
Combining Partial-Order Reduction and
Symbolic Model Checking
to verify LTL properties ?

José Vander Meulen1 and Charles Pecheur2

1 Université catholique de Louvain, jose.vandermeulen@uclouvain.be
2 Université catholique de Louvain, charles.pecheur@uclouvain.be

Abstract. BDD-based symbolic techniques and partial-order reduction
(POR) are two fruitful approaches to deal with the combinatorial explo-
sion of model checking. Unfortunately, past experience has shown that
BDD-based techniques do not work well for loosely-synchronized models,
whereas POR methods allow explicit-state model checkers to deal with
large concurrent models. This paper presents an algorithm that combines
symbolic model checking and POR to verify linear temporal logic proper-
ties without the next operator (LTLX), which performs better on models
featuring asynchronous processes. Our algorithm adapts and combines
three methods: Clarke et al.’s tableau-based symbolic LTL model check-
ing, Iwashita et al.’s forward symbolic CTL model checking and Lerda et
al.’s ImProviso symbolic reachability with POR. We present our approach,
outline the proof of its correctness, and present a prototypal implemen-
tation and an evaluation on two examples.

1 Introduction

Two common approaches are commonly exploited to fight the combinatorial state-
space explosion in model-checking, with different perspectives: partial-order re-
duction methods (POR) explore a reduced state space in a property-preserving
way [1, 2] while symbolic techniques use efficient structures such as binary decision
diagrams (BDDs) to concisely encode and compute large state spaces [3]. In their
basic form, symbolic approaches tend to perform poorly on asynchronous models
where concurrent interleavings are the main source of explosion, and explicit-state
model-checkers with POR such as Spin [4] have been the preferred approach for
such models.

This paper presents an approach that integrates POR in BDD-based model
checking for LTLX to provide an efficient and scalable symbolic verification so-
lution for models featuring asynchronous processes. Our approach proceeds as
follows:

1. We start from the tableau-based reduction of LTL verification to fair-CTL of
Clarke et al. [5], which results in looking for fair executions in the product P
of the model and a tableau-based encoding of the (negated) property.

? This work is supported by project MoVES under the Interuniversity Attraction Poles
Programme — Belgian State — Belgian Science Policy.

2. We construct Pr, a property-preserving partial-order reduction of P , using
an adaptation of Lerda et al.’s ImProviso algorithm [6]. We also implemented
the algorithm of Alur et al. [7] for comparison purposes.

3. Finally, we check within Pr whether P contains a fair cycle using the forward
traversal approach of Iwashita et al. [8]. We also implemented the classical
backward as a basis for comparison, though experimental results show the
forward approach to be more efficient than the backward approach.

We have implemented this new approach in a prototype and obtained experi-
mental results that show a significant performance gain with respect to symbolic
techniques without POR.

The main contributions of this paper are the global symbolic verification al-
gorithm for checking LTLX properties which adapts and combines tableau-based
LTL, fair-cycle detection and partial-order reduction, a proof of correctness of the
global algorithm, a prototype implementation, and an experimental evaluation on
two models.

The remainder of the paper is structured as follows. Section 2 establishes ba-
sic definitions and notations and presents the tableau-based reduction of LTL to
fair-CTL and the forward traversal approach. Section 3 presents partial-order re-
duction and its application to symbolic model checking in ImProviso. In Section 4,
we present our new approach for LTL model-checking with POR and detail our
adapation of the ImProviso algorithm. Section 5 presents our implementation and
reports experimental results. Section 6 reviews related work. Finally, Section 7
gives conclusions as well as directions for future work.

2 Symbolic LTL Model Checking

2.1 Transitions Systems

We represent the behavior of a system as a transition system, with labelled tran-
sitions and propositions interpreted over states. In the rest of this paper, we
assume a set AP of atomic propositions and a set A of actions3. Without loss of
generality, the set AP can be restricted to the propositions that appear in the
property to be verified on the system. A fair transition system is a transition
system enriched with a set of fairness constraints, each constraint consisting of a
set of states.

Definition 1 (Transition System). Given a set of actions A and a set of
atomic propositions AP , a transition system (over A and AP) is a structure
M = (S,R, I, L) where S is a finite set of states, I ⊆ S are initial states, R ⊆
S×A×S is a transition relation, and L : S → 2AP is an interpretation function
over states.

Definition 2 (Fair Transition System). A fair transition system is a struc-
ture M = (S,R, I, L, F) where (S,R, I, L) is a transition system and F ⊆ 2S is
a set of fairness constraints.
3 Often called transitions in the literature, notably in [9]. For clarity, we only call
transitions specific transition instances s a−−→ s′.

