are developed in this thesis. Actually, if a transition
system M with a safe linear process model is given as input to the
AReduce algorithm and to ImProviso, both will compute a reduced
transition system MR which contains only fully-forming states. Hence,
in both cases M and MR respect the same CTLX properties, because
they are visible-bisimilar. Here are the main differences between the two
algorithms when they are used in such context:
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Algorithm 8.1: ChoosePersistent

Header: Choose-Persistent(M , visited, frontier)

Precondition: M is a transition system, visited ⊆ S, and
frontier ⊆ S.

Result: Rp ⊆ frontier ×A× S, such that for all s ∈ frontier:

(1) enabled(Rp, {s}) = ∅ if and only if enabled(R, {s}) = ∅,
and

(2) if enabled(Rp, {s}) 6= enabled(R, {s}), then
enabled(Rp{s}) satisfies condition C1, and

(3) if enabled(Rp, {s}) 6= enabled(R, {s}), then
post(Rp, {s}) 6⊆ visited.
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Algorithm 8.2: AReduce

Header: AReduce(M)

Precondition: M is a transition system.

Result: A reduced transition systemMR which preserves local prop-
erties, and a history function H.

Loop Invariant:

(1) Mr = (A,AP, visited∪frontier,RR, I, L) is a well-defined
transition system, and

(2) for all s ∈ frontier, enabled(RR, {s}) = ∅, and
(3) for all s ∈ visited, enabled(RR, {s}) = ∅ if and only if

enabled(R, {s}) = ∅, and
(4) visited, and frontier are disjoint, and
(5) RR is a persistent function, and
(6) H is a history function with respect to RR.

Halting Condition: frontier is empty.

Variant: (#S −#visited).

Source Code: c.f. Listing 8.1
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Listing 8.1: Implementation of the AReduce algorithm
1 AReduce (M = (S,R, I, L)) {
2 l o c a l frontier := I
3 l o c a l visited := ∅
4 l o c a l RR := ∅
5 l o c a l H := ∅
6
7 whi l e (frontier 6= ∅) {
8 l o c a l Rp = ChoosePers i s t ent (M , visited , frontier )
9 l o c a l image := post (Rp , frontier )
10
11 RR := RR ∪Rp

12 H := H ∪ {(s, visited ∪ frontier) | s ∈ frontier}
13
14 visited := visited ∪ frontier
15 frontier := image \ visited
16 }
17 return MR = (A,AP, visited,RR, I, L) , and H
18 }

• The authors of [ABH+97] suggest that the AReduce algorithm
implementation represents the persistent relation transition as a
monolithic transition relation. It means that it uses a single BDD
to represent the whole persistent transition relation. In contrast,
ImProviso partitions the transition relation into local transition
relations for each process. Those local transition relations are
represented with much smaller BDDs than the monolithic transition
relation used by the AReduce algorithm.

• The AReduce algorithm assumes pessimistically that each previous
expanded state might close a cycle. By contrast, ImProviso makes
a smaller over-approximation of such states because it only needs
to consider cycles formed exclusively by safe transitions during
Phase-1. Consequently, it looks for possible cycles only with respect
to states visited during Phase-1. Our experimental evaluation tends
to show that the second approach is more efficient.
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8.2 Static Partial-Order Reduction
Explicit-state POR techniques usually perform a modified depth first
search. At each state s, a valid subset ample(s) of the transitions enabled
in s is explored. To ensure that the verification results on the reduced
model hold for the full model, ample(s) has to respect a set of conditions
(c.f. Section 2.4.1). In particular, along each cycle on the reduced model
at least one state must be fully expanded, i.e. ample(s) = enabled(s).

The symbolic methods amount to a breadth-first search, so that it is
harder to detect cycles. In [KLM+98], R. P. Kurshan et al. introduce a
static partial-order reduction algorithm. They notice that each cycle in
the state space is composed of some local cycles. The method performs
a static analysis of the checked system so as to discover local cycles.
It starts from a high-level description of a transition system M1. The
high-level language which is employed to describe transition systems is
similar to that of Milestones model checker, as presented in chapter 6. It
is a processes-oriented modeling language based on guarded commands.
The algorithm translates the high-level description of M1 into a high-
level description of another transition system M2. It is isomorphic to
a sub-transition system of M1. Moreover, M2 is stutter-equivalent to
M1 (c.f. Section 2.3.1), and so respects the same LTLX properties. The
reduced transition system M2 can be handled with any model checking
technique, in particular by symbolic techniques.

The key idea is to define, by performing a static analysis of M1 =
(A,AP, S,R, I, L), a set of sticky actions Asticky which contains at least
all the visible actions and one action per cycle of M1. Next, a safe
process model {A0, A1, . . . Am−1} of M1 is generated such that none of
the Ai’s contains an action of Asticky. From that, the guarded commands
which define the transition relation of M2 are generated. Those guarded
commands ensure that the set of transitions ample(s) which are enabled
from each state s of M2 respects one of the following condition:

• ample(s) constitute a partial expansion of s because ample(s) con-
tains only transition of a Ai, or

• ample(s) constitute a full expansion of s because ample(s) is equal
to enabled(s).

Precisely, Asticky ⊆ A respects the two following conditions:
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(1) Asticky contains at least all the visible actions (c.f. Definition 2.4).

(2) For all cycles s0
a0−−→ . . .

an−−→ s0 in M , Asticky ∩ {a0, . . . , an} 6= ∅.

The key idea comes from the fact that each cycle in the state space
is composed of one or more local cycles. Based on that, the Asticky set is
computed by analyzing the guarded commands of each individual process.
Different strategies are proposed to compute the smallest possible Asticky

set. The simplest strategy set up Asticky to A, but in this case no
reduction is possible. Another strategy constructs Asticky so that each
local cycle contains one action in the Asticky set. More complicated
strategies are also presented.

We insist that the new model is expressed in terms of the high-
level language, and not in terms of transitions systems. Nevertheless,
in fine, we are interested by the resulting transition system, so we
characterize that resulting transition system. We refer the interested
reader to [BK08, KLM+98] for more details on the translation mechanism.

First of all, a safe process model {A0, A1, . . . , Am−1} of M is con-
structed such that the Ai sets cannot contain any sticky actions. To
rephrase, it has to respect that for all sets Ai, and for all actions ai ∈ Ai,
ai 6∈ Asticky. Then, the state space S is partitioned into m + 1 sets
{S0, S1, . . . , Sm−1, Sfully}. The states belonging to the Sfully set are
fully expanded. Concerning the other sets Si, all of their states enable
exclusively actions of Ai. Precisely, for all states s ∈ S, s ∈ Si if and
only if the two following conditions hold:

(1) there is an action ai ∈ Ai, and a state t ∈ S such that s ai−−→ t ∈ R,

(2) there is no 0 ≤ j < i such si ∈ Sj .

In consequence, for all states sfully ∈ Sfully there is no 0 ≤ i < m
such that sfully ∈ Si. After partitioning the actions and the states,
the transition relation is partitioned into m+ 1 sub-transition realtion
{R0, R1, . . . , Rm−1, Rfully} such that the following properties hold:

(1) For all 0 ≤ i < m, Ri ⊆ R, and for all transitions s ai−−→ t ∈ R,
s

ai−−→ t ∈ Ri if and only if s ∈ Si and and ai ∈ Ai.

(2) For all transitions s ai−−→ t ∈ R, Rfully ⊆ R, and s
ai−−→ t ∈ Rfully

if and only if s ∈ Sfully.
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The static POR approach induces the following reduced transition
system: M2 = (A,AP, S, (

⋃m−1
i=0 Ri)∪Rfully, I, L). It is shown in [BK08,

KLM+98] that M2 is stutter-equivalent to M1 and so respects the same
LTLX properties.

R. P. Kurshan et al. extend the static partial-order reduction
in [KLY02]. As in [KLM+98], they start from a high-level description of
a transition system M1 with a safe process model. They translate M1
into another stutter equivalent transition system. Intuitively, they manip-
ulate the control flow graph of each process. When some conditions are
fulfilled, they transform a chain of transitions – i.e. a finite acyclic path
s0

a0−−→ . . .
an−1−−−−→ sn of a control flow graph – into a unique transition

s0
anew−−−−→ sn. In [Hol99], G. Holzmann performs the same kind of reduc-

tion which is called merging local transitions. The checked conditions
of [Hol99] are stronger than those of [KLY02], but easier to check. Hence,
more transitions are merged by the approach of [KLY02]. Within the
framework of bounded model checking, T. Jussila also performs merging
of transitions [Jus05]. His approach is introduced in Section 8.4.

R. P. Kurshan et al. also transform a hammock of transitions in
a control flow graph – i.e. a set of transitions {s a0−−→ t, s

a1−−→ t, . . . }
sharing the same source node s and the same target node t – into a
unique transition s anew−−−−→ t. Finally, when some specific conditions hold,
they transform the asynchronous sending and reception of a message into
a rendez-vous. All those translation mechanisms might produce a much
smaller machine than the original one because a number of interleavings
are deleted.

The approaches of [KLM+98, KLY02] take as input a high-level
description of a transition system M1. They generate a safe process
model, then a stutter-equivalent transition system system M2. Hence,
M1 and M2 satisfy exactly the same LTLX properties. If instead of
generating a safe process model, they generate a safe and linear process
model, a visible-bisimilar transition system will be generated, so that M1
and M2 will satisfy exactly the same CTLX properties.

