

An Outline Workflow for Practical Formal Verification from Software Requirements to Object Code

Formal Methods in Industrial Control Systems (FMICS 2013)

Darren Sexton BSc. MSc. CEng (MIET)

DELIVERING VALUE THROUGH INNOVATION & TECHNOLOGY

Introduction

- Overview of work-flow
- Observer approach
- Conclusions

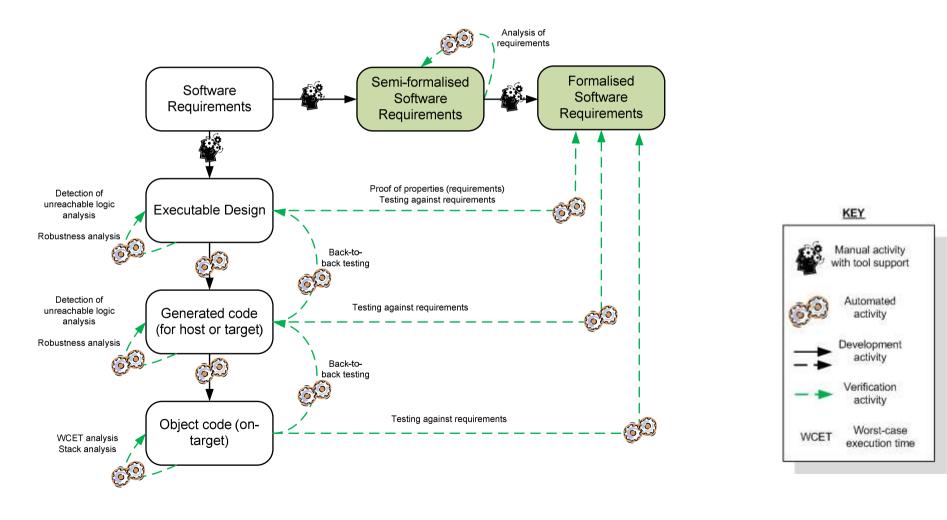
Context

Ricardo

- Global engineering consultancy
- Working in multiple domains
 - Automotive, off-highway, motorsport, rail, clean energy, defence...
- Engineering skills across many disciplines
 - Not just software
- Expertise is in engineering solutions
 - Not in formal methods
- Interested in how formal methods can:
 - Deliver high-quality
 - Support safety critical projects
 - Reduce effort

MBAT

- Model-Based Analysis & Test
 - Focussed on combination of analysis & test
 - Focussed on "near-term" research
- ~ 40 European organisations
 - Industrial end-users
 - Tool vendors
 - Research institute
- Currently ~ two years into three year programme


- Introduction
- Overview of work-flow
- Observer approach
- Conclusions

Overview of work-flow

Feedback loops not shown for clarity

Normal V&V activities (e.g. peer review) not shown for clarity

Health / robustness checks on model

- Objective: Detect requirement-independent problems in model
 - E.g. Unreachable states, signal range checks, drive to specific outputs etc.
- **Approach**: Model checking techniques

• Pre-requisites:

Implementation model in TargetLink

• Potential benefits:

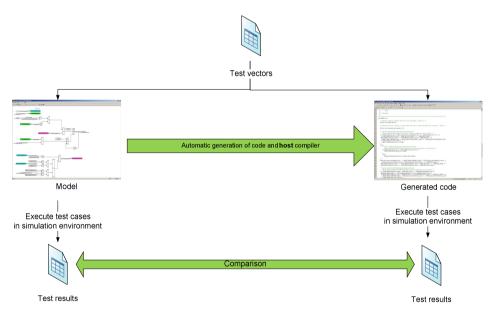
- Eliminate basic errors *during model* construction
 - Thus reduce debugging time of later verification activities

