
Formal Methods in Industrial Control Systems (FMICS 2013)

An Outline Workflow for Practical Formal
Verification from Software Requirements
to Object Code

www.ricardo.com
© Ricardo plc 2013

Darren Sexton BSc. MSc. CEng (MIET)

• Introduction

• Overview of work-flow

• Observer approach

• Conclusions

Agenda

2© Ricardo plc 2013RD.13/362001.110 September 2013PublicR00668

• Conclusions

MBAT

• Model-Based Analysis & Test

– Focussed on combination of analysis & test

– Focussed on “near-term” research

• ~ 40 European organisations

– Industrial end-users

– Tool vendors

Ricardo

• Global engineering consultancy

• Working in multiple domains

– Automotive, off-highway, motorsport, rail,
clean energy, defence…

• Engineering skills across many disciplines

– Not just software

Context

3© Ricardo plc 2013RD.13/362001.110 September 2013PublicR00668

– Tool vendors

– Research institute

• Currently ~ two years into three year
programme

– Not just software

• Expertise is in engineering solutions

– Not in formal methods

• Interested in how formal methods can:

– Deliver high-quality

– Support safety critical projects

– Reduce effort

• Introduction

• Overview of work-flow

• Observer approach

• Conclusions

Agenda

4© Ricardo plc 2013RD.13/362001.110 September 2013PublicR00668

• Conclusions

Overview of work-flow

5© Ricardo plc 2013RD.13/362001.110 September 2013PublicR00668

• Objective: Detect requirement-independent
problems in model

– E.g. Unreachable states, signal range
checks, drive to specific outputs etc.

• Approach: Model checking techniques

Health / robustness checks on model

6© Ricardo plc 2013RD.13/362001.110 September 2013PublicR00668

• Pre-requisites:

– Implementation model in TargetLink

• Potential benefits:

– Eliminate basic errors during model
construction

• Thus reduce debugging time of later
verification activities

Screenshot of defining basic health / robustness properties

• Objective: Gain confidence that generated
code & object code matches models

• Approach:

– Automated test stimuli generated to achieve
high-structural coverage

– Automated comparison of outputs in
different environments (with tolerance)

Automated back-to-back testing

7© Ricardo plc 2013RD.13/362001.110 September 2013PublicR00668

different environments (with tolerance)

– Can be performed in advance of running
requirements based tests

• Pre-requisites:

– Implementation model in TargetLink

• Potential benefits:

– Rapid indication of scaling errors, data-type
issues, code generator / compiler errors
during model construction

• Objective: Translate natural language
requirements to a notation:

– With fully defined syntax and semantics

– That can be used to support later
verification activities (via ‘observers’)

• Approach: Tool support to map to patterns

Requirements formalisation

8© Ricardo plc 2013RD.13/362001.110 September 2013PublicR00668

• Pre-requisites:

– (Semi-formal) Well structured natural
language requirements

– (Formal) Implementation models

• Potential benefits:

– Improve requirements quality

– Generation of ‘observers’ to support later
analysis and testing activities Use of formalised requirements as basis for analysis & testing

• Objective: Prove the implementation model
complies with the formalised requirements

• Approach:

– Import of patterns from formalised
requirements phase

– Model checking

Proving formalised requirements

9© Ricardo plc 2013RD.13/362001.110 September 2013PublicR00668

• Pre-requisites:

– Formalised requirements

– Implementation model in TargetLink

• Potential benefits:

– Rapid feedback to identify issues with
implementation or formalisations

– Witness trace for debugging where model
violates requirements

Screenshot of defining a property to prove

• Pre-requisites:

– Formalised requirements

– Implementation model in TargetLink

• Potential benefits:

– Confidence in implementation (model,
generated code, cross-compiler)

• Objective: Test implementation model
complies with the formalised requirements

• Approach:

– Automatic generation of test vectors to test
requirements (via ‘observers’)

• Requirements based testing & analysis

Testing formalised requirements

10© Ricardo plc 2013RD.13/362001.110 September 2013PublicR00668

generated code, cross-compiler)

– Reduce testing effort

– Detailed measurement of requirements
coverage, detect missing requirements

• Test vectors to drive signal ranges etc.