This approach differs from ours in that they perform the reduction
at compile time. The algorithm defines at compile time for each state s,
if s will be fully expanded or not. Moreover, if s is not fully expanded it
is decided which ample set will be used on to extend s. Our algorithm
makes those choices at run time.
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F. Lerda et al. suggest that the ImProviso method is more efficient
than the one introduced by R. P. Kurshan et al. [LST03]. However,
we think that it would still be interesting to see how both approaches
can benefit from each other. Given a high level description DM1 of a
transition system M1, the following approach produces a visible-bisimilar
transition system M2:

1. from DM1 , use the static partial-order reduction approach to gen-
erate the Asticky set of actions,

2. as much as possible merge, chains of transitions and hammocks of
transition with the approach of [KLY02],

3. automatically generate a safe and linear process model which does
not contains any actions of Asticky,

4. use either our PartialExploration approach or the the static partial-
order reduction approach to perform reduction A mix of both
approaches could also be used. For instance, the cycle condition
could be checked statically, and the rest of the reduction could be
performed dynamically.

8.3 Abdulla’s Approach

In [AJKP98], P. A. Abdulla et al. introduce a symbolic partial-order
algorithm which checks safety properties either by backward or forward
reachability analysis. So as to perform the reduction they use a notion
similar to independency of actions which is referred as commutativity
in one direction. Instead of manipulating sets of states, the proposed
algorithm works with sets of sets of states.

The authors start by introducing the IsReachable algorithm which
takes as input a transition system M and a set of states G (c.f. Spec-
ification 8.3). It looks for a reachable state which belongs to G. The
algorithm maintains two sets of sets of states. Those sets of states repre-
sent the successive frontiers which are reached during the execution of
the algorithm. The Visited set contains the already expanded frontier.
The NotVisited set contains the frontiers which remain to explore. At
each step, a frontier Si is chosen from the NotVisited set. Given the
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set of action A, a post-image Ti per action in A is computed from Si.
Then, each of those post-images Ti is put in the NoVisited set if Ti is
not visited yet and if no set in NotVisited subsumes Ti. The best way
to understand the IsReachable algorithm consists in inspecting the loop
invariant which respects the following four conditions:

(1) The frontiers in NotVisited or in Visited contain only reachable
states. Besides, to be sure that all states are explored, for all initial
states s, Visited or NotVisited has at least a frontier which
contains s.

(2) The frontiers in the Visited set have already been explored.

(3) The Boolean variable found is true if and only if there exists a
frontier in Visited which contains a state of G.

(4) The NotVisited set and the Visited set are disjoint. This ensures
that the algorithm terminates.

To improve the IsReachable algorithm, the authors show that it is
valid to only fire transitions with some defined label at each step. In
practice, it amounts to modifying line 8 as follows:1

8 local Ai := select a valid subset of A from Si

9 local New := {F1 = post (R|ai , Si) |
10 ai ∈ Ai ∧ ¬∃F2 ∈ (V isited ∪ NotV isited) · F1 ⊆ F2}

To be a valid subset, Ai has to respect some conditions which are
similar to the conditions C0–C4 of Section 2.4.1, except that they consider
a different dependency relation which is not necessarily symmetric. We
refer the reader to [AJKP98] for a precise definition of this dependency
relation and those conditions. We note the following points:

1As consequence, the IsReachable loop invariant might become incorrect.
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Algorithm 8.3: IsReachable

Header: IsReachable(M , G)

Precondition: M = (A,AP, S,R, I, L) is a transition system, and
G ⊆ S.

Result: true if and only if the reachable state space of M contains
an element of G, i.e. post∗(R, I) ∩G 6= ∅.

Loop Invariant: The four following conditions hold:

(1) I ⊆
⋃

Si∈(V isited∪NotV isited) Si ⊆ post∗(R, I),
(2) post(R,

⋃
Si∈V isited Si) ⊆

⋃
Si∈(V isited∪NotV isited) Si,

(3) found⇔
(⋃

Si∈(V isited∪NotV isited) Si

)
∩G 6= ∅,

(4) V isited and NotV isited are disjoint.

Halting condition: frontier = ∅ ∨ found

Variant: 2#S −#V isited.

Source Code: c.f. Listing 8.2
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Listing 8.2: Implementation of the IsReachable algorithm
1 IsReachable (M = (A,AP, S,R, I, L) ,G) {
2 l o c a l NotV isited := {I}
3 l o c a l V isited := ∅
4 l o c a l found := false
5
6 whi l e (frontier 6= ∅ ∧ ¬found) {
7 l o c a l Si := an element o f NotV isited
8 l o c a l New := {F1 = post (R|a, Si) |
9 a ∈ A ∧ ¬∃F2 ∈ (V isited ∪ NotV isited) · F1 ⊆ F2}
10
11 found :=

(⋃
Si∈New Si

)
∩G 6= ∅

12 V isited := V isited ∪ {Si}
13 NotV isited := (NotV isited ∪New)
14 }
15 return found
16 }

• The number of set operations which are performed during a run
– e.g. computation of a post-image, intersection, . . . – obviously
depends on the real algorithm implementation. Nevertheless, an
intuitive implementation will perform in the worst case on the order
of #A ∗ 2#S such operations. Indeed, the main loop is executed at
most 2#S times. At each run, for each action of Ai a post-image
computation is made. The maximum number of set operations
#A ∗ 2#S is extremely huge. However, the experimental results
which are presented in [AJKP98] do not report any case which
approaches this worst-case performance.

• The IsReachable algorithm works either in a forward way, or in
a backward way. The latter amounts to running the algorithm
on the reverse transition system M−1 but starting from the set
G and trying to reach a initial state of I. Nevertheless, it is not
mentioned how to select a valid subset Ai of A on the reversed
transition system at each step. In particular, it is not mentioned
if a process model can be computed on the original system, and
then reused on the reversed one. Theoretically, our approaches can
also be applied to a reverse transition system M−1. However, we
do not explore such an application because the process models we
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compute are not applicable on M−1.

• The algorithm is applicable, in a semi-decidable way, on transition
systems which contain an infinite number of states. It means that
the algorithm always terminates when at least one state of G is
reachable. Contrarily, it could not terminate when no states of G
are reachable. Other reachability algorithms fulfill this property
as well, for instance breadth-first search algorithms, or iterative
deepening algorithms. The BoundedPartialOrder algorithm of
chapter 5 can also be applied on infinite model in a semi-decidable
way.

Besides the worst-case complexity, the practical difference between
this approach and ours is the checked properties. This approach deals
both with backward and forward reachability analysis, while we are able
to check a subset of CTLX (c.f. Chapter 3) and LTLX (c.f. Chapter 4
and Chapter 5) properties using only forward analysis.

8.4 Bounded Model Checking of LTS

In his PhD dissertation, T. Jussila explores how to improve model
checking of asynchronous systems [Jus05] using bounded model-checking
approach as in Section 5.1.1. Those asynchronous systems are repre-
sented by means of Labelled Transition Systems (LTS). Compared to the
transition systems which are defined in this thesis, an LTS can be seen as
a transition system M = (A,AP, S,R, I, L) with AP = ∅ and L(s) = ∅.

Definition 8.4 (Labelled Transition System). A Labelled Transition
System is a structure M = (AV ∪AI , S,R, I) where:

• AV is a set of visible actions, and

• AI is a set of invisible actions which is disjoint of AV , and

• S is a set of states, and

• R ⊆ S × (AV ∪AI)× S is a transition relation, and

• I ⊆ S is a set of initial states.
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Figure 8.4 graphically presents two such LTSs which manipulate four
Boolean variables g, x, y and z. The states of M1 represent a valuation
of the three variables g, x and z. The states of M2 represent a valuation
of the two variables g and z. The

::::::::::
underlined actions are considered

invisible, the others are considered visible.
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Figure 8.4: Two synchronising LTSs

Jussila’s work consists in defining four composition operators over
LTS. It is a mathematical function which maps n ≥ 1 LTS to a new one.
For instance, the classical parallel composition operator of the two LTS of
Figure 8.4 gives us our running example (c.f. Figure 8.5). To be precise, it
does not represent the whole composition, but only the reachable states,
i.e. the part of the system which we are interested in. Those composition
operators are consistent with respect to deadlocks. It means that given
n LTS, either all or none of the composition operators produce a new
LTS which contains a reachable deadlock. Three out of four composition
operators are also consistent with respect to reachability properties.
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:::
x++

:::
y++

:::
y--

:::
z++

:::
y++

:::
y--

:::
x++

:::
y++

:::
y--

:::
z++

g++

g--
x:=y*z

x:=y*z

Figure 8.5: Classical Composition of M1 and M2 (M1 ||M2)
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Given the set of n LTS {M0,M1, . . .Mn−1} such that Mi, Mi = (Ai,
Si, Ri, Ii), and the composed LTS M = (A,S0 × S1 × · · · × Sn−1, R, I),
following the principles of BMC of Section 5.1.1, any subset trk(M)
of the executions of size k of M can be encoded into a propositional
formula Fk(M). In particular, Fk(M) is unsatisfiable if and only if
trk(M) is empty. Jussila’s goal is to reduce the bound k needed to detect
either a deadlock or a reachability property violation. The construction
of the formula Fk(M) respects the principles which are presented in
Section 5.1.1. The main difference comes from the number of atomic
propositions required to encode a state at a step t (0 ≤ t < k). Given
the state space S0 × S1 × · · · × Sn−1:

• The approach taken in this thesis requires around
∑n−1

i=0 log2(#Si)
≈ log2(#S) atomic propositions for representing a state at a step
t.