	Execution Help						
		\pm \rightarrow $ $ \triangleleft		i 🕆 🗗 🕼			
ieneral	Analyses Proofs Pattern	Assumptions	Macros Ex	ecution Queue Report			
Na	ame	Туре	Scope	Result	Engine-Depth	Status	Assumptions
1 Rai	ange Violation Test	Range Violation	All	No Violation found	inf	Normal Termination	None
2 Driv	ive to ALL states	Drive to State	All	19 of 19 States reached	100	Normal Termination	None
3 Driv	ivetoSeqFinished	Drive to Property	User Defined	Reachable	34	Normal Termination	None
4 Driv	ivetoConfig_OpeningSeqFinished	Drive to Config	User Defined	Reachable	34	Normal Termination	None
5							
arting proc nding pro	xample found with length 34 of at Thu Aug 29 13:29:02 2013 of at Thu Aug 29 13:29:02 2013						
arting prod nding pro uration : () ==	of at Thu Aug 29 13:29:02 2013		1.trc/res/X1	Irc			
arting prod nding pro uration : () == ALLED: sn	of at Thu Aug 29 13:29:02 2013 oof at Thu Aug 29 13:29:02 2013 (hh.mm:ss) 0:00:00		1.trc/res/X1:	tre			
tarting prod nding pro uration : (== ALLED: sn ask exec	of at Thu Aug 29 13:29:02 2013 sof at Thu Aug 29 13:29:02 2013 (hh:mm:ss) 0:00:00 misim -E -h t smisim.result -x Xinfo		1.trc/res/X1	Irc			
tarting prod nding pro uration : () == ALLED: sn ask exect valuating	of at Thu Aug 29 13:29:02 2013 oof at Thu Aug 29 13:29:02 2013 (hhmm:ss) 0:00:00 misim -E -h -t smisim.result -x X.info cution finished.	9 Y.symtab Y.smi E					
arting proo nding pro uration : () == ALLED: sn ask exect valuating ALLED: tro	of at Thu Aug 29 13:29:02 2013 oof at Thu Aug 29 13:29:02 2013 (th:mm:se) 0:00:00 misim -E +h < smisim.result x X.info cution finished. g formal verification results	o Y.symtab Y.smi E c run/X.symtab run.	/X.info///	/simulation/X_16_1.m			

Screenshot of defining basic health / robustness properties

Automated back-to-back testing

RICARDO

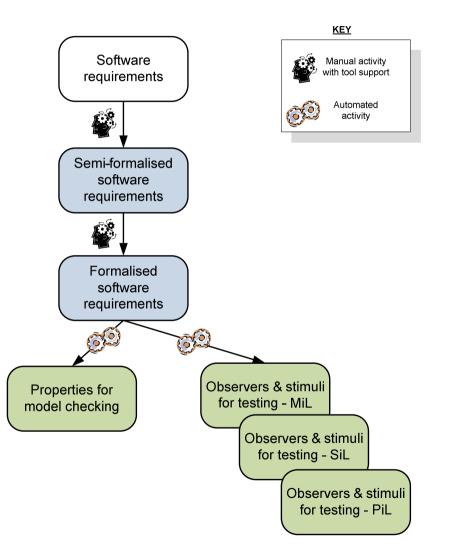

• **Objective**: Gain confidence that generated code & object code matches models

• Approach:

- Automated test stimuli generated to achieve high-structural coverage
- Automated comparison of outputs in different environments (with tolerance)
- Can be performed in advance of running requirements based tests

• Pre-requisites:

- Implementation model in TargetLink
- Potential benefits:
 - Rapid indication of scaling errors, data-type issues, code generator / compiler errors during model construction



Requirements formalisation

- **Objective**: Translate natural language requirements to a notation:
 - With fully defined syntax and semantics
 - That can be used to support later verification activities (via 'observers')
- Approach: Tool support to map to patterns
- Pre-requisites:
 - (Semi-formal) Well structured natural language requirements
 - (Formal) Implementation models

• Potential benefits:

- Improve requirements quality
- Generation of 'observers' to support later analysis and testing activities

