
Tasks Decomposition of System Models for
Human-Machine Interaction Analysis

Guillaume Maudoux
Université catholique de

Louvain, Belgium
guillaume.maudoux@uclouvain.be

Sébastien Combéfis
École Centrale des Arts et

Métiers, Belgium
s.combefis@ecam.be

Charles Pecheur
Université catholique de

Louvain, Belgium
charles.pecheur@uclouvain.be

ABSTRACT
This paper is concerned with the problem of learning how to
interact safely with complex automated systems. With large
systems, human-machine interaction errors like automation
surprises are more likely to happen. Previous works have
introduced the notion of full-control mental models for op-
erators. These are formal system abstractions embedding
the required information to control a system completely and
without surprises. Full-control mental models can be used
as training material but are ineffective as their control over a
system is only guaranteed when fully learned.

This work investigates the problem of decomposing full-
control mental models into smaller independent tasks. These
tasks each allow to control a subset of the system and can be
learned incrementally to control more and more features of
the system. This paper proposes an operator that describes
how two mental models are merged when learned sequen-
tially. With that operator, we show how to generate a set of
small tasks with the required properties.

ACM Classification Keywords
B.8.2. Performance and Reliability: Performance Analysis
and Design Aids; D.2.4. Software/Program Verification: For-
mal methods; H.1.2. Models and Principles: User/Machine
Systems

Author Keywords
Task decomposition; LTS; Task analysis.

INTRODUCTION
The field of human-computer interaction analysis formalises
how human operators interact with automated systems and
studies how to assert and improve the quality of these inter-
actions. An important problem is to ensure that humans can
interact with a system without surprises and provide a de-
scription of such interactions.

Surprises are defined as mismatches between expectations of
the operator and the actual behaviour of a system. An opera-
tor maintains a model of the system called a mental model[7].

Paste the appropriate copyright statement here. ACM now supports three different
copyright statements:
• ACM copyright: ACM holds the copyright on the work. This is the historical ap-
proach.
• License: The author(s) retain copyright, but ACM receives an exclusive publication
license.
• Open Access: The author(s) wish to pay for the work to be open access. The addi-
tional fee must be paid to ACM.
This text field is large enough to hold the appropriate release statement assuming it is
single spaced.
Every submission will be assigned their own unique DOI string to be included here.

He builds it by experimenting on and learning about the sys-
tem. Operators are assumed to behave according to their men-
tal model. Therefore, mental models should always allow to
control the system in use. In that context, learning new fea-
tures of the system should be done in such a way that the new
mental model of the users also allow to control the system.
In particular, operators must not interact with the system un-
til the end of a learning phase and cannot fill their functions
during that time.

Operators that have learnt all the possible behaviours of a
system have built a full-control mental model. Such mod-
els have been defined in [4] and techniques to build minimal
ones have been described in [3] and [2]. These models allow
to control safely all the features of a system. However, learn-
ing full-control mental-models is impractical as it implies to
learn all the features of a system in one big step. This means
that newly hired operators are useless before they master the
full complexity of the system. Large systems might even be
too complex for one operator to manage. In that case, the
system must be split in tasks dedicated to different operators.

To be practical, learning processes should provide a set of
tasks in the form of small compatible mental models that can
be combined incrementally into bigger models. Each task
and each intermediate mental model should ensure safe inter-
actions with the system without necessarily describing all of
its features.

Our work investigates how to decompose a full-control men-
tal model into smaller tasks that individually control the sys-
tem. Learned sequentially, these tasks should augment the
mental model of the operator until he possesses a full-control
mental model of the system.

Tasks have long been used in the context of human-machine
interactions. They can be defined during the system design
process and used for system validation like in [5]. They can
also be synthesised through a goal that a user needs to achieve
and relate to controler synthesis as explained in the Ramadge-
Wonham framework [6]. In this work, we propose tasks that
have the property of being small and combinable, with no
guarantee that they correspond to meaningful objectives for
users.

In this paper, we introduce an operator to combine mental
models and we argue that it is coherent with the intuition of
learning a task. We describe the related decomposition oper-
ation and show that mental models can be decomposed into a
finite set of basic mental models. We also show that it is pos-

7

This article is published and distributed under Creative Commons Attribu-
tion 4.0 International license (CC BY).