We write s a−−→ s′ for (s, a, s′) ∈ R. An action a is enabled in a state s
iff there is a state s′ such that s a−−→ s′. We write enabled(s,R) for the set
of enabled actions of R in s. When the context is clear, we write enabled(s)
instead of enabled(s,R). We assume that R is total (i.e. enabled(s) 6= ∅ for all
s ∈ S). The set of all paths of M is defined as tr(M) = {s0

a0−−→ s1
a1−−→

. . . | s0 ∈ I ∧ ∀i ∈ N · si
ai−−→ si+1}. A path π is said to be fair if and only if

for every Fi ∈ F , inf(π) ∩ Fi 6= ∅, where inf(π) is the set of states that appear
infinitely often in π. The set of all fair paths, or fair traces, of M is defined as
ftr(M) = {π |π ∈ tr(M) ∧ ∀Fi ∈ F · inf(π) ∩ Fi 6= ∅}.

We write M v M ′ iff M is a sub-transition system of M ′, in the following
sense:
Definition 3 (Inclusion of fair transition systems). Let M =
(S,R, I, L, F), M ′ = (S′, R′, I ′, L′, F ′) be two fair transition systems. M is a
sub-transition system of M ′, denoted M v M ′, if and only if S ⊆ S′, R ⊆ R′,
I ⊆ I ′, L(s) = L′(s) for s ∈ S, and ∀F ′i ∈ F ′ · ∃Fi ∈ F · Fi ⊆ F ′i .

We can see that if M vM ′, each fair path of M is a fair path of M ′.
Lemma 1. if M vM ′ then ftr(M) ⊆ ftr(M ′).

2.2 From LTL to Fair-CTL
This section outlines the algorithm, introduced in [5], to verify LTL properties
using BDD-based symbolic model checking.

We consider the verification of properties expressed in LTLX , linear propo-
sitional temporal logic without the next operator. LTL formulæ are interpreted
over each (infinite) execution path of the model. We denote the classical temporal
operators as F, G and U. Informally, let π be a execution path, G f (globally f)
says that f will hold in all future states of π, Ff (finally f) says that f will hold
in some future state of π, f U g (f until g) says that g will hold in some future
state of π and, at every preceding state of π, f will hold. We will reason for the
most part in terms of (un)satisfiability of the negation of the desired property
¬f . We write (M, s) |= Eg to express that there exists a path from state s in M
that satisfies a formula g.

Given a transition system M and an LTL property f , the tableau of ¬f
is constructed. The tableau of a formula g is a fair transition system T =
(ST , RT , IT , LT , FT) over the singleton alphabet A = {⊥} and the set AP of
propositions which appear in g. Each state of the tableau is a set of formulae
derived from g, which characterizes the sub-formulae of g that are satisfied on
fair traces from that state. Initial states are those that entail g, and the fairness
constraints ensure that all eventualities occurring in g are fulfilled. The fair traces
of the tableau correspond to the traces that satisfy g. See [5] for details.

The tableau of ¬f is then composed with the initial system M to produce
a new fair transition system P . If P contains deadlocks, we remove from SP all
the states which lead necessarily to deadlocks and restrict Rp to the remaining
states.
Definition 4 (Product of M and T). Given a system M = (S,R, I, L) and a
tableau T = (ST , RT , IT , LT , FT), the product of M and T , denoted M × T , is a
fair transition system P = (SP , RP , IP , LP , FP) where:

– SP = {(st, s) ∈ ST × S |LT (st) = L(s)}
– RP = {((st, s), a, (s′t, s′)) |RT (st,⊥, s′t) ∧R(s, a, s′)}
– IP = SP ∩ (IT × I)
– LP ((st, s)) = LT (st) = L(s)
– FP =

{
{(st, s) ∈ SP | st ∈ F i

T } |F i
T ∈ FT

}
It is shown in [5] that M contains a path which satisfies ¬f iff there is an

infinite fair path in P that starts from an initial state (it, i). Furthermore, the
existence of fair traces is captured by the fair CTL formula EFG true, to be read
as “there exists a fair path such that globally true”. The interest is that fair-CTL
formulae can be verified with BDD-based symbolic model checking.

Theorem 1. Let T be the tableau of ¬f and P be the product of M and T . Given
a state i ∈ I, (M, i) |= E¬f if and only if there is a state (it, i) in IP such that
(P, (it, i)) |= EFG true.

2.3 Forward Symbolic Model-Checking
In [8], Iwashita et al. present a model-checking algorithm for a fragment of fair-
CTL based on forward state traversal. In the following sections, we enrich this
algorithm with partial-order reduction to efficiently check the unsatisfiability of
the EFG true formula derived from tableau-based LTL model-checking.

The semantic of a CTL formula f is defined as a relation s |= f over states
s ∈ S. We define the language of f as L(f) = {s ∈ S | s |= f}. In the sequel we
assimilate a temporal logic formula f to the set of states L(f) that it denotes,
for the sake of simplifying the notations.

Given a model M , a formula f and initial conditions i, conventional BDD-
based symbolic model-checking can be described as evaluating L(f) over the
sub-formulæ of f in a bottom-up manner, and checking whether L(i) ⊆ L(f).
The evaluation of (future) CTL operators in f results in a backward state-space
traversal of the model. L(i) ⊆ L(f) can be expressed as checking whether i =⇒
f , or equivalently, checking unsatisfiability of i ∧ ¬f in M .

