
A Formal Framework for Design and Analysis of
Human-Machine Interaction

Sébastien Combéfis∗, Dimitra Giannakopoulou†, Charles Pecheur∗ and Michael Feary†
∗Computer Science and Engineering Department

ICT, Electronics and Applied Mathematics Institute
Université catholique de Louvain, Louvain-la-Neuve, Belgium
Email: {Sebastien.Combefis, Charles.Pecheur}@uclouvain.be

†NASA Ames Research Center
Moffett Field, CA 94035, USA

Email: {Dimitra.Giannakopoulou, Michael.S.Feary}@nasa.gov

Abstract—Automated systems are increasingly complex, mak-
ing it hard to design interfaces for human operators. Human-
machine interaction (HMI) errors like automation surprises are
more likely to appear and lead to system failures or accidents.
In previous work, we studied the problem of generating system
abstractions, called mental models, that facilitate system under-
standing while allowing proper control of the system by operators
as defined by the full-control property. Both the domain and its
mental model have Labelled Transition Systems (LTS) semantics,
and we proposed algorithms for automatically generating minimal
mental models as well as checking full-control.

This paper presents a methodology and an associated frame-
work for using the above and other formal method based algo-
rithms to support the design of HMI systems. The framework can
be used for modelling HMI systems and analysing models against
HMI vulnerabilities. The analysis can be used for validation pur-
poses or for generating artifacts such as mental models, manuals
and recovery procedures. The framework is implemented in the
JavaPathfinder model checker. Our methodology is demonstrated
on two examples, an existing benchmark of a medical device, and
a model generated from the ADEPT toolset developed at NASA
Ames. Guidelines about how ADEPT models can be translated
automatically into JavaPathfinder models are also discussed.

Index Terms—Formal methods, HCI, Learning

I. INTRODUCTION

Automated systems are increasingly complex, making it
hard to design interfaces for human operators. Human-machine
interaction (HMI) errors like automation surprises are more
likely to appear and lead to system failures or accidents [1]–[3].

Human-machine interaction has been extensively studied for
several years by researchers in psychology, human factors and
ergonomics. Since the mid-1980s, researchers are investigating
the use of formal methods to analyse behavioural aspects of
HMI. The first results were focused on specific applications
and on systems and their properties [4], [5]. The field then
moved to more generic results using theories like graph theory,
model-checking or theorem proving [6]–[8].

Recently, Degani et al. [9] formulated the problem of
generating a user mental model for a system described as a
finite state automaton, and presented an approach for addressing
this problem. In this context, a mental model is not meant to
capture a human cognitive model; rather, it is meant to capture

the implicit and intended model of operation according to which
the system developer designs the system. Like others, we make
the assumption that such models are meant to be relatively
simple, even though their corresponding systems may be large
and complex. Complex systems are often accompanied with
procedures that describe sequences of steps that need to be
followed when performing some tasks. Procedures therefore
represent explicit characterizations of specific parts of a mental
model.

Automatic generation of mental models needs to be driven
by the intended characteristics of the resulting models. The
full-control property [10] formalizes the following notion of a
correct mental model: a user following a full-control mental
model will know at any point how to command or observe
the system to achieve a goal, based on the history of previous
commands and observations performed. Note that full-control
requires a distinction between commands executed by the user
on the system (inputs) and observations controlled by the system
and just observed by the operator (outputs). Our previous work
in this domain [10], [11] provided algorithms for checking
the full-control property and automatically generating minimal
full-control mental models.

The focus of our previous work was purely on the definition
of a notion of correctness of mental models based on the full-
control property, as well as the development of algorithms for
automatic generation of minimal full-control mental models.
In contrast, the current paper presents a methodology and an
associated framework for using such algorithms in a practical
setting to support the design and analysis of HMI systems. The
proposed framework can be used for modelling HMI systems
and analyzing models against HMI vulnerabilities. The analysis
can be used for validation purposes or for generating artifacts
such as mental models, manuals and recovery procedures; it
can also be used to help redesign or update a system model to
avoid detected vulnerabilities. Finally, the proposed algorithms
for checking the full-control property can be slightly varied in
order to analyse whether a system model appropriately supports
the user tasks associated with it.