To cite this article use the following information:

Guillaume Maudoux, Sébastien Combéfis, and Charles Pecheur. 2015.
Tasks Decomposition of System Models for Human-Machine Interaction
Analysis. In Proceedings of the Workshop on Formal Methods in Human
Computer Interaction (FoMHCI’15), 7-12.
http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:hbz:82-rwth-2015-
030425

sible to build a set of tasks that properly control the system
and such that all their combinations also control the system
and eventually have full-control over it. Finally, we define
the task complexity as a measure of the difficulty to learn a
system.

The remaining of this article is organized as follows. First we
introduce the required definitions of mental models and con-
trollability in the“background” section. In the “HMI-LTS de-
composition” section, we introduce the composition operator
and the decomposition properties. Finally, we show how to
obtain the desired decomposition in the section “Full-control
mental model decomposition”.

BACKGROUND
In this section we define HMI-LTSs, mental models and the
full control property. We also introduce full-control mental
models, a concept that lies at the intersection of these three
notions. This section is intended as a reminder of the required
concepts defined in [1].

We start with the concept of labelled transition systems for
human-machine interactions (HMI-LTSs) which are slightly
modified labelled transition systems (LTSs). An LTS is a state
transition system where each transition has an action label.
LTSs interact with their environment based on this set of ac-
tions. Additionally, LTSs can have an internal τ action that
cannot be observed by the environment. Two small LTSs are
shown in figure 2.

DEFINITION 1 (LABELLED TRANSITION SYSTEM).
A labelled transition system (LTS) is a tuple �S ,L, s0,→�
where S is a finite set of states, L is a finite set of labels
representing visible actions, s0 ∈ S is the initial state and
→ ⊆ S × (L ∪ {τ})× S is the transition relation, where τ � L
is the label for the internal action.

The executions of LTSs can be observed from the environ-
ment via traces. An execution of an LTS is a sequence of tran-
sitions s0

a1→ s1 . . . sn−1
an→ sn where each (si−1, ai, si) ∈ →.

A trace of an LTS is a sequence σ = a1, a2, . . . an where
each ai ∈ L and such that there exists an execution s0

τ∗a1τ∗−→
s1 . . . sn−1

τ∗anτ∗−→ sn, where s0
τ∗a1τ∗−→ s1 is itself an execution

whose only observable action is a1. For example the Lamp
system of figure 1 can exhibit the trace “on, off, on, off, burn”
and the trace “smash, replace, on” among infinitely many
other.

HMI-LTSs refine LTS by distinguishing two kinds of actions,
commands and observations. Like any I/O transition system,
observations are uncontrollable outputs generated by the sys-
tem and commands are controllable inputs. HMI-LTSs are
exactly equivalent to Tretmans’ LTS/IOs[8].

DEFINITION 2 (HUMAN-MACHINE INTERACTION LTS).
A human-machine interaction labelled transition sys-
tem (HMI-LTS) is a tuple �S ,Lc,Lo, s0 ,→� where
�S ,Lc ∪ Lo, s0,→� is a labelled transition system, Lc

is a finite set of command labels and Lo is a finite set of
observation labels. The two sets Lc and Lo are disjoint and
the set of visible actions is L = Lc ∪Lo.

Lamp
burn

replace

smash

on

off

Figure 1. An HMI-LTSs model of a lamp with four commands and one
observation. A lamp can be switched on and off as long as it does not
burn. When burned or smashed, the lamp needs to be replaced and we
are back to the starting point. This HMI-LTS is our its simplicity, it is
also its own and only minimal full-contol mental model.

A on

off

off
B

τ

on

off

unplug

Figure 2. Two examples of nondeterministic systems. A can be turned
on then off at least once, but it is impossible to say if it can be turned on
again. B can be turned on and off, but it can also unobsevably change to
a state where the only way to restart it is to unplug it.