Use of formalised requirements as basis for analysis & testing

Proving formalised requirements

• **Objective**: *Prove* the implementation model complies with the formalised requirements

• Approach:

- Import of patterns from formalised requirements phase
- Model checking

• Pre-requisites:

- Formalised requirements
- Implementation model in TargetLink

• Potential benefits:

- Rapid feedback to identify issues with implementation or formalisations
- Witness trace for debugging where model violates requirements

	Definition	Assumptions	Abstraction	Calibration	Configuration	Results				
attern	Template cyclic	c_P_triggers_Q_u	unless_Simme	diate			De	scription	Select	٦
Proper	ty Parameter						1		C	9
-	-	17.01		101	177 - 0					
P	commanden	angedToClo	se ștor	manqunang	jealoopen					
Q	pumpEnable	e								Ī
s	sequenceF:	inished								
Data I	tems						2	in() ch()	en() ex tr() fs(0
Mode	e 🔺	Path			Nam	e	*	<=		=
Macro	5				Close	DoorValveAlre	eadyEnab 🦳			>
Macro	5				Comm	nandChanged	ToClose			%
Macro	3				Comm	nandChanged	ToOpen			*
Macro	5					CloseValveCh	NOT THE REPORT OF THE REPORT OF	4		-
	2					OpenValveCha			23.	1
Macro						eCloseDoorVa		0		-
Macro					Enabl	eDoorOpenVa	alve		Spc)	ü .
1.00000						eLowerRamp			- Clear	

Screenshot of defining a property to prove

Testing formalised requirements

• **Objective**: *Test* implementation model complies with the formalised requirements

• Approach:

- Automatic generation of test vectors to test requirements (via 'observers')
 - *Requirements based* testing & analysis
 - Test vectors to drive signal ranges etc.
- Running of tests in MiL, SiL, PiL environments

Observer Result Summary

• Pre-requisites:

- Formalised requirements
- Implementation model in TargetLink

• Potential benefits:

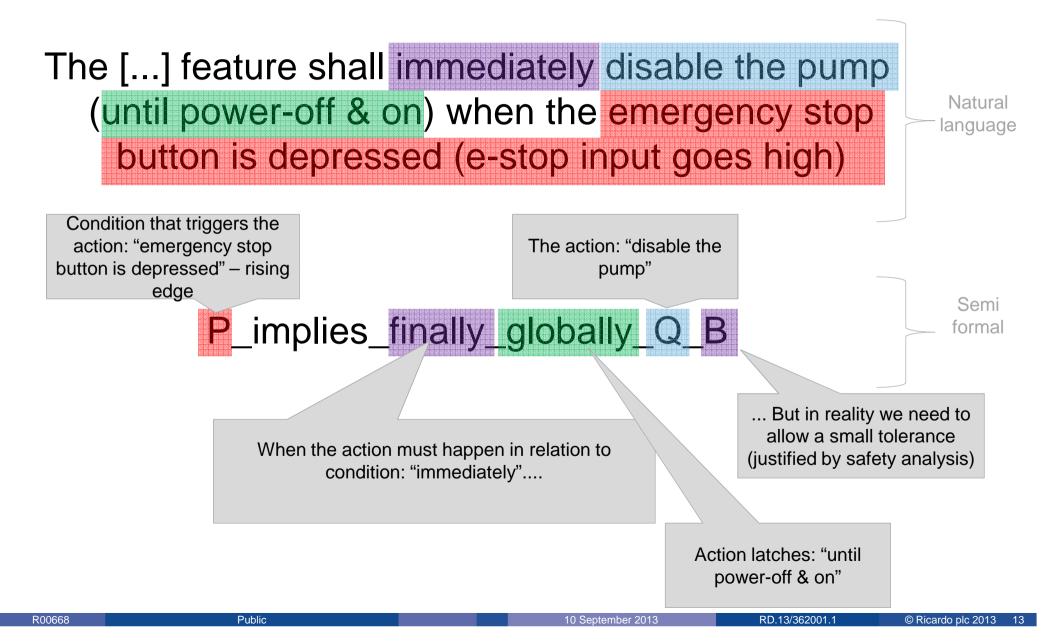
- Confidence in implementation (model, generated code, cross-compiler)
- Reduce testing effort
- Detailed measurement of requirements coverage, detect missing requirements