The design and analysis capabilities supported by our
methodology are demonstrated on two examples, an existing
benchmark of a medical device, and a model generated from
the ADEPT toolset. The associated framework is implemented
in the JavaPathfinder (JPF) model checker [12]. We discuss our
early attempts at connecting our framework to the ADEPT [13]
toolset. ADEPT is an HMI design environment that supports the
high level design of HMI systems in a tabular fashion, as well
as the automated generation of prototypes of a described system
and its interface for experimentation and simulation. ADEPT
supports some limited forms of analysis such as completeness
and determinism of the specification. By connecting JPF and
ADEPT we will extend the analysis capabilities provided by the
ADEPT toolset. Both ADEPT and JPF have been developed at
the NASA Ames Research Center (by different teams), which
justifies our choice of these tools. However, the methodology
and framework that we present could also be connected to other
environments for the design and analysis of HMI systems.

A. Related Work

Campos et al. [5], [7] proposes a framework based on
model checking to analyse HMI. The framework is based on
systems modelled with interactors and properties of interest are
described with the MAL logic. They define a set of generic
usability properties [5], such as the possibility to undo. Their
approach is thus based on properties which can be expressed
with the MAL logic and checked with a model checker on
the system and are specific and targeted to a precise usability
property. Our approach uses a more generic definition of good
systems, and is complementary to their analysis.

Thimbleby et al. [6], [14] use graphs to represent models.
They study usability properties of the system by analyzing
structural properties of graphs like the maximum degree and
the value of centrality measures. In their approach, there is
no distinction among actions and there is little focus on the
dynamic aspects of the interaction.

Curzon et al. [8] use a framework based on defining systems
with modal logic. Properties of the model are checked using
a theorem prover. Similarly to Campos et al., properties of
interest are more targeted to a specific usability property while
our approach is more generic.

Navarre et al. [15] also developed a framework to analyse
interactive systems. Their focus is on the combination of user
task models and system models. We focus mainly on the system
although in this paper we also present an approach for checking
whether a user task is supported by a system model.

Bolton et al. [16]–[18] developed a framework used to help
predicting human errors and system failures. Models of the
system are analyzed against erroneous human behaviour models.
The analysis is based on task-analytic models and taxonomies
of erroneous human behaviour. All those models are merged
into one model which is then analyzed by a model checker to
prove that some safety properties are satisfied.

Bredereke et al. [19], [20] formalized mode confusions and
developed a framework to reduce them. The formalization is
based on a specification/implementation refinement relation.

Their work is targeted on mode confusion while the work
presented here is targeted to more general controllability issues.

Model-based testing has been used to analyse systems mod-
elled as Input-Output Labelled Transition Systems (IOTS) [21].
The IO conformance relation (IOCO) is defined to describe the
relationship between implementations and specifications. The
IOCO relation states that the outputs produced by an imple-
mentation must, at any point, be a subset of the corresponding
outputs in the specification. This is triggered by the fact that
IOCO is used in the context of testing implementations. Outputs
are similar to observations in our context. The full-control
property defined in our work needs to consider commands
(inputs) in addition to observations.

B. Motivation

Generating a minimal full-control mental model from a given
system model helps to get a better understanding of the system.
The full-control property captures the knowledge an operator
needs to have about a system to be able to control it properly.
Such a mental model can be used to build training materials
such as user manuals [22]. Providing a system that the user
can learn, minimizing her memory load, and allowing her to
operate it without error is a desirable usability property [23].