HMI-LTSs are used to describe both systems and mental
models. Mental models are user views of a system. They
are by definition deterministic and represent the knowledge
an operator has about the system he controls. It is important
to note that mental models do not represent the behaviour of
a user, but the behaviour of a system as seen by a user. A
command in a mental model corresponds exactly to the same
command on the system. The interactions between a system
S and an operator behaving according to its mental modelM
are defined by the synchronous parallel composition S � M.
This distinguishes HMI-LTSs from LTS/IOs where inputs of
the system must be synchronised on the outputs of the user
and vice versa.

In addition, we want mental models to control systems with-
out surprises. In particular, we want to avoid mental models
to contain commands that are impossible on the system and
to ignore observations that the system could produce. This
motivates the introduction of the control property.

The following definition uses the s afterσ operator that de-
scribes the set of states that can be reached from the state s
after an execution whose observable trace is σ. Also, Ac(s)
(resp. Ao(s)) is the set of possible commands (resp. observa-
tions) of s. An action is possible in s if it is the first action of
some trace starting at s. Moreover, an LTS is deterministic if
|s afterσ| ≤ 1 for any σ. The HMI-LTS A from figure 2 can
be in two states after the trace “on, off” and is therefore not
deterministic. The HMI-LTS B has two possible actions in its
middle state: ‘off’ and ‘unplug’

DEFINITION 3 (CONTROL PROPERTY).
Given two HMI-LTSs S = �S S,Lc,Lo, s0S,→S� and M =
�SM,Lc,Lo, s0M,→M�,M controls S ifM is deterministic
and for all traces σ ∈ L∗ such that sS ∈ s0S after σ and

8

{sM} = s0M after σ :

Ac(sS) ⊇ Ac(sM) and Ao(sS) ⊆ Ao(sM).

This definition is symmetric because it allows the mental
model not to know the full set of available commands while
allowing the system to produce less observations than ex-
pected by the mental model. From now on, this is the for-
mal definition we refer to when we say that a mental model
controls a system.

For a given system, there always exists a mental model that
contains no commands and still allows to control the system.
That mental model contains only the traces of observations
available from the initial state and corresponds to the mental
model needed by an agent to avoid surprises when not inter-
acting with a system. For example, you need to know that
your desk phone may ring even when you do not want to in-
teract with it. Someone who ignores that fact will be surprised
whenever the phone rings.

We see that a mental model that controls a system does not
necessarily explore the full range of possible behaviours of
that system. When a mental-model ensures control over a
system and allows to access all the available commands of
the system, we say that the model fully controls the system.

DEFINITION 4 (FULL-CONTROL PROPERTY).
Given two HMI-LTSs S = �S S,Lc,Lo, s0S,→S� and
M = �SM,Lc,Lo, s0M,→M�, M is a full-control mental
model for S, which is denotedM fc S, ifM is deterministic
and for all traces σ ∈ L∗ such that sS ∈ s0S after σ and
{sM} = s0M after σ :

Ac(sS) = Ac(sM) and Ao(sS) ⊆ Ao(sM).

A full-control mental model is therefore a deterministic HMI-
LTS representing the required information for an operator to
interact with a system to the full extent of its possibilities, and
without surprises. Full-control mental models are minimal
if they have a minimal number of states compared to other
full-control mental models of the same system. Also, being
full-control deterministic is the property of all the systems for
which there exists a full-control mental model.

Minimal full-control mental models are important because
they represent the minimal model that a perfect operator
should learn. Compact training material and user guides
should describe a minimal full-control mental model. As
already stated the introduction, different algorithms exist to
generate such models.

HMI-LTS DECOMPOSITION
While minimal full-control mental models are perfect in
terms of control, they are inefficient when training operators
as they require to be completely mastered before using a sys-
tem. We provide a way to split huge models into smaller ones
that can be learned independently and reassembled to form
larger models.

In this section, we define a new merge operator that combines
two HMI-LTSs and we claim that this operator is a natural

A ⊕ B ⊕C
a a a c

b

d

C
a a a

d

B
a a a c

A
a a

b

Figure 3. Example of the merge operation on three HMI-LTSs

way to encode the increase of knowledge arising from learn-
ing new partial models. We provide a finite decomposition of
any HMI-LTS into in a set of basic HMI-LTSs.

HMI-LTS merging
Merging two HMI-LTSs produces a third HMI-LTS much
like the traditional choice operator, except that common pre-
fixes are merged. This is a kind of lazy choice, as the final be-
haviour does not commit to behave like the first or the second
operand until a decision is required. Notice that the definition
does not rely on observations and commands. This definition
can therefore be generalized to LTSs.