• Jussila’s approach needs
∑n−1

i=0 #Si atomic propositions for repre-
senting a state at a step t. Indeed, an atomic proposition in(si, t)
is associated to each state si ∈ Si of each Si. Intuitively, the atomic
proposition in(si, t) is true if and only if the composed state (t0, t1,
. . . , tn−1) at step t contains the local state si, i.e. ti = si. On the
one hand, the classical parallel composition operator requires that
exactly one atomic proposition in(si, t) per Si is true at each step
t. On the other hand, non-classical composition operators remove
that restriction. In particular, given a set of LTS, one approach
of T. Jussila consists in determinizing the LTSs before composing
them.

His work is decomposed in three parts: partial-order semantics, on-the
fly determinization, and merging of local transitions. Those techniques
can be combined together.

Partial-Order Semantics The first approach is the partial-order se-
mantics. It defines two composition operators: the step product and
the process product. The step product, noted M1 ||stM2 replaces the
classical parallel composition operator with a non-standard operator
which generates the same state space but a different transition relation.
It allows the execution of several independent actions simultaneously.
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The exact definition of independent actions are not important here, so
we refer the reader to [Jus05, JN02] for a precise definition. Figure 8.6(a)
shows the result of the step product composition of M1 and M2 from
Figure 8.4. For instance, it shows that a transition can execute the two
actions

::::
x++ and

:::
y++ in a unique transition. This behavior is not allowed

by the classical parallel composition. As showed by Figure 8.6(a), this
can reduce the bound needed to reach a particular state. For instance
the state (1111) is reachable in 4 steps with the classical parallel com-
position operator, and it is reachable in 3 steps with the step product
operator. The process product, noted M1 ||pr M2, is the second variant
of partial-order semantics. It only considers a subset of the different
possible interleavings of M1 ||stM2. It considers the interleavings which
have a certain normal form not explained here. This can be seen by
comparing Figure 8.6(a) and Figure 8.6(b).

The two considered partial-order semantics are consistent with the
parallel composition operator with respect to both deadlocks and reacha-
bility properties. They reduce the needed bound to discover either an
error or a deadlock. The process product generates a LTS which has the
same state space but fewer interleavings than the one generated by the
step product. In general, this accelerates the final SAT solving problem.

A limited version of the process product which is called Peephole
Partial Order Reduction was firstly presented in [WYKG08]. It considers
a variant of transition systems with a usual interleaving model. Given
an subset Si of the states, and two independent actions a1 and a2, it
does not consider the interleavings where a state of Si appears from
which a1 and then a2 are fired. In other words, it does not consider the
interleavings which contain a subpath si

a1−−→ si+1
a2−−→ si+2 such that

si ∈ Si.

On-the Fly Determinization It is well-known that a nondeterminis-
tic automaton which accepts a language L can be translated into another
deterministic one which does not contain the empty string ε and which
accepts the same language L [AU73]. In the same way, a set of LTS can
be determinized, and then composed. The composed result which does
not contain invisible actions is consistent with the classical parallel com-
position operator with respect to deadlocks and reachability properties.
On-the fly determinization consists in deriving a propositional formula
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(ε,y++)

(ε,y--)

(x++, ε)
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(ε,y--)
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(x:=y*z,x:=y*z)

(x++, y++) (x++, y--)
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(a) Step Product of M1 and M2 (M1 ||st M2)
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(z++, ε)

(g++,g++)

(g--,g--)(x:=y*z, x:=y*z)

(x:=y*z,x:=y*z)

(x++, y++) (x++, y--)

(z++, y-++) (z++, y--)

(ε,y++)

(ε,y++)

(ε,y++)

(b) Process Product of M1 and M2 (M1 ||pr M2)
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which represents the executions of the nondeterministic version of a LTS
Mi [Jus05, JHN03, JHN05]. As seen in the beginning of this section,
Jussila’s encoding can easily represent the nondeterministic version of a
LTS Mi = (Si, Ri, Ii, Li) by allowing more than one atomic proposition
in(si, t) (si ∈ Si) to be true at a step t. Removing invisible transitions is
done as follows: given a state si ∈ Si the atomic proposition in(si, t) is
true if and only if si is an initial state, si can be reached at step t, or
there exist both a state sj which can be reached at step t and a invisible
action ai such that sj

ai−−→ si. M. In other words, in(si, t) is true if and
only if one of the three following conditions hold:

(1) t = 0 and si is an initial state, or

(2) t 6= 0 and there exists a sj ∈ Si · in(sj , t− 1) ∧ sj −−→ si, or

(3) there exist a sj ∈ Si, and an invisible action ai such that in(sj , t)∧
sj

ai−−→ si.

The determinized version of Mi is never created itself. The counterexam-
ples are shortened because the invisible transitions are removed. More-
over, the number of executions is reduced since non-determinism is
removed. Figure 8.6 illustrates that fact on the result of the on-the fly
determinization composition of M1 and M2.

∗ = {0000, 0100, 0101, 0010, 0110, 0111}

*

{1111}

g++

g++

x:=y*z

x:=y*z

Figure 8.6: Determinized Synchronized Product of M1 and M2
(M1 ||dM2)
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Merging of Local Transitions The final technique which is consid-
ered is called local transition merging [Jus04, Jus05]. Given two states
s0, sn where a path π = s0

a0−−→ s1
a1−−→ . . .

an−1−−−−→ sn exists and some
conditions are met, path π is replaced by a new transition s0

anew−−−−→ sn

Practically, a process starts by the preprocessing phase which removes
invisible transitions while taking care of infinite sequences of invisible
transitions. After that, transitions are added to the resulting model
which correspond to some finite sequence of actions. Local transition
merging composition and parallel composition are consistent with respect
to deadlocks, but not to reachability properties. As with the three other
composition operators, the bound needed to find a counterexample is
reduced. Figure 8.7 shows the resulting graph when M1 and M2 are
composed with local transition merging. Figure 8.7’s arrows do not
contain any label because each of its arrows actually represent one or
more edges between the same pair of vertices. Indeed, the resulting LTS
contains numerous labeled edges between vertices. Besides, in the present
context, those labels are not required because we are only interested in
reachable states.

We now compare our BoundedPartialExploration algorithm of Chap-
ter 5, and the three approaches of Jussila’s Thesis. The four methods
present improvements to bounded model checking of asynchronous sys-
tems. Nevertheless, here are the main differences:

• As seen in the beginning of this section, in the worst case Jussila’s
encoding requires exponentially more variables than our encoding.

• Jussila’s approaches only addresses reachability problems whereas
our BoundedPartialExploration method allows us to verify of LTLX

properties.

• Jussila’s goal is to reduce the bound needed to discover an error.
To achieve that, the initial system is transformed into other sys-
tems which might be larger than the original one. Contrarily, our
approach tries to reduce the graph by increasing the bound needed
for finding a violation, while still reducing the verification cost.

We do not have quantitive data which compare Jussila’s approaches
to our BoundedPartialExploration algorithm. This remains to be in-
vestigated. However, we have the intuition that Jussila’s partial-order
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and M2 (M ′1 ||lptM

′
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semantics and our partial-order reduction could be merged together to
fire synchronously safe transitions, and thus obtain more reduction. We
also think that combining the two approaches should also apply in other
contexts than bounded model checking, e.g. set-based model checking.
On-the-fly determinization can be seen as a complementary method
to ours. In general, when asynchronous systems are considered, two
causes of non-determinism are identified: the first one comes from the
components themselves, and the second one comes from the interleaving
execution model. The former is handled by on-the-fly determinization
while our method tackles the latter. All three of Jussila’s approaches are
potentially applicable and open interesting directions for further work.

8.5 The Saturation Approach
G. Ciardo at al. introduce in a series of articles the saturation approach
[CLM07, CLS00, CLS01, CMS06, CY05, Min04, Min06, WC09]. It com-
putes the reachable state space of a transition system M = (D(v0) ×
· · ·×D(vn−1), R, I, L) where each D(vi) is the finite domain of a variable
vi. Therefore, states are tuples which implicitly represent a valuation of
a sequence of finite domaine variables (v0, v1, . . . , vn−1). The saturation
approach exploits the two following facts:

• In order to compute the reachable state space of M , that state
space can be visited in any order. Suppose a transition system
with a set A composed of two actions a1 and a2. From the initial
states of M , an algorithm might fire as many a1 actions as possible.
When no a1 action remains to be fired, it continues by expending
the a2 actions from the already visited states. Meanwhile, the
states which were discovered by actions a2 might enable some a1
actions. Thus, the algorithm needs to execute a1 actions again,
then a2 actions, and so on until no states remain to be discovered.

• Given a variable v`, a sub-transition relation Rv` ⊆ R can be
independent of the value of the variable v`. It means that for each
transition s −−→Rv`

t, its enabling does not depend on the v` value,
and its firing to not modify the v` value. Such a transition relation
is called an independent transition relation with respect to the v`

variable.
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Definition 8.5 (Local Transition Relation). Given a sequence of
variables (v0, v1, . . . , vn−1), and a level 0 ≤ ` ≤ n, a sub-transition
relation R` ⊆ R is a local transition relation with respect to the
level ` if and only if R` is an independent transition relation with
respect to all the variables v0, v1, . . . , v`−1.