In previous work, we proposed algorithms for automatically
generating minimal full-control mental models. When a full-
control mental model does not exist for a system, our algorithms
provide a counterexample that exhibits a violation of the
full-control property. In this paper, we discuss how such
counterexamples can be analysed to understand the problematic
behaviour of the system, and we propose ways of correcting
the system to address such problems. More generally, the
contribution of this paper is a methodology to perform analysis
of dynamic aspects of human-machine interaction, based on
our existing approaches for automatic generation of full-control
mental models and checking of the full-control property. This
work targets the system designer with a focus on demonstrating
several uses of our algorithms and their outputs in a practical
setting of analysing system models as well as their associated
task models.

The remainder of the paper is organised as follows: Sec-
tion II presents the modelling approach with all the necessary
background. Section III is the core of the paper and presents
the proposed interaction analysis formal methodology and
framework. Section IV describes the implementation of the
prototype tool. Section V demonstrates the methodology on
two realistic examples. Section VI concludes the paper and
provides some perspectives.

II. MODELLING HMI

This section provides the background necessary for the
work presented in this paper. The detailed formalization is
presented in [10], [11]. The approach used is based on models
as motivated in [24]. There are two models of interest in the
proposed approach: the system model describes the detailed



behaviour of the system and the mental model represents an
abstraction of the system for the human operator 1.

A. System and mental models

System and mental models are modelled with enriched
labelled transition systems (LTS) called HMI LTS, that are
essentially graphs whose edges are labelled with actions. The
difference with classical LTSs is that three kind of actions are
defined:

1) Commands are actions triggered by the user on the system;
they are also referred to as inputs to the system;

2) Observations are actions autonomously triggered by the
system but that the user can observe; they are also referred
to as outputs from the system;

3) Internal actions are neither controlled nor observed by the
user; they correspond to internal behaviour of the system
that is completely hidden to the user.

When interested in controllability properties of systems, and
to avoid automation surprise errors, the distinction between
commands and observations matters [9], [26].

Formally, HMI LTS are tuples 〈S,Lc,Lo, s0, δ〉 where S
is the set of states, Lc and Lo are the sets of commands
and observations respectively, s0 is the initial state and δ :
S × (Lc ∪ Lo ∪ {τ})→ 2S is the transition function. Internal
actions cannot be distinguished by the user and are thus denoted
with the same symbol τ , called the internal action. The set of
observable actions comprises commands and observations and
is denoted Lco = Lc ∪Lo. In this paper, HMI LTS will simply
be referred to as LTS.

When a transition exists between states s and s′ with action
a, that is δ(s, a) = s′, we say that the action a is enabled in
state s and we write s a−−→ s′. A trace σ = 〈σ1, σ2, · · · , σn〉
is a sequence of observable actions in Lco that can be executed
on the system, that is s0

σ1−−→ s1
σ2−−→ · · · σn−−−→ sn. The set

of traces of an LTSM is denoted Tr(M). Internal actions can
also occur between actions of a trace, which is written s σ

==⇒ s′

and corresponds to s
τ∗σ1τ

∗···τ∗σnτ
∗

−−−−−−−−−−−−→ s′, where τ∗ means
zero, one or more occurrences of τ . The set of commands that
are enabled in a state s, denoted Ac(s), corresponds to actions
a such that there exists a state s′ with s

a
==⇒ s′. The set of

enabled observations, denoted Ao(s), is defined similarly.

B. Full-control property

The full-control property captures that an operator has
enough knowledge about a given system in order to be able to
control it properly. That is, at each time during the interaction
between the user and the system, she must know exactly what
are the available commands on the system and must be aware
of at least the observations that can occur.

1The mental model is commonly referred to as conceptual model [25] in
the literature, that is, an abstraction of the system which outlines what the
operator can do with the system and what she needs to interact with it.

Formally, a mental model MU = 〈SU ,Lc,Lo, s0U , δU 〉
allows the full-control of a given system MM =
〈SM ,Lc,Lo, s0M , δM 〉2 if and only if:

∀σ ∈ Lco∗ such that s0M
σ

==⇒ sM and s0U
σ−−→ sU :

Ac(sM ) = Ac(sU ) and Ao(sM ) ⊆ Ao(sU ) (1)

Intuitively, it means that for every trace σ, which can be
executed both on the system and the mental model, after
executing them (s0M

σ
==⇒ sM and s0U

σ−−→ sU ), the set of
commands (Ac) that are enabled on the system and on the
mental model are exactly the same and the set of observations
(Ao) enabled according to the mental model contains at least
the observations enabled on the system model.