DEFINITION 5 (MERGE). The merge of two determin-
istic HMI-LTSs A = �S A,Lc

A,Lo
A, s0A,→A� and B =

�S B,Lc
B,Lo

B, s0B,→B�, denoted A ⊕ B, is an HMI-LTS
�S ,Lc,Lo, s0,→� where Lc = Lc

A ∪ Lc
B, Lo = Lo

A ∪ Lo
B and

S is a partition of S A � S B such that

1. s0 contains at least {s0A, s0B};
2. S is the finest partition of S A � S B such that for all

(m, a,m�) ∈ →A and (n, a, n�) ∈ →B with m, n ∈ X for
some X ∈ S , there exists Y ∈ S such that {m�, n�} ⊆ Y; and

3. → is the set of transitions (X, a, Y) for which there exists
x ∈ X and y ∈ Y such that (x, a, y) ∈ →A or (x, a, y) ∈ →B.

In this definition, S is always well defined. It can be com-
puted by starting with a complete partition where each state
is a different element and merging all the states that do not
respect the required criterion. This process stops when the
criterion is enforced and this happens within a finite number
of steps as it must end when the partition contains only one
element with all the states in it. The merge of two determin-
istic HMI-LTS is unique, but this is not necessarily the case
in general.

An example of the action of the merge operator is given in
figure 3. This example uses the fact that the merge operator
is associative. The operator is also commutative. While com-
mutativity can be assumed from the symmetry of the defini-
tion, commutativity is more complex and the demonstration
is left to the reader.

We can show that the result of merging two deterministic
HMI-LTSs is deterministic. Indeed, as the two operands of

9

the merge are deterministic, they cannot contain τ transitions
and so their merge is free of τ transitions too. Let’s assume
that the result contains a state X such that there exists two
transitions with the same label a leading to different states
Y and Y �. This means that there exists (m, a,m�) ∈ →A and
(n, a, n�) ∈ →B such that m, n� ∈ X, m� ∈ Y and n� ∈ Y � which
violates the property on S . Namely, m� and n� must belong
to the same state Y . The resulting HMI-LTS can contain no
τ transitions and no fork where a transition with a same label
leads to two different states. This is sufficient to prove that it
is deterministic.

The HMI-LTS A ⊕ B can switch his behaviour from A to B
provided A can reach a state that was merged with a state of
B. This conversely holds from B to A. If the HMI-LTS can
switch from A to B and from B to A, then it can alternate
its behaviour arbitrarily often. We can see that this operator
is different from the traditional choice operator because it is
more than the union of the traces. It allows to build complex
behaviours from two simple models. In figure 3, we can see
that the trace a, a, a, d, a, b, a, a, a, c was not possible on the
different models but is valid on their merge.

This operator is useful because the set of traces of a merge is
always larger or equal to the union of the traces of the merged
transitions systems. This means that the possible behaviours
of a merge can be richer than the union of the behaviours of
its operands. This is needed to ensure that the decomposition
of a big system is a small set of small systems. By compar-
ison, the behaviours of a choice are exactly the union of the
behaviours of its operands. For synchronous parallel compo-
sition, the resulting behaviours are the intersection of the be-
haviours of the two operands if we synchronise on the union
of the alphabets.

Furthermore, the merge operator enforces the interpretation
of HMI-LTSs as scenarios. When a scenario loops or termi-
nates, the system is assumed to have returned in a state equiv-
alent to the initial one. In particular, the scenario is assumed
to be repeatable infinitely often unless explicitly stated. When
an HMI-LTS loops to a given state, it should that the system
has returned to a state that is completely equivalent to the ini-
tial one for controllability purposes.

The merge operator is therefore great for decomposing sys-
tems and is a natural way to encode how mental models grow
when learning new ones.

Basic HMI-LTSs
In this section, we explore the decomposition induced by the
merge operator on the HMI-LTSs.