Before presenting the saturation algorithm itself, we explain how the
transition system is encoded. Depending of the articles, sets of states
S′ ⊆ S are symbolically encoded using various variants of multi-way
decision diagrams (MDDs) [MD98]. MDDs extend BDDs by allowing
multi-valued variables v` over a domain D(v`), so that the choices for
nodes at level ` correspond to the values of D`. A node n` at level
` characterizes a subset S` of S′. All the paths from the top to n`

represent the set prefix(`, S`) of prefixes of length ` of S`. All the
paths from n` to the bottom represent the set suffix(`, S`) of suffixes
of length n− ` of S`. Moreover, S` is the cross product of prefix(`, S`)
and suffix(`, S`). The k nodes n0, n1, . . . , nk−1 at level ` characterize a
partition {S0, S1, . . . , Sk−1} of S′. The transition relations are generally
encoded by means of Kronecker Products [Dav81], or some MDD variants.

The saturation algorithm supposes a transition systemM = (D(v0)×
· · ·×D(vn−1), R, I, L), a set of local transition relations {R0, R1, . . . , Rn}
where each Ri is a local transition relation with respect to the level i
and R =

⋃n
i=0Ri, and a set of states S` which is the cross product of

prefix(`, S`) and suffix(`, S`) as defined above. The saturation approach
performs the following operations:

• It saturates S` with respect to level `. It means that it looks for
states which are accessible from S` by only expanding the transition
relations which are local with respect to a level i greater or equal
to `, i.e. {R`, R`+1, . . . , Rn−1}. At the end, it returns a saturated
version V of S`, i.e. V = post∗(

⋃n−1
i=` Ri, S`).

• To saturate S`, the algorithm performs a number of post-image
computations. Those post-images are not directly computed on S`

but on the suffixes suffix(`, S`) of S`. To achieve that, a variant
R|` of R` is required. R|` ⊆ (D(v`), D(vl+1), . . . , D(vn−1))2 is the
projection of R` to the variables v`, v`+1, . . . , vn−1. Finally, the
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post-image operation is computed according to Equation (8.2):

S` = prefix(`, S`)× suffix(`, S`) (8.1)
post(R`, S`) = prefix(`, S`)× post(R|`, suffix(`, S`)) (8.2)

The saturation approach works well with MDDs for the following reasons:

• It tends to produce smaller intermediate MDDs than traditional
approaches which compute at each step the post-image of all the
visited states with the whole transition relation R [CMS06].

• The suffix sets suffix(`, S`) are characterized by a unique MDD
node n`. Moreover, if two suffix sets suffix(`, S`) and suffix(`, T`)
are equal, they are represented by the same MDD node n`. As so,
if suffix(`, S`) is saturated before suffix(`, T`), suffix(`, T`) is satu-
rated, then n` is marked as saturated. When the latter suffix(`, T`)
is saturated, the algorithm directly notices than n` is marked
as saturated, so it does not have to compute the saturation of
suffix(`, T`).

The saturation algorithm is composed of two sub-problems. The
main one (c.f. Specification 8.9) takes as input a level ` and a set of
states S`. It looks for states which are accessible from S` by satureting⋃n−1

i=` Ri. It returns a saturated version V of S`. To achieve that goal, it
calls the oneStep sub-problem (c.f. Specification 8.8) which also takes
as input a level ` and a set of states S`. It looks for states which are
accessible from S` by performing n > 0 actions such that all the actions
except the last one belong to

⋃n−1
i=l+1Ri and the last action belongs to

R`.
Extensive research has been performed around the concept of satura-

tion. It was among other things extended to compute a kind of bisim-
ulation [MC11], to check CTL properties [ZC09], to compute strongly
connected components of transition systems [ZC10, ZC11], and to find
shortest counter-examples [ZJC11].

In the sequel, we compare the way of working of the saturation
approach with our PartialExploration method which combines POR and
symbolic model checking. Unfortunately, we are not able to make a
quantitative comparison about running time or memory consumption
because we did not have access to a running version of the saturation
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algorithm. Our comparison is focused on the tactics which are applied
by both methods to visit the state space. Given a transition system
M = (S,R, I, L), the two approaches create sub-transition relations
{R0, R1, . . . , Rn−1} from the whole transition relation R. At each step,
the two approaches extend a set Si which corresponds to a part of
the visited state space. To visit the state space, they apply different
strategies:

• In fine, the saturation algorithm fully expands all the states of
a transition system and so visits the whole state space of M .
Contrarily, our partial exploration approach partially expands some
states and so produces a reduced states space of M . In general,
this produces smaller intermediate BDDs (c.f. Chapter 7) than
traditional approaches.

• The saturation algorithm divides the visited state space into vari-
ous parts, and performs several post-image computations on those
parts. When a part does not allow to discover new states, another
one which maybe subsumes the previous one is considered. Accord-
ing to experimental results, this tends to produce much smaller
intermediate MDDs [CMS06]. At each step, PartialExploration
approach considers all the states which remain to deal with.

• In practice, the process model which is automatically created by
the Milestones model checker (c.f. Chapter 6) and the partitioning
of the transition relation R required by the saturation approach
are constructed by analyzing which variables are accessed when an
action a is performed. In the Milestones context, for each transition
relation Ri of the generated process model, and each variable which
compose the BDDs, we can automatically deduce if Ri is a local
transition relation with respect to that variable.

Both the saturation algorithm and the PartialExploration approach
have been adapted to verify CTL properties. The partial exploration
algorithm has also been used to verify LTL properties. The saturation
does not directly allow us to verify LTL properties, but it has been
adapted to compute the maximal strongly connected components of a
transition system. This could thus be used to check LTL properties.
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Algorithm 8.8: OneStep

Global: A transition system M = (S,R, I, L) where S =
D(v0) × · · · × D(vn−1) and a set of local transition relation
{R0, R1, . . . , Rn−1} where each Ri is a local transition relation
with respect to the level i, and R =

⋃n
i=0Ri

Header: OneStep(`, S`)

Precondition: 0 ≤ l < n, and S` is a set of states. Moreover, S`

can be decomposed as follows: S` = prefix(`, S`)× suffix(`, S`).

Result: post(R`,post∗(
⋃n−1

i=l+1Ri, S`)).

Loop Invariant: D′ ⊆ D(v`), and V =
post∗(

⋃n−1
i=l+1Ri, {(s0, . . . , sn−1) ∈ S` | s` ∈ D(v`) \D′}) and V

can be decomposed as follows V = pre(`, S`)× pre(`, V )

Halting condition: D′ = ∅

Variant: #D′

Source Code:
1 OneStep (`, S`) {
2 local V ∈ 2S := ∅
3 local D′ ⊆ D(v`) := D(v`)
4
5 while (D′ 6= ∅) {
6 local e:= any element of D′

7 D′:= D′ \ {e}
8 T0:= {(s`+1, . . . , sn−1)|(e, s`+1, . . . , sn−1) ∈ suffix(`, S`)}
9 T1:= Saturate (l + 1, (prefix(`, S`)× {e})× T0)

10 V := V ∪ T1
11 }
12 return prefix(`, S`)× post(R|`, suffix(`, V ))
13 }
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Algorithm 8.9: Saturate

Global: A transition system M = (S,R, I, L) where S =
D(v0) × · · · × D(vn−1) and a set of local transition relation
{R0, R1, . . . , Rn−1} where each Ri is a local transition relation
with respect to level i, and R =

⋃n
i=0Ri

Header: Saturate(`, S`)

Precondition: 0 ≤ ` < n, and S` is a set of states. Moreover, S`

can be decomposed as follows: S` = prefix(`, S`)× suffix(`, S`).

Result: post∗(
⋃n−1

i=l Ri, S`).

Loop Invariant: S` ⊆ V ⊆ post∗(
⋃n−1

i=l Ri, S`) and
V = post(post∗(

⋃n−1
i=l+1Ri, O)), and V can be decomposed as

follows V = prefix(`, S`)× suffix(`, S`)

Halting condition: V = O

Variant: #S −#O

Source Code:
1 Saturate (`, S`) {
2 local V ⊆ S:= S`

3 if (l 6= n ∧ suffix(`, S`) is not marked as saturated){
4 local O ⊂ S:= V
5 V := OneStep (`, V );
6 while(O 6= V ) {
7 O := V
8 V := OneStep (`, V );
9 }
10 mark suffix(`, V ) as saturated
11 }
12 return V ;
13 }
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In order to benefit from the two methods, we have the intuition
that POR methods can be incorporated into the saturation approach.
Actually, a process model could be used as a partitioning of the transition
relation. Besides, the saturation could partially visit a safe part of a state
space. Finally, we think that the greatest challenge would be to find a
way to discover cycles. This problem could be resolved by applying a
static analysis to the high-level description of the transition system (c.f.
section 8.2).

8.6 From Cycle Detection to Reachability

In [BAS02], A. Biere et al. translate an LTL model checking problem
into a reachability problem. The basic idea is that finding an LTL
counter-example amounts to finding a lasso-shaped fair trace. It consists
of a prefix that leads to a fair loop. After the translation, a fair loop is
found by nondeterministically saving a state si during the search. Then,
the search continues by checking if the current state is si and if all the
fairness constraints are met since si was firstly visited. The algorithm
could be seen as a symbolic incarnation of the classical nested depth
first search algorithm [CVWY92]. We note that the transformation
mechanism of [BAS02] was extended to be applied to some infinite
transition systems [SB06], e.g. to push-down automata.