With this approach, the user must always know all the
possible commands which is a strong requirement. A weaker
variant, where a user may not always know all the possible
commands but only those which are relevant for the interaction
she wants to have with the system, is considered in Section III-C
below.

The full-control property indeed characterizes a conceptual
model for a given system. All the behaviour of the system must
be covered by the full-control mental model, and it should
allow the operator to interact correctly with the system. That
is ensured by the fact that the operator always knows what he
can do on the system and what he expects to observe from it.

III. INTERACTION ANALYSIS

Based on the full-control property, this paper proposes a
framework and methodology to analyse systems from an HMI
standpoint.

Two algorithms were developed in [10], [11], which are
focused on the automatic generation of a minimal full-control
mental model for a given system. The first is based on the
definition of a bisimulation-based relation between the states
of the system, stating which of them can be merged together
because they can be handled similarly from the standpoint
of the operator. The second uses a learning algorithm which
iteratively builds mental model guesses. The algorithm relies
on a teacher to answer whether proposed execution sequences
must, may or cannot be part of the mental model. The teacher
uses the system model to answer such queries.

As the main input is a model of the system, the analysis can
be performed and used in different steps of the HMI design
process. In the evaluation phase, the analysis gives feedback
regarding whether the model of the system is controllable by
an operator. If it is not controllable, the analysis provides an
example of a problematic interaction. The analysis can also
be used at the end of the design process, once the system has
been validated, in order to build artifacts such as user manuals,
trainings, etc.

2The subscript M for the system refers to Machine and the subscript U for
the mental model refers to User.



A. Categorizing behaviour

The full-control property captures the behaviour of a given
system that a user should know in order to be able to
operate it without errors. Given a system model MM =
〈SM ,Lc, Co, s0M , δM 〉, a trace σ ∈ Lco∗ can be put into one
of three different categories. In other words, the set of traces of
MM can be partitioned into three sets: Acc (Accepted), Rej
(Rejected) and Dont (Don’t care).

Let σ be a trace and a an action (command or observation):
1) σa ∈ Rej if (i) σ ∈ Rej or (ii) σ ∈ Acc, a is a command

and there exists an execution of σ where a is not enabled
in the reached state. This first category highlights the
fact that the user must always know exactly the available
commands.

2) σa ∈ Acc if (i) σ ∈ Acc and either a is a command
which is enabled for all the states that are reached after
the execution of σ or (ii) a is an observation that is enabled
in at least one state reached after the execution of σ. This
second category contains the behaviour of the system that
the user must be aware of.

3) In the other cases, σa ∈ Dont. This corresponds to two
cases: (i) either σ ∈ Dont or (ii) σ ∈ Acc, a is an
observation and a is not enabled in any state reachable by
σ. That last category reflects the fact that the user may
expect an observation that will not necessarily occur in
the system.

Traces from Rej are forbidden which means that they cannot
be part of a full-control mental model. Traces from Acc must
be accepted which means that any full-control mental model
must contain those traces. Traces from Dont may be accepted
which means that they can belong to a full-control mental
model for the system, or not.

The learning-based mental model generation algorithm
proposed in [11] uses that categorization to learn a minimal
full-control mental model for a given system. Figure 1 shows
the partition of the set of traces. That partition represents all
the possible mental models that allow full-control of a given
system. Such mental models accept all the traces from Acc,
reject all the traces from Rej and may accept any subset of
Dont. The learning-based algorithm incrementally computes
this partition. The algorithm then builds, from that partition, a
minimal mental model, that is, one with the smallest number
of states.