The forward exploration from [8] works by transforming a property h∧ op(g)
into op′(h) ∧ g, where a future, backward-traversal CTL operator op in the right
term is transformed into a past, forward-traversal operator op′ in the left term.
It is shown in [8] that these formulae are equisatisfiable in M , in the sense that
there exists a state in M which satisfies the transformed formula iff there exists
a state in M which satisfies the original formula.

In general, h is then a past-CTL formula. The following (past-temporal) op-
erations over formulæ are defined: 4

FwdUntil(h, g) = µZ.[h ∨ post(Z ∧ g)]
FairEH(h) = νZ.[h ∧ post(

∧
Fi∈F FwdUntil(Fi, Z) ∧ Z)]

where post(X) = {s′ ∈ S | ∃s ∈ X, a ∈ A · s a−−→ s′} is the post-image of X.
FwdUntil(h, g) computes states s that can be reached from h within g (except
4 The notation µZ.τ(Z) (resp. νZ.τ(Z)) denotes the least fixed point (resp. greater fixed
point) of the predicate transformer τ . For more details, we refer the reader to [5].

for s itself), and FairEH(h) computes states reachable from a fair cycle all within
h5. On this basis, it is established that h ∧ EFG g is equisatisfiable in M to
FairEH(FwdUntil(h, g) ∧ g).

In particular, for h = i and g = true this reduces to FairEH(FwdUntil(i, true)),
where FwdUntil(i, true) exactly computes the reachable state space of M , which
we denote Reachable(M). We thus obtain the following fact.

Theorem 2.

∃i ∈ I · (M, i) |= EFG true iff ∃s ∈ S · (M, s) |= FairEH(Reachable(M))

In essence, this theorem captures the fact that the fair-CTL model-checking prob-
lem resulting from the tableau-based reduction of LTL can be decomposed into
two distinct parts, the computation of the reachable state space and the search
for a fair cycle. Besides, the POR theory shows that only a subset of the reachable
state space needs to be computed to see whether a property is satisfied or not.
The following sections will demonstrate that different methods can be used to
compute the (reduced) reachable state space, and also that different methods can
be used to perform the fair-cycle detection.

3 Partial-Order Reduction

The goal of partial-order reduction methods (POR) is to reduce the number
of states explored by model-checking, by avoiding the exploration of different
equivalent interleavings of concurrent transitions [10, 2, 9].

Partial-order reduction is based on the notions of visibility of actions and inde-
pendence between actions. An action a is invisible if and only if it does not affect
atomic propositions, i.e. if L(s) = L(s′) for any s a−−→ s′ (and visible otherwise).
Two actions are independent if they do not disable one another and executing
them in either order results in the same state. Intuitively, if two independent ac-
tions a and b are invisible with respect to the property f that one wants to verify,
then it does not matter whether a is executed before or after b, because they
lead to the same state and do not affect the truth of f . Partial-order reduction
consists in identifying such situations and restricting the exploration to either of
these two alternatives. Given a transition systemM = (S,R, I, L), POR amounts
to exploring a reduced model MR = (SR, RR, I, LR) with SR ⊆ S, RR ⊆ R, and
LR = {(sr, A) ∈ L | sr ∈ SR}. In practice, classical POR algorithms [2, 9] exe-
cute a modified depth-first search (DFS). At each state s, an adequate subset
ample(s) of the actions enabled in s are explored. To ensure that this reduction
is adequate, that is, that verification results on the reduced model hold for the
full model, ample(s) must respect the following set of conditions as set forth in
[9, 10]:

C0 ample(s) = ∅ if and only if enabled(s) = ∅.

5 Both FwdUntil and FairEH can be expressed in the past version of fair-
CTL: FairEH(h) corresponds to EF Gh and FwdUntil(h, f) corresponds to h ∨
EX E[f U (h ∧ f)], where the direction of temporal operators is reversed.

C1 Along every path in the full state graph that starts at s, an action a /∈
ample(s) that is dependent on an action in ample(s) cannot be executed
without an action in ample(s) occurring first.

C2 If ample(s) 6= enabled(s), then all actions in ample(s) are invisible.
C3 A cycle is not allowed if it contains a state in which some action is enabled,

but is never included in ample(s) on the cycle.

Conditions C0, C1, C2 and C3 are sufficient to guarantee that the reduced
model preserves properties expressed in LTLX , but does not preserve properties
expressed in LTL [9]:

Theorem 3. Given M a transition system, f a LTLX property, if MR is a POR
reduction of M using an ample(s) that satisfies conditions C0–C3, then (M, i) |=
Ef iff (MR, i) |= Ef .

Conditions C1 and C3 depend on the whole state graph. C1 is not directly
exploitable in a verification algorithm. Instead, one uses sufficient conditions,
typically derived from the structure of the model description, to safely decide
where reduction can be performed. Contrary to C1, C3 can be checked on the
reduced graph, though in a nontrivial way. However, a stronger condition can be
used. A sufficient condition for C3 is that at least one state along each cycle is
fully expanded.

3.1 Process Model

In the sequel, we assume a process-oriented modeling language. We define a safe
process model as an extension of a transition system which distinguishes disjoint
subsets of local actionsAi, that are suitable candidates for partial-order reduction.
Typically, such actions will correspond to local transitions of different processes
pi in a concurrent program.