The merge operator naturally defines a partial order relation
on the HMI-LTSs. The merge order is such that A ≤⊕ B if
and only if A ⊕ B = B. The strict partial order relation also
requires A to be different from B. We can intuitively see that it
well defined because merging HMI-LTSs can only increases
the set of described behaviours and the merge order captures
this.

Furthermore, due to the definition of the merge order, the set
of deterministic HMI-LTSs is lattice-structured. Indeed, any

A

a
≤⊕

B

a

b

≤⊕
C

a

b

b

≤⊕
D

a

b

Figure 4. Illustration of the order relation on basic HMI-LTSs. For
example, we have C ≤⊕ D because C ⊕ D = D.

A B

α

C

β

D

α

β

E

β γ

F

α

β γ

Figure 5. Different shapes of basic HMI-LTSs. They can be A) empty,
B) sequences, C) loops, D) lassos and E,F) tulips with and without stem.
Dotted lines represent any oriented sequence of states and transitions.
All these shapes are degenerated tulips where action sequences α, β and
γ can be empty

two HMI-LTSs A and B are (upper) bounded by A⊕B. There-
fore, there exists minimal elements called atoms. These are
the HMI-LTSs with only one transition. If the lattice was
atomistic, we would be able to generate generate all the deter-
ministic HMI-LTSs by merging some of its atoms. This is not
the case as we can see in figure 4. There is no way to obtain
the graph B by merging HMI-LTSs with only one transistion.
However, there exists a larger family of HMI-LTSs that can
generate all the deterministic HMI-LTSs, we call them basic
HMI-LTSs.

DEFINITION 6 (BASIC HMI-LTS). A deterministic
HMI-LTS A is basic if it cannot be decomposed into two
strictly smaller HMI-LTSs. That is, for all HMI-LTS X, Y
such that X ⊕ Y = A, either X = A or Y = A.

It turns out that such basic HMI-LTS take the form of be sin-
gle loops, single sequences, lassos or tulips. Loops and se-
quences can be seen as degenerated lassos with no stem or
no loop. The fully degenerated lasso is the HMI-LTS with
no transitions at all. Finally, a tulip is a branching HMI-LTS
where the two branches reunite in the last state. Like lassos,
they may have no stem. All these shapes are drawn in figure
5.

Any finite deterministic HMI-LTS can be decomposed into
a finite set of basic HMI-LTS. This arises from the fact that
any HMI-LTS is the merge of a basic HMI-LTS and another
HMI-LTS strictly smaller than the previous one. Were it not
the case, that HMI-LTS would be basic itself. By induction on
the remaining HMI-LTS, we show that it eventually reduces
to the empty HMI-LTS after a finite number of basic HMI-
LTS removal. All the removed basic elements form a set that
we call the decomposition of the HMI-LTS.

10

T1

on

off

T2

smash

replace

T3

burn

replace

on T4

burn

smash

on

Figure 6. All the basic HMI-LTSs of the Lamp mental model defined in
figure 1. T1 is the only mental model that does not control the Lamp
system of figure 1. T1,2,3 are loops and T4 is a tulip. Amongst the three
loops, T1 represents the fact that the lamp can be switched on and off for-
ever, T2 that it can be smashed and replaced forever and T3 that a lamp
can be turned on and replaced when it burns to turn it on again. Being
a tulip, T4 has a different meaning. It expresses the fact that smashing a
lamp is equivalent to turn it on and observe it burn.

A decomposition is non-redundant if it does not contain two
elements such that one is strictly smaller than some other with
respect to the merge order defined above. The decomposition
algorithm just sketched always produces a non-redundant de-
composition because each basic HMI-LTS contains actions
that were not part of the previously removed basic elements,
and that are removed with it. For example, the decomposition
of the Lamp system into {T1,T2,T3,T4} as shown in figure 6
is non redundant.

A decomposition is minimal if no other decomposition of the
same HMI-LTS contains less basic elements. The size of a
minimal decomposition is called the complexity of an HMI-
LTS. Minimal decompositions of the Lamp system contain
exactly three elements so its complexity is 3. With the basic
HMI-LTSs defined in figure 6, we see thatT4 states the equiv-
alence of the “smash” and “on, burn” traces. This implies that
T2 is equivalent to T3 in a set containing T4. The two mini-
mal decompositions of the Lamp system are {T1,T2,T4} and
{T1,T3,T4}.
We know how to decompose an HMI-LTS into basic ele-
ments, and that decomposition gives us a measure of the com-
plexity of that HMI-LTS.