Given a transition system M = (S,R, I, L, F ), a proposition p ∈ AP ,
and a temporal property EG p to be satisfied (i.e. check that ¬EG p), the
approach starts by generating a transition system MF

p which is encoded
by means of BDDs. All of its states are composed of #F + 3 components.
They have the form (s1, s2, ok, f0, . . . , f#F−1) s1 represents a state of S.
s2 represents the hypothetical first state of a loop. If s2 equals to ⊥, it
means that the loop has not started yet. ok is true if and only if all the
states that have already been reached satisfy p. All the fi components
states are true if and only if the fairness constraints Fi ∈ F have been
met since the loop started. Because every state of MF

p contains the two
states s1 and s2, at least twice as many BDD variables are required to
encode MF

p than M . The authors show that M and MF
p are equivalent.

Definition 8.6 (MF
p ). Given a fair transition system M = (A,AP, S,

R, I, L, {F0, F1, . . . , Fk−1}), and p ∈ AP , a derived transition system



8.6. From Cycle Detection to Reachability 191

MF
p = ({q}, A, SF

p , R
F
p , I

F
p , L

F
p ) is derived where:

• SF
p = S × (S ∪ {⊥})× {true, false}k+1 where ⊥ 6∈ S

• (s1, s2, ok, f0, . . . , fk−1) a−−→ (s′1, s′2, ok′, f ′0, . . . , f ′k−1) ∈ RF
p if and

only if all following conditions hold:

(1) s1
a−−→ s′1 ∈ R, and

(2) (s2 = ⊥ ∧ s′2 = s′1) ∨ s′2 = s2, and
(3) ok′ = (ok ∧ p ∈ L (s′1)), and
(4) ∀i ∈ {0, 1, . . . , k} · f ′i = (s2 6= ⊥ ∧ (fi ∨ s′1 ∈ Fi))

• IF
p = {(i1, i2) | i1 ∈ I ∧ i2 ∈ (I ∪ {⊥}) ∧ (i2 = ⊥ ∨ i1 = i2)} ×
{true} × {false}k

• LF
p : SF

P → {∅, {q}} : (s1, s2, ok, f0, . . . , fk−1) → R such that q ∈
R⇔ s2 6= ⊥ ∧ ok ∧ ∀i ∈ {0, 1, . . . , k − 1} · fi.

Theorem 8.7 (c.f. [BAS02]). Given a fair transition system M and its
derived transition system MF

p

M |=F EG p if and only if MF
p |= EF q

Every LTL model checking problem can be translated into a fair
cycle detection problem (c.f. Section 4.1.3). Therefore, the approach is
applicable to all LTL properties. Furthermore, MF

p can be visited by
means of any algorithm which deals with reachability problem such as
DFS, BFS, or the forward model checking algorithms of Section 2.5.2.

Incorporating partial-order reduction into symbolic model checking
to verify temporal properties is not trivial, among others things because
detecting cycles is a difficult task. We have the intuition that the
approach presented in this section which does not deal with POR might
alleviate the problem. It would be interesting to study the effect of
partial-order reduction techniques on the graph MF

p . To achieve that
goal, the following questions need to be answered:

1. Is a safe (and linear) process model on M still safe (and linear) on
MF

p ?



192 Related Work

2. If the ample set approach is used which of the conditions C0–C4,
or which variants, have to be met? In particular, what do the cycle
condition C3 become? Can it be relaxed or even discarded?

3. MF
p is much bigger than M , i.e. #SF

p = 2k+1#S2. MF
p is encoded

by means of at least twice as many BDD variables as M . Because
the size of a BDD can be exponential in terms of the numbers of
BDD variables, the size of the BDDs can become unmanageable.
Partial order reduction could alleviate that problem. However, if
MF

p were encoded into BDDs, what would the impact of partial-
order reduction on memory and running-time be?

8.7 Conclusion

In this chapter, we reviewed model checking approaches which are related
to ours. We started by presenting three methods which combine symbolic
model checking and partial-order reduction:

• The method of R. Alur et al. which checks local properties, a sort
of reachability properties [ABH+97].

• The static partial-order reduction method of R. P. Kurshan which
translates the source code of a system into a new one to perform
POR at a syntactic level [KLM+98, KLY02]. The resulting system
is equivalent to the original one, and can be handled by any model
checking techniques.

• The approach of P. A. Abdulla et al. which verifies reachability
properties [AJKP98]. It considers an uncommon dependency rela-
tion called commutativity in one direction, and works with sets of
sets of states instead of set of states.

We continue by introducing three approaches that are complementary
to ours:

• Jussila’s methods which are related to BMC of asynchronous sys-
tems [Jus05]. They consider various interleaving semantics to verify
reachability problems.
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• Ciardo’s saturation approach which exploits the two following
observations. The state space of a system can be visited in any
order [CLS01]. Moreover, in a lot of cases, the firing of an action
does not depend on all the variables of a system. Contrarily, it
generally depends on a small number of such variables.

• The approach of A. Biere et al. which translates a liveness problem
into a safety problem [BAS02]. It translates the fair-cycle detec-
tion problem into a reachability problem, and so deals with LTL
properties.

In addition to the applied methods, the considered approaches differ
from the class of properties they can handle. Three of the six presented
strategies deal with a kind of reachability property: the methods of R.
Alur et al., P. A. Abdulla al. and T. Jussila. Ciardo’s saturation also
deals with reachability properties but it was extended to among other
things verifying CTL properties or handling bisimulation problems. The
two remaining approaches of R. P. Kurshan et al. and A. Biere et al.
deal with LTL properties. Finally, the methods presented in this thesis
verify either LTLX properties or CTLX properties.

In general, the approaches presented in this section are complementary
to the one presented in this thesis. In the context of set-based model
checking, the static partial-order reduction or the method of A. Biere
et al. could be used to detect cycles. Then, the PartialExploration
algorithm, the saturation approach, or a mix of both could visit to
the resulting graph. In the same way, the BoundedPartialExploration
algorithm and the partial-order semantics of T. Jussila could be merged.
Those suggestions lead to interesting open questions for future researches.
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Chapter 9

Conclusion and
Perspectives

The research goal of this thesis is to develop efficient symbolic model
checking techniques for asynchronous systems. The key idea is to combine
partial-order reduction (POR) and symbolic model checking to tackle
the state space explosion problem which is inherent to model checking of
concurrent systems. In Section 9.2, we outline the main limitations of
our work, and we present several possible directions for future research.

9.1 Summary
The contributions presented in this thesis focus on symbolic verification of
CTLX and LTLX properties on concurrent systems, which are described
by finite transition systems. To perform this verification, we propose
three algorithms which incorporate partial-order reduction either into
BDD-based model checking or into SAT-based model checking. Given
a transition system M , those algorithms only visit a part of a reduced
transition system MR.

The first algorithm, called evalCTLX, combines POR and set-based
model checking to check whether a transition system verifies a CTLX

property or not. At the heart of the evalCTLX algorithm is the Partial-
Exploration algorithm which performs partial-order reduction to visit
a part of MR. It is employed as an alternative to the forward model
checking of [INH96] which allows to verify a subset of CTL in a forward

195



196 Conclusion and Perspectives

way. To check the whole class of CTL properties, it is combined with the
classical backward model checking approach [CGP99]. Our evalCTLX
algorithm applies the same principles but it uses the PartialExploration
algorithm to perform partial-order reduction during the forward phase.

The second approach, referred to the evalLTLX algorithm, uses the
PartialExploration algorithm to verify LTLX properties. It adapts and
merges the tableau-based LTL model checking of [CGH97] which amounts
to searching for fair paths, the forward model checking of [INH96] and
the PartialExploration algorithm to search for fair cycle using forward
state traversal in a reduced state space.

The third algorithm, named BPE, adapts the PartialExploration
algorithm to be suitable for bounded model checking. It is used to find
violation of LTLX properties. It reduces the search space which the
SAT-solver has to deal with because it does not encode all the possible
interleavings. To that end, it applies partial-order reduction principles
and adds stuttering into the paths it encodes to obtain a more efficient
SAT problem resolution.

To evaluate and compare our three algorithms, we developed the
Milestones model checker from scratch. Milestones defines its own lan-
guage to model a system. Besides our three approaches, it implements
classical model checking techniques for comparison purposes. It also
allows one to translate a Milestones program into a NuSMV or a Spin
program.

Finally, we assess and compare the three approaches on four examples.
As shown by the experimental results, these approaches have the following
advantages:

• In the case of BDD-based model checking, it manipulates smaller
BDDs than classical BDD-based approaches and so accelerates the
verification process.

• In the case of SAT-based model checking, it visits a reduced transi-
tion systemMR which contains less non-determinism thanM . This
tends to accelerate the resolution of the underlying SAT problem,
and so accelerate the verification process as well.

In conclusion, the following contributions have been presented, as
announced in Section 1.1:
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1. Our three new algorithms for efficient symbolic model-checking of
asynchronous systems based on POR techniques were the subject
of Chapters 3, 4, and 5:

(a) Chapter 3 introduced the PartialExploration algorithm which
is inspired from the ImProviso algorithm. Then, it presented
the evalCTLX algorithm which incorporates the PartialExplo-
ration algorithm into forward model checking.

(b) Chapter 4 presented the evalLTLX algorithm which verifies
LTLX properties. It merged our PartialExploration algorithm,
forward model checking, and Clarke et al.’s tableau-based
symbolic LTL model checking.

(c) Chapter 5 introduced the BPE algorithm which applies Par-
tialExploration principles into the bounded model checking
approach to allow the verification of LTL properties.