Definition 5 (Safe Process Model). Given a transition system M =
(S,R, I, L), a process model for M consists of a finite set of disjoint sets of
local actions A0, A1, . . . , Am−1 with Ai ⊆ A. The local transitions are defined as
Ri = R ∩ (S ×Ai × S). A process model is safe with respect to M iff all its local
transitions are safe, that is, for all a ∈ Ai, a is invisible, and for all s ∈ S,
ample(s) = enabled(s,Ri) satisfies condition C1.

Note that this definition guarantees that ample(s) = enabled(s,Ri) respects
conditions C1 and C2, but not C3, which is ensured dynamically by detecting
cycles within the reduction algorithm.

3.2 Partial-Order Reduction with BDDs

In this section we discuss two algorithms which implement a symbolic version of
the POR method presented in Section 3. Both approaches can be used to compute
a reduced reachable state space.

In [6], Lerda et al. propose ImProviso, a BDD-based symbolic version of the
Two-Phase POR algorithm for computing a reduced state space. The Two-Phase
algorithm was first presented by Nalumasu and Gopalakrishnan in [11]. ImProviso

alternates between two distinct phases: Phase-1 and Phase-2. Phase-1 expands
only safe transitions considering each process at a time, in a fixed order. As long
as a process offers safe transitions, those transitions alone are executed, otherwise
the algorithm moves on to the next process. Phase-2 performs a full expansion
of the final states reached in Phase-1, then Phase-1 is recursively applied to the
reached states.

In [7], Alur et al. propose another approach based on a modified breadth-first
search (BFS) algorithm which respects conditions C0–C3, using BDD techniques.
It produces a reduced graph by expanding at each step a subset of the transition
relation.

Both approaches perform a BFS instead of a DFS. Hence, it is much harder
to detect cycles. To tackle this problem, both algorithms over-approximate the
cycles. The over-approximation guarantees that all cycles are correctly identified,
but possibly needlessly decreases the number of states where the reduction can
be applied.

Although Alur’s method and ImProviso are similar, they differ in the following
ways:

– In Alur’s method, a single subset of the whole transition relation is computed
at each step. In ImProviso, for each process a transition relation which con-
tains only safe actions is precomputed. These transition relations are used
during Phase-1. We contend that this leads to better performance because
each Phase-1 step is computed with much smaller BDDs.

– The Two-Phase approach reduces the over-approximation by limiting cycle
detection to the current execution of Phase-1.

4 LTL Model checking with Partial-Order Reduction

In this section we bring together the computation of the reachable state space
by means of POR and the fair-cycle detection. Given a transition system M =
(S,R, I, L) with a safe process model A1, . . . , An and a LTLX property f , our
algorithm verifies whether M satisfies f by building a tableau T for ¬f and
checking the absence of accepting traces in P = (SP , RP , IP , LP , FP), the product
of M and T .

This check is performed symbolically. We first compute a reduced state space
of P , and then we check whether P contains a fair cycle within the reduced state
space. In this section, we use a variant of the ImProviso to compute the reduced
state space. We also use the forward model checking to perform the fair-cycle
detection. In other words, this check is performed symbolically, by checking the
emptiness of the following formula using BDDs: FairEH(ReachablePOR(P)). In
Section 5, we compare different methods to compute the reduced graph, as well
as to look for fair cycles.

4.1 Computation of the reachable states

A key new element is the algorithm ReachablePOR which constructs a reduced
reachable state space of P . It is given in Figure 1, and is based on the ImProviso
algorithm of [6]. In order to apply partial-order reduction on the product system

P , we lift the process model from M to P and pre-compute, for each safe action
set Ai, the BDD of the partial transition relation RP,i = RP ∩ (SP ×Ai × SP).

1 global RP

2 global RP,i [0..m -1]
3
4 global frontier // current frontier
5 global visited // visited states
6
7 procedure ReachablePOR (PI)
8 frontier , visited := IP , IP

9 while (frontier 6= {}) {
10 phase1 ()
11 phase2 ()
12 }
13 }
14
15 function deadStates (R, X) {
16 return X \ dom R
17 }
18
19 procedure phase2 () {
20 local image := post(RP , frontier)
21 frontier := image \ visited
22 visited := visited ∪ image
23 }
24
25

26 procedure phase1 () {
27 local cycleApprox := {}
28 local stack := frontier
29
30 foreach (i in 0, · · · , m− 1) {
31 local image :=
32 post(RP,i [i], frontier)
33 local dead :=
34 deadStates (RP,i [i], frontier)
35
36 while ((image \ stack) 6= {}) {
37 stack := stack ∪ image
38 cycleApprox := cycleApprox ∪
39 (image ∩ stack)
40 frontier := image \ stack
41 image := post(RP,i [i], frontier)
42 dead := dead ∪
43 deadStates (RP,i [i], frontier)
44 }
45
46 frontier := frontier ∪ dead
47 }
48 frontier := frontier ∪ cycleApprox
49 visited := visited ∪ stack
50 }

Fig. 1. ReachablePOR algorithm

ReachablePOR performs the two phases alternatively until no states to visit
remain. The global variable frontier contains the current frontier, that is, the
set of states which have been reached but not expanded yet. The global vari-
able visited contains all the reached states. The first phase (phase1) performs
partial expansion of the safe transitions of each process. The outer loop (lines
30–47) iterates over the processes. The inner loop (lines 36–44) expands all safe
transitions of the current process, until no more new states can be found. The
following invariants hold at line 36:

– The stack variable contains all the states which have already been reached
during the current run of phase1.