FULL-CONTROL MENTAL MODEL DECOMPOSITION
In this section, we show that it is possible to build a set of
tasks that each control a given model and can be combined
into a full-control mental model.

The main idea is to decompose a full-control mental model
of the system into basic subgraphs. It appears that basic sub-
graphs can be completed to form tasks that can control the
system. This means that the completed basic subgraphs of a
full-control mental model of a system form a set of indepen-
dent compatible mental models that can be merged to repro-
duce the behaviour of the full-control mental model.

Basic subgraphs
A subgraph of a graph G is a graph that contains some of the
edges of G. This notion can be extended to HMI-LTSs.

T1 on

off

T �1
burn

on

off

Figure 7. The observation completion of T1 with respect to the only
minimal full-control mental model of Lamp, which is Lamp itself, is T �1 .
It contains all the observation transitions from Lamp reachable from T1.
The other basic models Ti,i�1 need not be completed. The interpretation
of T �1 is that the lamp can be switched on and off forever as long as it
does not burn. When the burning occurs, either the objective is reached
or the user is stuck. To unblock the situation, the user can for example
read the manual to increase its knowledge of the system or ask a more
experienced user.

DEFINITION 7 (SUBGRAPH). Given two HMI-LTS T =
�S T ,Lc,Lo, s0T ,→T � andM = �SM,Lc,Lo, s0M,→M�, T
is a subgraph ofM, denotedT ⊆M, if S T ⊆ SM, s0T = s0M
and→T ⊆ →M
Given two subgraphs T and T � of an HMI-LTSM, we have
the nice property that their merge T ⊕ T � is a subgraph of
M up to a relabelling of the states. That is, the merge of two
subgraphs ofM is isomorphic to some subgraph ofM. This
can be seen from the fact that ⊕ merges states that can be
reached with the same traces, and that states must correspond
to the same state ofM asM is deterministic.

Therefore, any HMI-LTS can be decomposed into a non-
redundant finite set of its basic subgraphs.

Tasks
Starting from a full-control mental modelM of a system S,
we can decompose it into a set of basic HMI-LTSs. How-
ever, these basic HMI-LTSs do not necessarily control S. To
achieve this property, they need to be completed with respect
to observations. This holds because of the symmetric nature
of the control property. A mental model that controls a system
must accept all the observations of that system, but is allowed
to ignore commands.

If we call →o
S the transition relation of S restricted to ob-

servations, then any basic subgraph of a full-control mental
model can be completed with →o

S in order to control S. Of
course, only the connected component reachable from the ini-
tial state should be kept after the completion. Figure 7 shows
the completion of the basic HMI-LTS T1 from figure 6.

DEFINITION 8 (OBSERVATION COMPLETION).
Given an HMI-LTSM = �S ,Lc,Lo, s0,→c ∪ →o� and one
subgraph T = �S T ,Lc,Lo, s0,→T � of M, the observation
completion of T is an HMI-LTS T � such that T � is the con-
nected component of �S ,Lc,Lo, s0,→T ∪ →o� reachable
from s0.

The observation completion of any subgraph of a full-control
mental modelM controls the intended system. Indeed, such
a completed subgraph cannot prevent observations from oc-
curring as the full-control mental model does not, and the
completed graph has all the observations from the system. In
particular, the observation completion of basic subgraphs of
full-control mental models of a system S control that system
S. These elements also have the nice property of merging

11

into completed subgraphs ofM that themselves have control
over S.

DEFINITION 9 (BASIC TASK).
Given a full-control mental models M = �S ,Lc,Lo, s0,→�
where → = →c

M ∪ →o
M, a basic task is a mental model

T = �S T ,Lc,Lo, s0,→T � such that →T = →o
M ∪ →b and

�S T ,Lc,Lo, s0,→b� is a basic subgraph ofM.

With this definition, we can state that any full-control deter-
ministic system is fully controlled by the merge of a set of
basic tasks. As an example, T �1 , T2 and T 4 form such a set
from figures 6 and 7 form such a set.