Lco∗

Rej Dont Acc

Fig. 1. The set of full-control mental models for a given system, characterized
by the categorization of traces into Acc, Rej and Dont sets. The set showed
with a dashed line represents one possible mental model. The traces from Acc,
Dont and Rej respectively must, may and cannot be part of a full-control
mental model.

B. Evaluating the system model during the design process

The full-control mental model generation algorithm can be
used in the design process as a validation step of the system.
Applying the mental model generation algorithm on a system
model can lead to two different outcomes:

1) the system is not well-behaved and does not satisfy the
full-control deterministic criterion;

2) or the system does have a minimal full-control mental
model.

In the first case, the system is such that it is not possible
to generate a full-control mental model for it. That means that
there exists some sequence σ so that s0

σ
==⇒ s, s0

σ
==⇒ s′ and

Ac(s) 6= Ac(s′). In words, there exists a trace that can lead
to different states having different sets of enabled commands.
Such a system is said to be non full-control deterministic. The
operator can thus not know exactly the available commands
after that trace, which is in contradiction with the full-control
property. In that case, the generation algorithm will provide a
trace that it cannot categorize because it must both be accepted
and forbidden. That trace can be used to adapt the model of the
system for the next iteration of the design process. One way of
addressing non-full-control-determinism in a system would be,
for example, to add observable behaviour as discussed below.

Figure 2 shows a small example to illustrate this situation;
suppose it represents a TV decoder. The decoder is turned on by
pressing the on button. Then, if the decoder gets connected to
the network, one can select the first channel with the channel1
command. But if the decoder does not have the access to the
Internet, one cannot do anything. The generation algorithm will
fail and output 〈on〉 as a problematic trace. The user can be
surprised after executing 〈on〉 on such a system. A possible
modification of the system would be to add an observation
online in the case when the decoder gets connected to the
internet. That system is well-behaved and a full-control mental
model does exist for it.

on

on

channel1

(a)

on

on

online channel1

(b)

Fig. 2. A not well-behaved system model (on the left) and a possible adaptation
of it (on the right).

In the second case, a minimal full-control mental model
is produced. It means that the system can be controlled and
that automation surprises can be avoided if the operator knows
and follows exactly that mental model. However, the larger
the mental model, the harder it is for a human operator to
memorize and use. The size of the generated mental model can
be used in a metric that characterizes good mental models. A
too large mental model means that the system is too complex
and cannot be simplified to a level that a human operator can
follow. The system may need to be redesigned.



C. Checking a system model against user tasks

When interacting with a system, a user does not always
need to know all the behaviour of the system. Most of the time,
a category of users is only interested in performing some tasks,
which only partially exercice the capabilities of the system.
Given the model of a system and a set of user tasks, the system
allows the operator to perform all the user tasks if all the
behaviour covered by the tasks can be executed on the system.
Such a system can of course have more behaviour, as long as
all the tasks are supported.

A user task can be expressed as an LTSMT . Trace inclusion
between the system and the tasks (Tr(MT ) ⊆ Tr(MM )) can
be used to ensure that all traces of the task are supported by the
system. However trace inclusion is not a satisfactory criterion
for this type of problem as illustrated by the following example.

In Figure 3, where solid lines correspond to commands and
dashed lines to observations, the set of traces of the user task
is a subset of the set of traces of the system. But there is a
situation where the user can be surprised. After performing an
a command, the system can transition to a state where the b
observation will never occur, resulting in the user not being
able to complete the task.

a b c

(a) User task model.

a

a

b c

(b) System model.

Fig. 3. A system (on the right) which can make the operator confused in
some situations, when he wants to perform his tasks (on the left).