– Running of tests in MiL, SiL, PiL
environments

Screenshot of requirements based test results

• Introduction

• Overview of work-flow

• Observer approach

• Conclusions

Agenda

11© Ricardo plc 2013RD.13/362001.110 September 2013PublicR00668

• Conclusions

The [...] feature shall immediately disable the pump
(until power-off & on) when the emergency stop

button is depressed (e-stop input goes high)

Example: Natural Language to Semi-Formal Requirement
Identify key parts of the requirement

Natural
language

12© Ricardo plc 2013RD.13/362001.110 September 2013PublicR00668

The [...] feature shall immediately disable the pump
(until power-off & on) when the emergency stop

button is depressed (e-stop input goes high)

Example: Natural Language to Semi-Formal Requirement
Map key parts to pattern

Condition that triggers the Condition that triggers the
action: “emergency stop

button is depressed” – rising
The action: “disable the

pump”

Natural
language

13© Ricardo plc 2013RD.13/362001.110 September 2013PublicR00668

P_implies_finally_globally_Q_B
edge

button is depressed” – rising
edge

pump”

When the action must happen in relation to
condition: “immediately”....

... But in reality we need to
allow a small tolerance

(justified by safety analysis)

Action latches: “until
power-off & on”

Semi
formal

P_implies_finally_globally_Q_B

Example: Semi-Formal to Formal Requirement
Map key parts to variables & expressions in the code

Formal

14© Ricardo plc 2013RD.13/362001.110 September 2013PublicR00668

tr(acd_flg_eStop == TRUE)

acd_flg_runPump == FALSEBuilt-in expression to detect
rising edge

Formal

• Formal notation uses patterns

– Based on underlying notation of Büchi-
Automaton charts

– Capable of expressing LTL and more

• Engineers typically expected to select pattern
based on names

Underlying formalism

15© Ricardo plc 2013RD.13/362001.110 September 2013PublicR00668

– Rather than having to examine underlying
charts

• In practice:

– Use of “boilerplates” to reduce gap between
natural language requirements & patterns

– Critical to provide systematic guidance for
pattern selection

– Necessary to refer to charts when
debugging or deciding between several
potential choices

Example Büchi-Automaton chart for the pattern
“cyclic_Q_while_P__immediate from BTC-

EmbeddedSpecifier

Observer based testing & analysis

Test stimuli automatically
generated from

observers...

Observers monitor inputs
and outputs to provide
PASS / FAIL criteria

16© Ricardo plc 2013RD.13/362001.110 September 2013PublicR00668

... Can be extended
based on implementation
to achieve high-structural

coverage, coverage of
signal ranges etc...

... And limited by

change)

... And limited by
assumptions (e.g. rate of

change)

Challenges

× Formalisation relies on appropriate style of
natural requirements

– So, must modify requirements writing
process

× Selecting correct patterns and...

× ... ensuring consistent selection of patterns

Benefits

� Potential reduction in effort in verification

– Rapid feedback from model checking

– Reduction in human effort for test stimuli
generation

� Verification is against formal requirements

Challenges & benefits of observer approach

17© Ricardo plc 2013RD.13/362001.110 September 2013PublicR00668

× ... ensuring consistent selection of patterns

– So, must provide systematic guidance

× Handling minor tolerance issues

– So, must select tolerant patterns

– Need some tool enhancements

× Common cause failures between
implementation and verification

– So, must ensure other parts of process can
detect these

× Not appropriate for all types of functionality

� Verification is against formal requirements

– “Formal verification”?

� Improved consistency of verification activities?

– E.g. Reduce differences in testing style
between test engineers

• Introduction

• Overview of work-flow

• Observer approach

• Conclusions

Agenda

18© Ricardo plc 2013RD.13/362001.110 September 2013PublicR00668

• Conclusions

• Outline work-flow presented based on-going research programme

– We have strong focus on what we can realistically deploy

– Combining analysis & test to get confidence at different times

• Approach shows promise

– But many challenges remain

Conclusions

19© Ricardo plc 2013RD.13/362001.110 September 2013PublicR00668

• General view among team that formal approach increases initial effort

– But provides higher quality

– Potential for reduction in effort

• Through later savings (less rework etc.)

• Automation of testing?

• Formal approaches must focus on being “engineer friendly” to gain wide-spread
adoption within automotive industry

The research leading to these results has received funding from the EU ARTEMIS Joint
Undertaking under grant agreement n° 269335 and the UK Technology Strategy Board.

The author would like to thank Peter Gilhead and Rashiqua Quadir from Ricardo for their
input.

Acknowledgements

20© Ricardo plc 2013RD.13/362001.110 September 2013PublicR00668