THEOREM 1 (TASK DECOMPOSITION). Any finite fc-
deterministic HMI-LTS S can be decomposed into a finite set
T = {T1,T2, . . .Tn} of basic tasks such that

• each Ti controls S;

• for each subset I ⊂ {1, 2, . . . n} of indices, the partial merge�
i∈I Ti of elements of T controls S; and

• the complete merge
�n

i=1 Ti has full-control over S.

PROOF. By definition, any fc-deterministic HMI-LTS S
has at least one minimal full-control mental model M. We
have shown that such a full-control mental model can be de-
composed into a finite set of basic tasks which are completed
basic subgraphs. Because these elements are completed sub-
graphs they have control overS and any partial merge of these
elements have too. As the elements are the completion of the
decomposition of M into basic HMI-LTS, their full merge
will be exactlyM, and therefore fully controls S. This proves
that there exists a decomposition of S meeting the required
properties.

Task-complexity
The decomposition of an fc-deterministic system into a set of
tasks is far from unique. Indeed, there exists an infinity of
full-control mental models for a given system, and for each
full-control mental model there may exist multiple decompo-
sitions into basic tasks.

Nevertheless, we define the task-complexity of a system as
the size of the smallest set of tasks that can be merged into
a full-control mental model of that system. This metric mea-
sures the number of small tasks that an operator needs to learn
before being able to control all the features of the system.

This metric is different from both the number of states and the
number of transitions which are the most common measures
of transition systems.

CONCLUSION
We have defined the merge operation that represents how a
human augments its mental model by leaning new mental
models. We have shown that this operation is more natural
than the parallel synchronisation operation and more power-
ful than the classical choice operation.

We have shown how tasks can be split into simple opera-
tions. In particular, we have shown that the full-control men-
tal model of a system is itself a composition of basic tasks.
With this decomposition, we have defined a measure of the
complexity of HMI-LTSs based on tasks.

We know how to generate decompositions of a system into
tasks, and we know that there exists a minimal decomposi-
tion, but we do not yet know how to generate minimal de-
compositions. In the near future, we expect to work on an
algorithm capable of computing one.

This works can be used to validate system design by detecting
irreducible large tasks. But, more importantly, this works lays
the ground for automated generation of user manuals and as-
sisted generation of other training material. With small well-
defined tasks, it is possible to decompose manuals into self-
contained chapters.

REFERENCES
1. Sébastien Combéfis. 2013. A Formal Framework for the

Analysis of Human-Machine Interactions. Vol. 459.
Presses universitaires de Louvain.

2. Sébastien Combéfis, Dimitra Giannakopoulou, Charles
Pecheur, and Michael Feary. 2011a. A formal
framework for design and analysis of human-machine
interaction. In Systems, Man, and Cybernetics (SMC),
2011 IEEE International Conference on. IEEE,
1801–1808.

3. Sébastien Combéfis, Dimitra Giannakopoulou, Charles
Pecheur, and Michael Feary. 2011b. Learning system
abstractions for human operators. In Proceedings of the
International Workshop on Machine Learning
Technologies in Software Engineering. ACM, 3–10.

4. Sébastien Combéfis and Charles Pecheur. 2009. A
bisimulation-based approach to the analysis of
human-computer interaction. In Proceedings of the 1st
ACM SIGCHI symposium on Engineering interactive
computing systems. ACM, 101–110.

5. Philippe A Palanque, Rémi Bastide, and Valérie Sengès.
1995. Validating interactive system design through the
verification of formal task and system models.. In EHCI.
189–212.

6. Peter J Ramadge and W Murray Wonham. 1987.
Supervisory control of a class of discrete event
processes. SIAM journal on control and optimization 25,
1 (1987), 206–230.

7. John Rushby. 2002. Using model checking to help
discover mode confusions and other automation
surprises. Reliability Engineering & System Safety 75, 2
(2002), 167–177.

8. Jan Tretmans. 2008. Model Based Testing with Labelled
Transition Systems. In Formal Methods and Testing,
Robert M. Hierons, Jonathan P. Bowen, and Mark
Harman (Eds.). Lecture Notes in Computer Science,
Vol. 4949. Springer Berlin Heidelberg, 1–38.

12