The full-control property can be used to achieve a more
relevant check between a system model and a user task.
Formally, a system model MM = 〈SM ,Lc,Lo, s0M , δM 〉
allows the operator to perform the tasks of the user task model
MT = 〈ST ,Lc,Lo, s0T , δT 〉 if and only if:

∀σ ∈ Lco∗ such that s0T
σ−−→ sT and s0M

σ
==⇒ sM :

Ao(sT ) = Ao(sM ) and Ac(sT ) ⊆ Ac(sM ) (2)

For a system to support a user task, the following must hold.
At any point during the execution of the task, if the user needs
to issue a command, then that command should be included in
the commands available in the system at that point. Moreover,
at any point during the execution of the task, the task should
be prepared to receive exactly those observations available in
the system at that point. Therefore the full-control check can
be applied between the system model MM and the user task
model MT , interchanging commands and observations.

Figure 4 shows an example of a lamp illustrating that
relation. The task model indicates that the user should be
able to switch between the lamp turned on and turned off
with a press command. If the user observes a burnOut, she
knows that the lamp is dead and that she cannot do anything
more. The proposed system model allows full-control of the
task model (inverting the roles of commands and observations).

There is indeed an additional behaviour which allows the lamp
to be turned off with a fading if the user presses the fadeOut
command while in the on state. That additional behaviour is
not a problem since, according to the task model, it will never
be executed.

onoff dead

press

press burnOut

(a) Task model.

onoff

dead

fades

dies

press

fadeOut

τpress

endFading

burnOut

(b) System model.

Fig. 4. An example of a set of user task MT for a simple lamp (on the left)
and a system model MM which allows full-control of it (on the right).

IV. FRAMEWORK IMPLEMENTATION

This section presents how the framework is implemented.
The first part of the section describes how the JavaPathfinder
model-checker and its statecharts extension are used. The
second part introduces the ADEPT toolset and how it can
be used with our framework.

A. JPF and statecharts
The proposed framework has been implemented in Java and

uses the Java Pathfinder (JPF) model-checker [12]. Figure 5
shows a global overview of the developed framework. The first
part of the framework aims at providing tools for encoding
models using statecharts [27], a widespread graphical notation
to model systems. The statecharts can be designed in any
existing tool which supports export in XMI file, e.g. ArgoUML 3.
The XMIParser tool 4 converts the statechart into a Java program
encoding it, following the conventions of the JPF statecharts
extension [28]. With that extension, the resulting Java program
can be explored and used by the JPF model checker, for example
to check temporal logic properties. The SC2LTS (Statecharts
to LTS) tool uses JPF with the JPF statecharts extension to
explore all the transitions of the complete behaviour of the
system and builds the full expanded LTS. For convenience,
LTSs can also be loaded and saved from a plain text format
(LTSLoader).

The second part of the framework consists of the analysis
and mental model generation part. The FCCheck tool checks
whether a mental model allows full-control of a given system.
The tool takes two LTSs as input (a system and a mental model)
and outputs true if the mental model allows full-control of the
system and false otherwise. The MMGen tool takes a model of
a system as input and generates a minimal full-control mental
model (if such a model exists). Both algorithms from [10], [11]
(Bisim and Learning) can be used. The tool produces an LTS
corresponding to one minimal full-control mental model or says
that no such model exists providing a problematic sequence
from the system.

3http://argouml.tigris.org/.
4The XMIParser does not yet support all the possibilities of the XMI

specification.



.xmi XMIParser .java

JPF

SC2LTS

.txt LTSLoader LTSLoader .txtLTS

FCCheck

true/false

Bisim Learning

LTS LTS

Fig. 5. Global overview of the proposed HMI analysis framework. The
elements in rectangle correspond to algorithms developed. The XMI parser
builds a Java program encoding the statechart contained in the XMI file. The
statechart to LTS converter (SC2LTS) uses JPF to convert a statechart encoded
as a Java program into a full expanded LTS. The full-control check (FCCheck)
takes two LTS as input (a system and a mental model) and checks if the mental
model allows full-control of the system. The mental model generator (MMGen)
takes one LTS as input (a system) and computes a minimal full-control mental
model.

The benefit of using JPF is that it is a model checker. It
can therefore be used to perform additional types of analysis
on the statechart model, for example application-specific safety
properties as supported by the JPF framework.