2. Chapter 6 presented the Milestones model checker which imple-
ments the previous algorithms. For comparison purposes, it imple-
ments some other classical approaches. Besides, it translates its
programs into NuSMV or Spin.

3. Each of the three algorithms was supported by a problem theory
section (Section 3.2.1, Section 5.1, Section 4.1) providing detailed
development and proof. In the Related Work Chapter 8, comparable
approaches have also been re-expressed and rigorously specified
within the same unifying framework.

4. Chapter 7 assessed the effectiveness and the scalability and com-
pared the previous algorithms on four example models: a scalable
turntable system, an elevator system, a cash point system, and a
producer-consumer system.

9.2 Future Work
The evalCTLX algorithm applies partial-order reduction when forward
model checking is applicable, otherwise it uses backward model checking
without any partial order reduction. We see two main limitations to this
approach:
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1. Partial-order reduction is applied only during a part of the verifica-
tion process. To improve the performances, could we increase the
relative part during which partial-order reduction is performed?

2. On the one hand, partial-order reduction is applied during the
forward phase and not during the backward one. On the other
hand, experimental results show that in some cases the perfor-
mances of the backward model checking are very high,while the
performances of the forward model checking are very poor, and vice
versa. Therefore, it would be interesting to study how partial-order
reduction could be applied during backward model checking.

Undeniably, those two questions have a practical aspect, but they are
also appealing from a theoretical point of view. To answer them, we
propose three approaches. The two first approaches are related to our
first question and the third approach is related to the second question:

• A possible direction consists in studying more deeply the links
between forward model checking and backward model checking:

1. The first part of this study would be devoted to answer to
the following question: what kind of property is it possible
to check in a forward way and what kind of property is it
possible to check in a forward way? A first starting point is
the work of T. A. Henzinger et al. which is relative to those
two questions [HKQ03]. The authors formulate the problems
of symbolic backward and forward model checking by means
of two µ-calculi. The pre-µ calculus is based on the pre-image
operation, and the post-µ calculus is based on the post-image
operation. Then, the authors prove that all LTL properties
can be expressed as post-µ queries, and therefore checked
using symbolic forward state traversal. On the other hand,
they show that there are simple CTL properties that cannot be
checked in this way. A second starting point is the work of B.
Vergauwen et al. which introduces an explicit forward model
checking for CTL [VL93]. We have a strong intuition that
this algorithm could be adapted to set-based model checking.

2. Because forward model checking can be used to check the
past version of the CTL operators, or CTL+PAST, and the
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backward model checking temporal can be used to check
classical version of the CTL operator. Another starting point
is the work F. Laroussinie et al. about past CTL [LS97] which
among other things translates a fragment of CTL+PAST into
CTL, even though we need the opposite.

• Another interesting challenge is to extend symbolic LTL model
checking by tableau of E. M. Clarke et al. [CGH97] in such a way
that it deals with CTL∗ properties, then, to incorporate POR into
the resulting algorithm. Actually, in explicit model checking, CTL∗
model checking can be performed by combining both the explicit
LTL model checking algorithm by tableau and the CTL model
checking algorithm by tableau [CGP99, BK08]. The resulting
algorithm has essentially the same complexity as the explicit LTL
model checking by tableau [CGP99, BK08]. Adapting this explicit
algorithm could be done in a way similar to the adaptation of
the explicit LTL model checking by tableau for symbolic model
checking.

• Partial-order reduction could be applied during backward model
checking. Given a transition system M , it amounts to applying
partial-order reduction technique on the reverse transition system
M−1. Actually, with a low level language which supports non-
determinism, it is possible to translate a description of a transition
systemM in that language into a description of a transition system
M−1 in that language as well. As with Milestones, this represen-
tation of M−1 could be used to concretely compute the process
model of M−1. Based on that, we could reduce M−1. We identify
two obstacles to this approach: non-determinism and the detection
of the initial states. We recall that POR approaches generally
deal with deterministic transition system. It is easy to see that a
deterministic transition system M can induce a non-deterministic
transition system M−1. Hence, the first task consists in adapting
the POR methods to non-deterministic transition systems. The
second obstacle comes from the fact that the reduced version of
M−1 probably has to contain all the initial states of M , other-
wise it seems difficult to state something about the validity of the
reachable state space of M .
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Classically, the partial-order reduction approaches rely on the notions
of independence and invisibility of actions. Moreover, the POR condition
C1 of Section 2.4.1 describes in which conditions an action can enable
another one when partial order reduction is applied. In general, checking
independence, invisibility, and condition C1 are a difficult problem, and
so some over-approximations are classically used to ensure that the ample
sets are valid. For instance, given a set of state S and a set of actions
A, set-based approaches or SAT-Solvers could be used to answer the
following types of questions:

• Are action a1 and action a2 independent?

• Can action a1 activate action a2? In which conditions a1 does
activate action a2?

• Is a1 invisible with respect to a set of propositions AP ′?

The answer to those questions could be used to compute the previously
mentioned over-approximations. Finally, these over-approximations could
be used in any partial-order algorithm which relies on them.

Concerning our BPE algorithm, for now it is used to verify finite
transition. However, from a theoretical point of view, it can be extended
to handle models featuring variables on infinite domains. This can
be achieved by using the capabilities of Satisfiability Modulo Theories
solvers such as Yices and MiniSat. Furthermore, [Str01, WKS01, HJL05]
show that a promising technique for improving the performance of BMC
consists in using incremental SAT-solving. Our BPE algorithm could
be adapted to the context of incremental SAT-solving. Moreover, we
have the intuition that the partial order semantics of T. Jussila and
our partial order reduction could be merged to fire synchronously safe
transitions, and so obtain more reduction. For now, Jussila’s approach
is performed in the bounded model checking context. However, from a
theoretical point of view this approach is also applicable in the context of
set-based model checking. Therefore, in the context of set-based model
checking, it could also be possible to combine the partial order semantics
of T. Jussila and our partial order reduction to fire synchronously safe
transitions, and so obtain more reduction.

To be usable in other contexts than this thesis, the Milestones model
checker needs mainly two extensions. Firstly, counterexamples generation
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needs to be added. [CGMZ95] shows how to generate such counterexam-
ples. Secondly, some higher-level language extensions also needs to be
added. To achieve that, the easiest, is to provide a set of macros which
maps such extensions to the Milestones languages.

Finally, we stress that in the last two decades a lot of work has been
done in the domain of symbolic model checking. We review some of
that work in Chapter 8, e.g. the Saturation approach of G. Ciardo or
the approach presented in of A.Biere et al which transforms a liveness
problem into a safety one. An interesting topic for further work consists
in studying how those approaches and the ones presented in this thesis
can benefit from each other.



202 Conclusion and Perspectives



Bibliography

[ABH+97] Rajeev Alur, Robert K. Brayton, Thomas A. Henzinger,
Shaz Qadeer, and Sriram K. Rajamani. Partial-order re-
duction in symbolic state space exploration. In Computer
Aided Verification, pages 340–351, 1997.

[AJKP98] Parosh Aziz Abdulla, Bengt Jonsson, Mats Kindahl, and
Doron Peled. A general approach to partial order reductions
in symbolic verification (extended abstract). In Computer
Aided Verification, pages 379–390, 1998.

[AU73] Alfred V. Aho and Jeffrey D. Ullman. The Theory of Pars-
ing, Translation, and Compiling: Parsing. The Theory of
Parsing, Translation, and Compiling. Prentice-Hall, 1973.

[BAS02] Armin Biere, Cyrille Artho, and Viktor Schuppan. Liveness
checking as safety checking. Electr. Notes Theor. Comput.
Sci., 66(2):160–177, 2002.

[BCC+03] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Ofer
Strichman, and Yunshan Zhu. Bounded model checking.
Advances in Computers, 58:118–149, 2003.

[BCG88] M. C. Browne, E. M. Clarke, and O. Gumberg. Character-
izing finite kripke structures in propositional temporal logic.
Theor. Comput. Sci., 59(1-2):115–131, 1988.

[BCM+92] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and
J. Hwang. Symbolic model checking: 1020 states and beyond.
Information and Computation, 98(2):142–170, 1992.

203



204 BIBLIOGRAPHY

[BDOS08] Clark Barrett, Morgan Deters, Albert Oliveras, and Aaron
Stump. Design and results of the 3rd annual satisfiability
modulo theories competition (smt-comp 2007). International
Journal on Artificial Intelligence Tools, 17(4):569–606, 2008.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of Model
Checking (Representation and Mind Series). The MIT Press,
2008.

[Bry86] R. E. Bryant. Graph-based algorithms for boolean function
manipulation. IEEE Transactions on Computers, C-35(8),
1986.

[BTW+05] Elena M. Bortnik, Nikola Trčka, Anton Wijs, Bas Luttik,
J. M. van de Mortel-Fronczak, Jos C. M. Baeten, Wan
Fokkink, and J. E. Rooda. Analyzing a χ model of a
turntable system using spin, cadp and uppaal. J. Log.
Algebr. Program., 65(2):51–104, 2005.

[CCGR99] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri.
NuSMV: a new symbolic model verifier. In Proc. of Inter-
national Conference on Computer-Aided Verification, 1999.

[CD89] Edmund M. Clarke and I. A. Draghicescu. Expressibility
results for linear-time and branching-time logics. In Linear
Time, Branching Time and Partial Order in Logics and
Models for Concurrency, School/Workshop, pages 428–437,
London, UK, 1989. Springer-Verlag.