Subsystem	External ID	Observer ID	Status
mobacc_tl_fxp/ac/Subsystem/ac	n.a.	CObserver1	fulfilled
	n.a.	CObserver10	fulfilled
	n.a.	CObserver11	fulfilled
	n.a.	CObserver12	fulfilled
	n.a.	CObserver2	fulfilled
	n.a.	CObserver3	fulfilled
	n.a.	CObserver4	fulfilled
	n.a.	CObserver5	fulfilled
	n.a.	CObserver6	fulfilled
	n.a.	CObserver7	fulfilled
	n.a.	CObserver8	fulfilled
	n.a.	CObserver9	fulfilled

Screenshot of requirements based test results

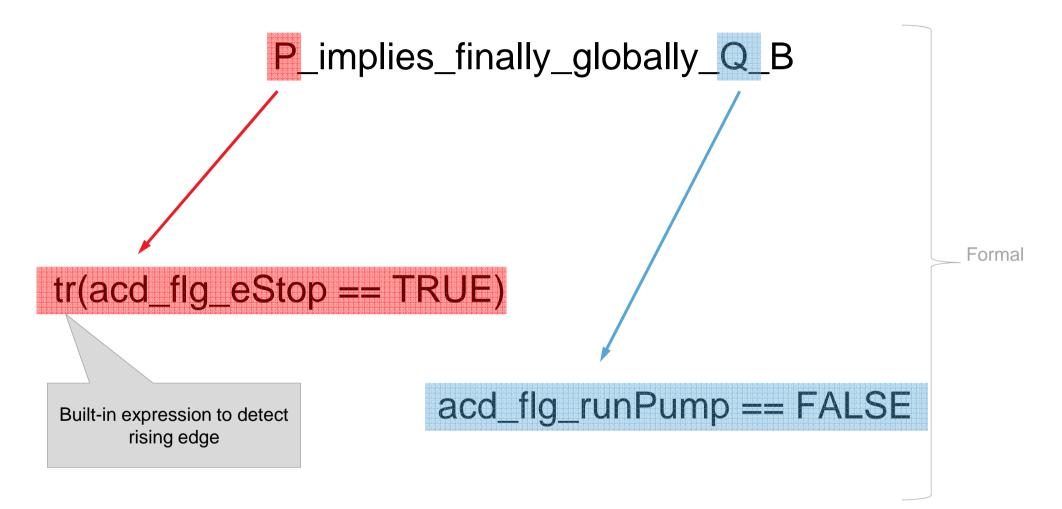
- Introduction
- Overview of work-flow
- Observer approach
- Conclusions

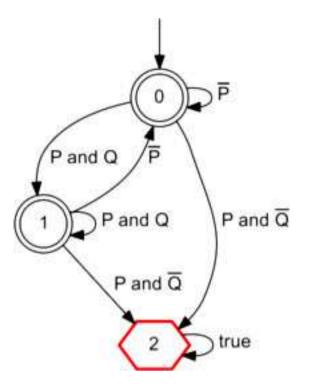
Example: Natural Language to Semi-Formal Requirement Identify key parts of the requirement



The [...] feature shall immediately disable the pump (until power-off & on) when the emergency stop button is depressed (e-stop input goes high)