– The cycleApprox contains all the states already in stack which have been
reached again in a consecutive iteration. Those states over-approximate the
set of states closing a cycle; they are added back to the current frontier when
moving to Phase-2 (line 48).

– The dead variable contains all the reached states with no enabled transitions
for the current process, as computed by deadStates. Those states are added
back to the frontier when moving to the next process (line 46).

The second phase (phase2) performs a single-step full expansion of the states of
the current frontier.

ReachablePOR differs from ImProviso in the following ways:

1. ReachablePOR explores a product system P . The ample sets, captured in
RP,i, depend only on the model M , while the cycle condition is checked on
the product P . In ImProviso, there is no tableau and everything is computed
on the original model M .

2. When a presumed cycle is detected on state s in Phase-1, ImProviso will
expand s during the expansion of the next process, whereas ReachablePOR
will postpone expansion of s to the next Phase-2. When a product P is
reduced, we have noticed that this modification tends to improve both the
number of visited states and the verification time.

3. ReachablePOR keeps track of states that have no transition with the current
process (lines 34 and 43) and passes them to the next processes. If this com-
putation was not done, we could have missed some states during the BFS.
So, we could have violated the condition C0. The need for this computation
was apparently not addressed in [6].

4. ImProviso performs an additional outermost loop in Phase-1, to expand any
additional safe actions that have been enabled by the previous round over
all processes, such as receiving a message on a channel where it has been
previously sent. This is not needed in ReachablePOR because by construction
our notion of safe action does not allow this kind of situation. It would easily
be added back if it were to become useful.

ReachablePOR(P) explores a reduced transition system PR =
(SR, RR, IP , LR, FR), where LR = {(sr, A) ∈ LP | sr ∈ SR}, and FR is the
restriction of FP to SR, i.e. FR = {Fi ∩ SR |Fi ∈ FP }. It returns the explored
states SR = ReachablePOR(P) as the final value of visited. By construction,
PR v P .

4.2 Fair-cycle Detection

The reduced state space SR is used to search for infinite fair paths by computing
FairEH(SR). From the definition of FairEH, it is clear that FairEH(SR) only
explores states within SR. Note, however, that FairEH uses the full transition
relation RP rather than the reduced transition relation RR implicitly explored
by ReachablePOR. FairEH(SR) thus explores an induced fair transition system
PI = (SR, RP ∩ (SR × A × SR), IP , LP , FP). By construction PR v PI v P and
thus, by Lemma 1, ftr(PR) ⊆ ftr(PI) ⊆ ftr(P). Note that SR is evidently equal
to Reachable(PI). Hence evaluating FairEH(ReachablePOR(P)) in P amounts to
evaluating FairEH(Reachable(PI)) in PI and we have the following lemma:

Lemma 2. Given P = (SP , RP , IP , LP , FP), SR = ReachablePOR(P),
PI = (SR, RP ∩ (SR × A × SR), IP , LP , FP) and sP ∈ SP , (P, sP) |=
FairEH(ReachablePOR(P)) if and only if (PI , sP) |= FairEH(Reachable(PI)).
When (PI , sP) |= FairEH(Reachable(PI)), sP ∈ SR.

4.3 Correctness

To demonstrate the correctness of our approach, we have to prove that, given a
property f and a model M , f holds in M iff FairEH(ReachablePOR(P)) returns
an empty set, where P is the product ofM and the tableau for ¬f . Conversely, we

will prove that there is a path from an initial state i inM on which ¬f holds, writ-
ten (M, i) |= E¬f , iff there is a state in P satisfying FairEH(ReachablePOR(P)).

Before getting to this main result, we need to address two technical issues.
First, the following two lemmas establish that the preservation of properties when
reducingM toMR is carried over when reducing P to PR based on the transitions
of M , as performed in ReachablePOR.

Lemma 3. Given a product system P = M × T and PR the reduced transition
system explored by ReachablePOR(P), there exists a reduced transition system
MR such that PR = MR × T and MR is a property-preserving reduction of M ,
i.e. (M, i) |= E¬f iff (MR, i) |= E¬f .

Proof. We follow the same reasoning as Theorem 4.2 in [1], which we only outline
here. In [1], given a transition system G and a LTL property f , a Büchi automaton
B which accepts the language L(¬f) is constructed.6 It is shown that G |= Af if
and only if the intersection (i.e. product) A of G and B is empty, or equivalently
if A does not contain any cycle, reachable from some initial state, that contains
some accepting state. A reduced version A′ of A is constructed by choosing at
each step of the DFS a valid ample set. The conditions C1 and C2 are checked
on G alone, while C0 and C3 are checked on the whole product. It is shown that
A′ corresponds to a product of a reduced system GR and B such that GR is a
property-preserving reduction of G, i.e. (G, i) |= E¬f iff (GR, i) |= E¬f .