[CGH97] Edmund M. Clarke, Orna Grumberg, and Kiyoharu Ham-
aguchi. Another look at LTL model checking. Form. Methods
Syst. Des., 10(1):47–71, 1997.

[CGMZ95] Edmund M. Clarke, Orna Grumberg, Kenneth L. McMillan,
and Xudong Zhao. Efficient generation of counterexamples
and witnesses in symbolic model checking. In DAC, pages
427–432, 1995.

[CGP99] Edmund M. Clarke, Orna Grumberg, and Doron Peled.
Model Checking. Mit Press, 1999.



BIBLIOGRAPHY 205

[CLM07] Gianfranco Ciardo, Gerald Lüttgen, and Andrew S. Miner.
Exploiting interleaving semantics in symbolic state-space
generation. Formal Methods in System Design, 31(1):63–100,
2007.

[CLS00] Gianfranco Ciardo, Gerald Lüttgen, and Radu Siminiceanu.
Efficient symbolic state-space construction for asynchronous
systems. In ICATPN, pages 103–122, 2000.

[CLS01] Gianfranco Ciardo, Gerald Lüttgen, and Radu Siminiceanu.
Saturation: An efficient iteration strategy for symbolic state-
space generation. In Tiziana Margaria and Wang Yi, editors,
TACAS, volume 2031 of Lecture Notes in Computer Science,
pages 328–342. Springer, 2001.

[CMS06] Gianfranco Ciardo, Robert M. Marmorstein, and Radu
Siminiceanu. The saturation algorithm for symbolic state-
space exploration. STTT, 8(1):4–25, 2006.

[CMT11] Alessandro Cimatti, Sergio Mover, and Stefano Tonetta.
Hydi: A language for symbolic hybrid systems with discrete
interaction. In EUROMICRO-SEAA, pages 275–278. IEEE,
2011.

[CVWY92] Costas Courcoubetis, Moshe Y. Vardi, Pierre Wolper, and
Mihalis Yannakakis. Memory-efficient algorithms for the
verification of temporal properties. Formal Methods in
System Design, 1(2/3):275–288, 1992.

[CY05] Gianfranco Ciardo and Andy Jinqing Yu. Saturation-based
symbolic reachability analysis using conjunctive and disjunc-
tive partitioning. In Dominique Borrione and Wolfgang J.
Paul, editors, CHARME, volume 3725 of Lecture Notes in
Computer Science, pages 146–161. Springer, 2005.

[Dav81] Marc Davio. Kronecker products and shuffle algebra. IEEE
Trans. Comput., 30:116–125, February 1981.

[DdM06] Bruno Dutertre and Leonardo Mendonça de Moura. A fast
linear-arithmetic solver for dpll(t). In Thomas Ball and



206 BIBLIOGRAPHY

Robert B. Jones, editors, CAV, volume 4144 of Lecture
Notes in Computer Science, pages 81–94. Springer, 2006.

[Dij76] Edsger W. Dijkstra. A Discipline of Programming. Prentice
Hall, 1976.

[DLL62] Martin Davis, George Logemann, and Donald Loveland. A
machine program for theorem-proving. Commun. ACM,
5(7):394–397, 1962.

[DOP00] B. Tim Denvir, José Nuno Oliveira, and Nico Plat. The cash-
point (atm) ‘problem’. Formal Asp. Comput., 12(4):211–215,
2000.

[EFT93] Reinhard Enders, Thomas Filkorn, and Dirk Taubner. Gen-
erating bdds for symbolic model checking in ccs. Distrib.
Comput., 6(3):155–164, 1993.

[ELLL04] Stefan Edelkamp, Stefan Leue, and Alberto Lluch-Lafuente.
Partial-order reduction and trail improvement in directed
model checking. STTT, 6(4):277–301, 2004.

[EPF12] EPFL. Lausanne, switzerland, The Scala Programming
Language Website. http://www.scala-lang.org/, Jan-
uary 2012.

[FGK+96] Jean-Claude Fernandez, Hubert Garavel, Alain Kerbrat,
Radu Mateescu, Laurent Mounier, and Mihaela Sighireanu.
Cadp (cæsar/aldebaran development package): A protocol
validation and verification toolbox. In Rajeev Alur and
Thomas A. Henzinger, editors, Proceedings of CAV’96 (New
Brunswick, New Jersey, USA), volume 1102, pages 437–440,
1996.

[GFYS07] Guy Gueta, Cormac Flanagan, Eran Yahav, and Mooly Sa-
giv. Cartesian partial-order reduction. In Dragan Bosnacki
and Stefan Edelkamp, editors, SPIN, volume 4595 of Lecture
Notes in Computer Science, pages 95–112. Springer, 2007.

[GJM+97] Hubert Garavel, Mark Jorgensen, Radu Mateescu, Charles
Pecheur, Mihaela Sighireanu, and Bruno Vivien. Cadp’97 –



BIBLIOGRAPHY 207

status, applications and perspectives. In Ignac Lovrek, edi-
tor, Proceedings of the 2nd COST 247 International Work-
shop on Applied Formal Methods in System Design (Zagreb,
Croatia), 1997.

[GKPP99] Rob Gerth, Ruurd Kuiper, Doron Peled, and Wojciech
Penczek. A partial order approach to branching time logic
model checking. Information and Computation, 150(2):132–
152, 1999.

[God96] Patrice Godefroid. Partial-Order Methods for the Verifi-
cation of Concurrent Systems – An Approach to the State-
Explosion Problem, volume 1032 of Lecture Notes in Com-
puter Science. Springer-Verlag, 1996.

[HGP92] Gerard J. Holzmann, Patrice Godefroid, and Didier Pirottin.
Coverage preserving reduction strategies for reachability
analysis. In Richard J. Linn Jr. and M. Ümit Uyar, editors,
PSTV, volume C-8 of IFIP Transactions, pages 349–363.
North-Holland, 1992.

[HJL05] Keijo Heljanko, Tommi A. Junttila, and Timo Latvala. In-
cremental and complete bounded model checking for full
pltl. In Kousha Etessami and Sriram K. Rajamani, editors,
CAV, volume 3576 of Lecture Notes in Computer Science,
pages 98–111. Springer, 2005.

[HKQ03] Thomas A. Henzinger, Orna Kupferman, and Shaz Qadeer.
From pre-historic to post-modern symbolic model checking.
Formal Methods in System Design, 23(3):303–327, 2003.

[HM85] Matthew Hennessy and Robin Milner. Algebraic laws for
nondeterminism and concurrency. J. ACM, 32(1):137–161,
1985.

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes.
Prentice-Hall, 1985.

[Hol97] G. J. Holzmann. The model checker SPIN. IEEE Transac-
tions on Software Engineering, 23(5), 1997.



208 BIBLIOGRAPHY

[Hol99] Gerard J. Holzmann. The engineering of a model checker:
the gnu i-protocol case study revisited. In SPIN, pages
232–244, 1999.

[IEE95] IEEE. Verilog hdl language reference manual. IEEE Draft
Standard 1364, Institution of Electrical and Electronics
Engineers, 1995.

[INH96] Hiroaki Iwashita, Tsuneo Nakata, and Fumiyasu Hirose.
CTL model checking based on forward state traversal. In
ICCAD ’96: Proceedings of the 1996 IEEE/ACM interna-
tional conference on Computer-aided design, pages 82–87,
Washington, DC, USA, 1996. IEEE Computer Society.

[ISO88] ISO/IEC. Lotos — a formal description technique based
on the temporal ordering of observational behaviour. In-
ternational Standard 8807, International Organization for
Standardization — Information Processing Systems — Open
Systems Interconnection, Genève, 1988.

[JHN03] Toni Jussila, Keijo Heljanko, and Ilkka Niemelä. Bmc via
on-the-fly determinization. Electr. Notes Theor. Comput.
Sci., 89(4):561–577, 2003.

[JHN05] Toni Jussila, Keijo Heljanko, and Ilkka Niemelä. Bmc via
on-the-fly determinization. STTT, 7(2):89–101, 2005.

[JN02] Toni Jussila and Ilkka Niemelä. Parallel program verification
using bmc. In In: ECAI 2002 Workshop on Model Checking
and Artificial Intelligence, pages 59–66, 2002.

[Jus04] Toni Jussila. Bmc via dynamic atomicity analysis. In ACSD,
pages 197–206. IEEE Computer Society, 2004.

[Jus05] Toni Jussila. On bounded model checking of asynchronous
systems. Research Report A97, Helsinki University of Tech-
nology, Laboratory for Theoretical Computer Science, Es-
poo, Finland, October 2005. Doctoral dissertation.

[KLM+98] Robert P. Kurshan, Vladdimir Levin, Marius Minea, Doron
Peled, and Hüsnü Yenigün. Static partial order reduction. In



BIBLIOGRAPHY 209

TACAS ’98: Proceedings of the 4th International Conference
on Tools and Algorithms for Construction and Analysis of
Systems, pages 345–357, London, UK, 1998. Springer-Verlag.

[KLY02] Robert P. Kurshan, Vladimir Levin, and Hüsnü Yenigün.
Compressing transitions for model checking. In Ed Brinksma
and Kim Guldstrand Larsen, editors, CAV, volume 2404 of
Lecture Notes in Computer Science, pages 569–581. Springer,
2002.

[KNU73] D.E. KNUTH. The Art Of Computer Programming : Vol-
ume 3 : Sorting And Searching. Addison-Wesley Ser. in
Computer Science & Information Processing. Reading [etc.]
: Addison-Wesley Publishing Company, 1973.