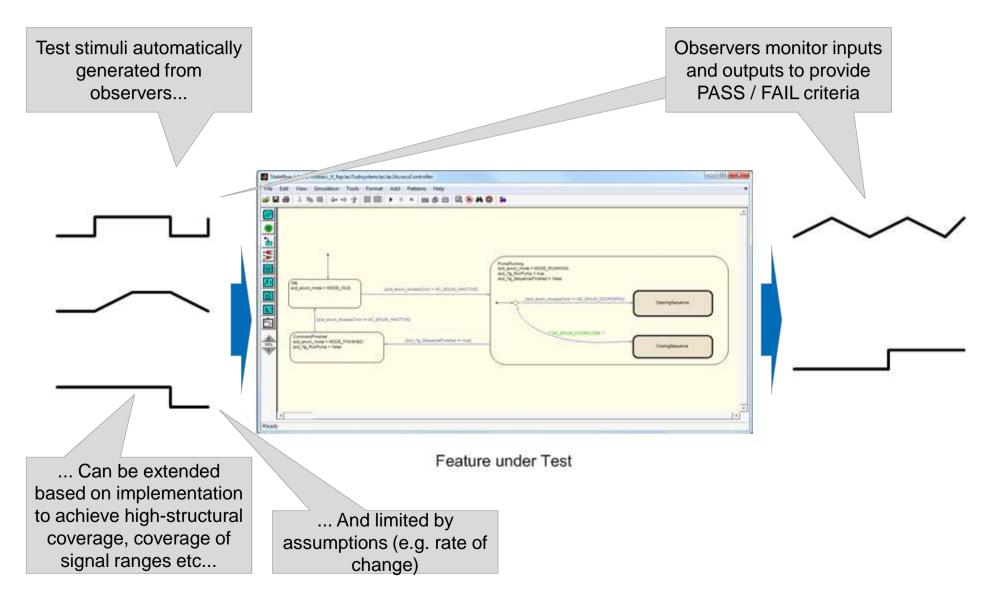
Natural language


Example: Natural Language to Semi-Formal Requirement Map key parts to pattern


Example: Semi-Formal to Formal Requirement Map key parts to variables & expressions in the code

Underlying formalism

- Formal notation uses patterns
 - Based on underlying notation of Büchi-Automaton charts
 - Capable of expressing LTL and more
- Engineers typically expected to select pattern based on names
 - Rather than having to examine underlying charts
- In practice:
 - Use of "boilerplates" to reduce gap between natural language requirements & patterns
 - Critical to provide systematic guidance for pattern selection
 - Necessary to refer to charts when debugging or deciding between several potential choices



Example Büchi-Automaton chart for the pattern "cyclic_Q_while_P__immediate from BTC-EmbeddedSpecifier

Observer based testing & analysis

Challenges & benefits of observer approach

Benefits

- Potential reduction in effort in verification
 - Rapid feedback from model checking
 - Reduction in human effort for test stimuli generation
- ✓ Verification is against formal requirements
 - "Formal verification"?
- Improved consistency of verification activities?
 - E.g. Reduce differences in testing style between test engineers

Challenges

- Formalisation relies on appropriate style of natural requirements
 - So, must modify requirements writing process
- × Selecting correct patterns and...
- × ... ensuring consistent selection of patterns
 - So, must provide systematic guidance
- × Handling minor tolerance issues
 - So, must select tolerant patterns
 - Need some tool enhancements
- × Common cause failures between implementation and verification
 - So, must ensure other parts of process can detect these
- × Not appropriate for all types of functionality

- Introduction
- Overview of work-flow
- Observer approach
- Conclusions

Conclusions

- Outline work-flow presented based on-going research programme
 - We have strong focus on what we can realistically deploy
 - Combining analysis & test to get confidence at different times
- Approach shows promise
 - But many challenges remain
- General view among team that formal approach increases initial effort
 - But provides higher quality
 - Potential for reduction in effort
 - Through later savings (less rework etc.)
 - Automation of testing?
- Formal approaches must focus on being "engineer friendly" to gain wide-spread adoption within automotive industry

The research leading to these results has received funding from the EU ARTEMIS Joint Undertaking under grant agreement n° 269335 and the UK Technology Strategy Board.

The author would like to thank Peter Gilhead and Rashiqua Quadir from Ricardo for their input.