The ReachablePOR procedure follows the same process. It constructs a re-
duced version PR of P by choosing at each step a valid ample set, i.e ample((st, s))
= {a | (st, s)

a−−→ (s′t, s′)∧a ∈ ample(s)}. By following the same reasoning as in [1]
we can conclude that PR is the product of a reduced system MR and T such that
MR is a property-preserving reduction of M, i.e. (M, i) |= E¬f iff (MR, i) |= E¬f .

ut

Together with Theorem 1, the following lemma follows directly.

Lemma 4. (P, iP) |= EFG true if and only if (PR, iP) |= EFG true.

Secondly, the following lemma establishes that PI , which corresponds to the
system explored by FairEH, preserves the properties of PR, which corresponds to
the system explored by ReachablePOR.

Lemma 5. (PR, iP) |= EFG true if and only if (PI , iP) |= EFG true.

Proof. We know that ftr(PR) ⊆ ftr(PI) ⊆ ftr(P). Therefore, any fair path of PR

is also a fair path of PI . Conversely, any fair path of PI is also a fair path of P
and therefore there exists a corresponding fair path in PR by Lemma 4. ut

We now get to the main result.

Theorem 4. Given a model M , a property f and the product P of M and the
tableau of ¬f , there exists a state i ∈ I such that (M, i) |= E¬f iff there exists a
state sP ∈ SP such that (P, sP) |= FairEH(ReachablePOR(P)).
6 Although Theorem 4.2 in [1] considers only deterministic transition systems, both the
theorem and its proof remain valid with non-deterministic transition systems. The
proof remains exactly the same.

Proof. Let PR and PI be defined as previously. We have successively:
∃i ∈ I · (M, i) |= E¬f

⇔ ∃iP ∈ IP · (P, iP) |= EFG true (Theorem 1)
⇔ ∃i′P ∈ IP · (PR, i

′
P) |= EFG true (Lemma 4)

⇔ ∃i′′P ∈ IP · (PI , i
′′
P) |= EFG true (Lemma 5)

⇔ ∃sP ∈ SR · (PI , sP) |= FairEH(Reachable(PI)) (Theorem 2)
⇔ ∃sP ∈ SP · (P, sP) |= FairEH(ReachablePOR(P)) (Lemma 2)

ut

Given any algorithm which constructs a valid POR-reduced reachable state
set Reduced(M) of a transition system M , we can use that algorithm instead of
ReachablePOR in our approach, checking the emptiness of FairEH(Reduced(P)).
In the same way, other algorithms can be used to detect fair cycles, for instance the
classical backward CTL model-checking algorithm can be used. Actually, these
approaches are valid, and the demonstration of Section 4.3 remains the same.

5 Evaluation

We extended the Milestones model checker presented in [12] to support the
method presented in this paper. Milestones is available under the GNU General
Public License at http://lvl.info.ucl.ac.be/Tools/Milestones. Milestones allows us
to describe concurrent systems and to verify LTLX properties. It defines a lan-
guage for describing transition systems. The design of the language has been
influenced by the NuSMV language [13] and by the synchronization by rendez-
vous mechanism. Milestones detects fair cycles either with the classical backward
fair CTL model-checking algorithm [9] (hereafter denoted as bwd), or with the
forward approach described in Section 2.3 (denoted as fwd). The reachable state
space can be generated using the ReachablePOR approach, as well as Alur’s
method mentioned in Section 3.2, or without any POR reduction. Together these
offer 2× 3 = 6 different modes of operation.

In order to assess the effectiveness and scalability of the approach proposed in
this paper, we discuss two models which were translated both into the language of
Milestones, NuSMV, and Spin. This section presents the models and the results
we obtained. All the tests have been run on a 2.16GHz Intel Core 2 Duo with
2GB of RAM. We compare the verification performance between all six different
modes. We also compare to NuSMV, which performs bwd without POR, and Spin
which performs explicit model checking [4].

The first model is a variant of a producer-consumer system where all produc-
ers and consumers contribute on the production of every single item. The model
is composed of 2 ×m processes: m producers and m consumers. Each producer
and each consumer has two local transitions. The producers and consumers com-
municate together via a bounded buffer composed of eight slots. Each producer
works locally on a piece p, then it waits until all producers terminate their task.
Then, p is added to the buffer, and the producers start processing the next piece.
When the consumers remove p from the buffer, they work locally on it. When all
the consumers have terminated their local work, another piece can be removed
from the buffer. The size of the reachable state space grows exponentially by a
factor of 40 at each step of m.

Five properties have been analyzed on this model. For instance, P3 states that
at any time the producers will eventually add a piece into the buffer (satisfied),
and P4 states that the buffer will never overflow (unsatisfied). Figure 2 compares
the times for the verification of the property P3. Similar results have been obtained
for the other four properties.