[LN00] J. Lind-Nielsen. Verification of large state/event systems:
Ph.D. thesis. IT-TR. Department of Information Technology,
Technical University of Denmark, 2000.

[LN08] Jørn Lind-Nielsen. Buddy - a binary decision diagram pack-
age. http://vlsicad.eecs.umich.edu/BK/Slots/cache/
www.itu.dk/research/buddy/index.html, June 10, 2008.

[LNAH+01] Jørn Lind-Nielsen, Henrik Reif Andersen, Henrik Hulgaard,
Gerd Behrmann, Kåre J. Kristoffersen, and Kim Guldstrand
Larsen. Verification of large state/event systems using com-
positionality and dependency analysis. Formal Methods in
System Design, 18(1):5–23, 2001.

[LS97] François Laroussinie and Ph. Schnoebelen. Specification in
ctl+past, verification in ctl. Electr. Notes Theor. Comput.
Sci., 7:161–184, 1997.

[LST03] Flavio Lerda, Nishant Sinha, and Michael Theobald. Sym-
bolic model checking of software. In Byron Cook, Scott
Stoller, and Willem Visser, editors, Electronic Notes in
Theoretical Computer Science, volume 89. Elsevier, 2003.

[Mat06] R. Mateescu. Systèmes temps réel 1 - techniques de de-
scription et de vérification, chapter 5, pages 151–180. IC2
treatise. Lavoisier, 2006.



210 BIBLIOGRAPHY

[MC11] Malcolm Mumme and Gianfranco Ciardo. A fully sym-
bolic bisimulation algorithm. In Giorgio Delzanno and Igor
Potapov, editors, RP, volume 6945 of Lecture Notes in
Computer Science, pages 218–230. Springer, 2011.

[MD98] D. Miller and Rolf Drechsler. Implementing a multiple-
valued decision diagram package. In ISMVL, pages 52–57,
1998.

[Mil89] Robin Milner. Communication and Concurrency. Prentice-
Hall, 1989.

[Min04] Andrew S. Miner. Saturation for a general class of models.
In QEST, pages 282–291. IEEE Computer Society, 2004.

[Min06] Andrew S. Miner. Saturation for a general class of models.
IEEE Trans. Software Eng., 32(8):559–570, 2006.

[MS03] Radu Mateescu and Mihaela Sighireanu. Efficient on-the-fly
model-checking for regular alternation-free mu-calculus. Sci.
Comput. Program., 46(3):255–281, 2003.

[Mye79] Glenford J. Myers. The Art of Software Testing. Wiley,
New York, 1979.

[Nal98] Ratan Nalumasu. Formal Design and Verification Methods
for Shared Memory Systems. PhD thesis, University of Utah,
1998.

[NG96] Ratan Nalumasu and Ganesh Gopalakrishnan. Partial order
reduction without the proviso. Technical Report Thecnical
Report UUCS-96-008, University of Utah, Department of
Computer Science, 1996.

[NG97a] Ratan Nalumasu and Ganesh Gopalakrishnan. A new partial
order reduction algorithm for concurrent system verifica-
tion. In CHDL’97: Proceedings of the IFIP TC10 WG10.5
international conference on Hardware description languages
and their applications : specification, modelling, verification
and synthesis of microelectronic systems, pages 305–314,
London, UK, UK, 1997. Chapman & Hall, Ltd.



BIBLIOGRAPHY 211

[NG97b] Ratan Nalumasu and Ganesh Gopalakrishnan. Pv: A model-
checker for verifying ltl-x properties. In Fourth Nasa Langley
Formal Methods Workshop, pages 153–161. Nasa Conference
Publication 3356, 1997.

[NG98a] Ratan Nalumasu and Ganesh Gopalakrishnan. A partial
order reduction without the proviso. Technical Report Thec-
nical Report UUCS-98-017, University of Utah, UT, Depart-
ment of Computer Science, 1998.

[NG98b] Ratan Nalumasu and Ganesh Gopalakrishnan. Pv: An
explicit enumeration model-checker. In Ganesh Gopalakr-
ishnan and Phillip J. Windley, editors, FMCAD, volume
1522 of Lecture Notes in Computer Science, pages 523–528.
Springer, 1998.

[NG02] Ratan Nalumasu and Ganesh Gopalakrishnan. An efficient
partial order reduction algorithm with an alternative pro-
viso implementation. Formal Methods in System Design,
20(3):231–247, 2002.

[OSV08] Martin Odersky, Lex Spoon, and Bill Venners. Programming
in Scala: A Comprehensive Step-by-step Guide. Artima
Incorporation, USA, 1st edition, 2008.

[Pel96] Doron Peled. Combining partial order reductions with on-
the-fly model-checking. Formal Methods in System Design,
8(1):39–64, 1996.

[RAO92] Debra J. Richardson, Stephanie Leif Aha, and T. Owen
O’Malley. Specification-based test oracles for reactive sys-
tems. In ICSE, pages 105–118, 1992.

[SB06] Viktor Schuppan and Armin Biere. Liveness checking as
safety checking for infinite state spaces. Electr. Notes Theor.
Comput. Sci., 149(1):79–96, 2006.

[Str01] Ofer Strichman. Pruning techniques for the sat-based
bounded model checking problem. In Tiziana Margaria
and Thomas F. Melham, editors, CHARME, volume 2144 of



212 BIBLIOGRAPHY

Lecture Notes in Computer Science, pages 58–70. Springer,
2001.

[Val90] A. Valmari. A stubborn attack on state explosion. In
R. P. Kurshan and E. M. Clarke, editors, Proceedings of
the 2nd Workshop on Computer-Aided Verification (Rutgers,
New Jersey, USA), volume 3 of DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, pages 25–
42. AMS-ACM, 1990.

[VL93] Bart Vergauwen and Johan Lewi. A linear local model
checking algorithm for ctl. In Eike Best, editor, CONCUR,
volume 715 of Lecture Notes in Computer Science, pages
447–461. Springer, 1993.

[VP08] José Vander Meulen and Charles Pecheur. Efficient symbolic
model checking for process algebras. In 13th International
Workshop on Formal Methods for Industrial Critical Systems
(FMICS 2008), volume 5596, pages 69–84. LNCS, 2008.

[VP09] José Vander Meulen and Charles Pecheur. Combining partial
order reduction with bounded model checking. In Communi-
cating Process Architectures 2009 - WoTUG-32, volume 67
of Concurrent Systems Engineering Series, pages 29 – 48.
IOS Press, 2009.

[VP11a] José Vander Meulen and Charles Pecheur. Combining partial
order reduction and symbolic model checking to verify LTL
properties. In Mihaela Bobaru, Klaus Havelund, Gerard
Holzmann, and Rajeev Joshi, editors, NASA FORMAL
METHODS 2011, volume 6617 of LNCS, pages 406–421.
Springer, 2011.

[VP11b] José Vander Meulen and Charles Pecheur. Milestones: A
model checker combining symbolic model checking and par-
tial order reduction. In Mihaela Bobaru, Klaus Havelund,
Gerard Holzmann, and Rajeev Joshi, editors, NASA FOR-
MAL METHODS 2011, volume 6617 of LNCS, pages 525–
531. Springer, 2011.



BIBLIOGRAPHY 213

[WC09] Min Wan and Gianfranco Ciardo. Symbolic state-space
generation of asynchronous systems using extensible decision
diagrams. In Mogens Nielsen, Antonín Kucera, Peter Bro
Miltersen, Catuscia Palamidessi, Petr Tuma, and Frank D.
Valencia, editors, SOFSEM, volume 5404 of Lecture Notes
in Computer Science, pages 582–594. Springer, 2009.

[WKS01] Jesse Whittemore, Joonyoung Kim, and Karem A. Sakallah.
Satire: A new incremental satisfiability engine. In DAC,
pages 542–545. ACM, 2001.

[WW96] Bernard Willems and Pierre Wolper. Partial-order methods
for model checking: From linear time to branching time. In
LICS, pages 294–303. IEEE Computer Society, 1996.

[WYKG08] Chao Wang, Zijiang Yang, Vineet Kahlon, and Aarti Gupta.
Peephole partial order reduction. In C. R. Ramakrishnan
and Jakob Rehof, editors, TACAS, volume 4963 of Lecture
Notes in Computer Science, pages 382–396. Springer, 2008.

[ZC09] Yang Zhao and Gianfranco Ciardo. Symbolic ctl model
checking of asynchronous systems using constrained satura-
tion. In Zhiming Liu and Anders P. Ravn, editors, ATVA,
volume 5799 of Lecture Notes in Computer Science, pages
368–381. Springer, 2009.

[ZC10] Yang Zhao and Gianfranco Ciardo. Symbolic computation of
strongly connected components using saturation. In César
Muñoz, editor, Proceedings of the Second NASA Formal
Methods Symposium (NFM 2010), NASA/CP-2010-216215,
pages 202–211, Langley Research Center, Hampton VA
23681-2199, USA, April 2010. NASA.

[ZC11] Yang Zhao and Gianfranco Ciardo. Symbolic computation
of strongly connected components and fair cycles using
saturation. ISSE, 7(2):141–150, 2011.

[ZJC11] Yang Zhao, Xiaoqing Jin, and Gianfranco Ciardo. A sym-
bolic algorithm for shortest eg witness generation. In Zhen-
hua Duan and C.-H. Luke Ong, editors, TASE, pages 68–75.
IEEE Computer Society, 2011.