0 10 20 30 40 50 60 70

0.1

1

10

100

103

104

n

tim
e
(s
ec
)

Spin
NuSMV

bwd
bwd + Alur

bwd + ReachablePOR
fwd

fwd + Alur
fwd + ReachablePOR

Fig. 2. Verification times for the Producer-Consumer property P3

The second model is a turntable model, described in [14]. The turntable system
consists of a round turntable, an input place, an output place, n drills and a testing
device. The turntable transports products in sequence between the different tools,
where they are drilled and tested. The turntable has n + 3 slots that each can
hold a single product. The original model had only one drill; we extended it to
represent an arbitrary number of drills. The size of the reachable state space
grows exponentially by a factor of 7 at each step of n.

0 10 20 30 40 50 60 70

0.1

1

10

100

103

104

n

tim
e
(s
ec
)

Spin
NuSMV

bwd
bwd + Alur

bwd + ReachablePOR
fwd

fwd + Alur
fwd + ReachablePOR

Fig. 3. Verification times for the Turntable property T3

We have verified six properties on this system: four properties that the system
satisfies, and two properties which are not fulfilled. For instance, the property T3
states that if in the future there will be a piece which is not well drilled, the
alarm will necessarily resonate. Here is the translation of this property in LTL:
G [F a piece is not well drilled =⇒ F an alarm is raised]. Figure 3
compares the times for the verification of the property T3.

Table 1 compares the state space computed by the three forward methods
(without POR, with Alur’s method and with ReachablePOR), in terms of number
of BDD nodes, number of states and computation time. It is quite interesting to
note that while POR substantially decreases the number of reached states, the
number of BDD nodes is increased (likely due to breaking some symmetry in
the full state space). However, it still results in substantial speed improvements.
We also notice that the state spaces produced by the Alur’s method and the
ReachablePOR method have approximately the same size.

Table 1. BDD size (in # nodes), state space size (in # states) and computation time (in
seconds) for the P reachable state space computed either by the forward method without
POR, or the forward method and Alur’s approach, or the ReachablePOR method. “–”
indicates that the computation did not end within 1000 seconds.

drills # nodes # states time (sec)
Fwd Fwd + Alur ReachPOR Fwd Fwd + Alur ReachPOR Fwd Fwd + Alur ReachPOR

1 197 318 282 86488 27408 26668 .11 .28 .17
2 442 880 744 521944 39188 38044 .17 .45 .23
4 975 2444 2021 2.49× 10+7 62804 60796 .35 .90 .34
8 2040 5832 4717 5.98× 10+10 111012 106300 1.08 2.59 .65

16 4168 17165 14126 3.45× 10+17 207120 197308 5.13 9.34 1.49
32 8421 57467 47218 1.15× 10+31 394208 379324 37.09 57.68 4.35
40 – 91214 75104 – 495668 470332 – 173.84 6.37
47 – 125194 103300 – 580484 549964 – 971.60 8.59
50 – – 105844 – – 584092 – – 9.76
61 – – 146912 – – 709228 – – 14.9

6 Related Work

Besides the approaches of Alur [7] and Improviso [6] on which this work is based
(as presented in Section 3.2), several other approaches have been proposed that
combine symbolic model checking and POR to verify different classes of proper-
ties.

This paper builds on our previous work combining POR and the forward state
traversal approach to verify CTLX properties7 [12]. It remains to evaluate the
compared merits of the two approaches for properties that can be expressed in
both LTLX and CTLX . For conventional BDD-based model checking, experi-
ments in [5] have found that, in the absence of POR, CTL verification tends to
be faster.

In [15], we present another LTLX model-checking algorithm which combines
the Two-Phase algorithm and SAT-based bounded model checking (BMC). On
7 CTLX is the subset of the CTL logic without the next operator.

the property P2 of the producer-consumer system of Section 5, the BMC algo-
rithm of [15] takes approximately 68minutes to find a counter-example of length
1,017, while the algorithm presented here takes only 314milliseconds to show the
violation.

In [16], Abdulla et al. present a general method for combining POR and
symbolic model checking. Their method can check safety properties either by
backward or forward reachability analysis. So as to perform the reduction, they
employ the notion of commutativity in one direction, a weakening of the depen-
dency relation which is usually used to perform POR. This approach deals both
with backward and forward analysis but for reachability only, while we are able
to check LTLX properties but using only forward analysis.

In [17], Kurshan et al. perform partial-order reduction at compile time. The
method applies static analysis techniques to discover local cycles and produce a
reduced model, which can be verified using standard symbolic model checking.
It could be interesting to investigate whether this kind of analysis could help in
ensuring the cycle condition C3 in our approach.

In [18], Holzmann performs a reduction of individual processes by merging
local transitions. Then, the processes are put in parallel to be explicitly verified.
Merging local transitions can be seen as a special application of partial reduction
method. It avoids to create intermediate states between local transitions. Actually,
all the transitions which are merged will be considered as safe transitions by our
approach. Those transitions will be explored dynamically during phase1, i.e. when
POR is applied. By contrast, the Holzmann algorithm removes them statically
at compile time. We notice that our approach might visit more than once a state
which will be removed by the Holzmann algorithm.

7 Conclusion

In this paper, we presented an improved BDD-based model-checking algorithm for
verifying LTLX properties on asynchronous models. Our approach combines the
tableau-based reduction of LTL model-checking to fair-CTL from [5], forward
state-traversal of fair-CTL formulæ from [8] used to detect fair cycles, and a
symbolic partial-order reduction based on ImProviso [6] to reduce the forward
state traversal.

We implemented the new algorithm in our existing model checker and ob-
served on two case studies that our approach achieves a significant improvement
in comparison to the tableau-based approach of [5] without POR, in both its
backward and forward versions. It remains to confirm those results on a larger
range of case studies and to compare with other methods and tools.

The reduced state set computed by ReachablePOR could as well be used
in other BDD-based model-checking circumstances: as a filter during fixpoint
computations in classical backward model-checking, or even to restrict the BDD
of the transition relation before standard, non-POR techniques are applied. It
would be interesting to compare the benefits of the reduction in the different
approaches. For the latter case, however, the size of the BDD representing the
transition relation of MR could become unmanageable due to the loss of some
symmetry.

References
1. Peled, D.: Combining partial order reductions with on-the-fly model-checking. For-

mal Methods in System Design 8(1) (1996) 39–64
2. Godefroid, P.: Partial-Order Methods for the Verification of Concurrent Systems

– An Approach to the State-Explosion Problem. Volume 1032 of Lecture Notes in
Computer Science. Springer-Verlag (1996)

3. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, J.: Symbolic model
checking: 1020 states and beyond. Information and Computation 98(2) (1992) 142–
170

4. Holzmann, G.J.: The model checker SPIN. IEEE Transactions on Software Engi-
neering 23(5) (1997)

5. Clarke, E.M., Grumberg, O., Hamaguchi, K.: Another look at LTL model checking.
Form. Methods Syst. Des. 10(1) (1997) 47–71

6. Lerda, F., Sinha, N., Theobald, M.: Symbolic model checking of software. In Cook,
B., Stoller, S., Visser, W., eds.: Electronic Notes in Theoretical Computer Science.
Volume 89., Elsevier (2003)

7. Alur, R., Brayton, R.K., Henzinger, T.A., Qadeer, S., Rajamani, S.K.: Partial-order
reduction in symbolic state space exploration. In: Computer Aided Verification.
(1997) 340–351

8. Iwashita, H., Nakata, T., Hirose, F.: CTL model checking based on forward state
traversal. In: ICCAD ’96: Proceedings of the 1996 IEEE/ACM international con-
ference on Computer-aided design, Washington, DC, USA, IEEE Computer Society
(1996) 82–87

9. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. Mit Press (1999)
10. Gerth, R., Kuiper, R., Peled, D., Penczek, W.: A partial order approach to branching

time logic model checking. Information and Computation 150(2) (1999) 132–152
11. Nalumasu, R., Gopalakrishnan, G.: A new partial order reduction algorithm for con-

current system verification. In: CHDL’97: Proceedings of the IFIP TC10 WG10.5
international conference on Hardware description languages and their applications :
specification, modelling, verification and synthesis of microelectronic systems, Lon-
don, UK, UK, Chapman & Hall, Ltd. (1997) 305–314

12. Vander Meulen, J., Pecheur, C.: Efficient symbolic model checking for process
algebras. In: 13th International Workshop on Formal Methods for Industrial Critical
Systems (FMICS 2008). Volume 5596., LNCS (2008) 69–84

13. Cimatti, A., Clarke, E., Giunchiglia, F., Roveri, M.: NuSMV: a new symbolic model
verifier. In: Proc. of International Conference on Computer-Aided Verification.
(1999)

14. Bortnik, E.M., Trčka, N., Wijs, A., Luttik, B., van de Mortel-Fronczak, J.M.,
Baeten, J.C.M., Fokkink, W., Rooda, J.E.: Analyzing a χ model of a turntable
system using spin, cadp and uppaal. J. Log. Algebr. Program. 65(2) (2005) 51–104

15. Vander Meulen, J., Pecheur, C.: Combining partial order reduction with bounded
model checking. In: Communicating Process Architectures 2009 - WoTUG-32. Vol-
ume 67 of Concurrent Systems Engineering Series., IOS Press (2009) 29 – 48

16. Abdulla, P.A., Jonsson, B., Kindahl, M., Peled, D.: A general approach to partial
order reductions in symbolic verification (extended abstract). In: Computer Aided
Verification. Volume 1427/1998., Springer Berlin / Heidelberg (1998) 379–390

17. Kurshan, R.P., Levin, V., Minea, M., Peled, D., Yenigün, H.: Static partial order
reduction. In: TACAS ’98: Proceedings of the 4th International Conference on Tools
and Algorithms for Construction and Analysis of Systems, London, UK, Springer-
Verlag (1998) 345–357

18. Holzmann, G.J.: The engineering of a model checker: the gnu i-protocol case study
revisited. In: SPIN. (1999) 232–244