B. The ADEPT toolset
The ADEPT toolset [13] aims at helping designers to identify

HMI vulnerabilities early in the design process, focusing on
cognitive behavioural aspects of the user and the system. The
behaviour of the system is described with tables consisting of
two parts: inputs and outputs. Each of these parts is decomposed
into a set of variables. Each column of those tables represents
a transition case which can be triggered for specified values of
the variables (input) and has, as effect, to assign new values
to those variables (output). Also, one particular class of inputs
corresponds to commands, i.e. actions executed by the user.
Figure 6 shows an example of an ADEPT model for the system
of Figure 4(b). For example, column 0 states that if the lamp is
turned on, if its life is still positive and if the press command
is executed, then the lamp is turned off and column 3 states
that whenever the lamp is turned on and its life is positive, the
remaining life is decremented.

0 1 2 3 4 5
Inputs

State
on • • • •
fading • •
off •
Life
>0 • • • •
=0 •
Actions
press • •
fadeOut •

Outputs
State
on •
fading •
off • • •
Life
-=1 •

Fig. 6. Example of a model described as an ADEPT table, corresponding to
the lamp whose LTS is given in Figure 4(b).

ADEPT models can be translated into statecharts and then be
run in our framework. For the experiments presented hereafter,
this translation was performed in a manual but systematic way,
which we intend to automate in the future. ADEPT models are
well suited to be directly translated into JPF statechart Java
programs. An automatic translation method is currently being
developed. While commands are clearly identified, observations
are not. Several models may be derived from one ADEPT model,
depending on which variables are considered as observations.
For example, for the model of Figure 6, the value of the bulb’s
remaining life can be made visible to the user. Either the precise
value in seconds, or a more abstract information like a life
level (for example: full, alive, low and dead).

V. EVALUATION

The approach presented in this paper has been applied to
many examples [11], two of which are illustrated here. The
first one is the Therac-25 medical system and the second one
is a video-cassette recorder.

A. The Therac-25 example

The Therac-25 [2] is a medical system which was subject to
an accident due to an operator manipulation error which took
place during the interaction with the machine. The machine has
the ability to treat patients by administering X-ray or electron
beams. For the first treatment, a spreader has to be put in
place so that the patient does not receive too much radiation.
The incident that occurred was that patients were administered
X-rays while the spreader was not in place.

The formal model described in [16] has been used to
get a JPF statechart Java program. It gives a model with
110 states and 312 transitions, among which there are 194
commands, 66 observations and 52 internal actions. The set of
commands is {selectX, selectE,enter, fire,up} and there is
one observation corresponding to a timeout {8seconds}. The
model is illustrated as a statechart on Figure 7.

The result of the analysis of the Therac-25 system is that
it is well-behaved (full-control deterministic as defined in
Section III-B) and that it cannot be reduced. The minimal full-
control model is thus exactly the same as the system model,
without the τ transitions. The potential error with that system
cannot be captured with the model as it has been described.

In fact, the error is due to mode confusion: the operator
believes that the system was in the electron beam mode while
it is in fact in the X-ray mode. That kind of error can be found
with our framework, by enriching the system model with mode
information. Loops are added on all the states where a mode
is active with either X-ray or E-beam, according to the mode
the machine is in. These new labels are treated as commands,
reflecting the fact that the operator must know exactly which
mode the machine is in.

Analysing that modified system leads to an error because the
system is no longer full-control deterministic. The counterexam-
ple produced by the framework is: 〈selectX,enter, fire,X-ray〉.
That trace corresponds to a trace that must be accepted and
must be forbidden at the same time. Indeed, after selecting



Fig. 7. Statechart model of the Therac-25 medical system [16]. The enter command is represented with

�

and the up command is represented with ↑.

X-ray beam (selectX), validating it (enter) and administering
the treatment (fire), the X-ray command may or may not
be available depending on the execution followed in the
system. This means that the system may end up either in
the X-ray or in the E-beam mode, non-deterministically and
with no observable difference. That behaviour is due to an
internal transition which occurs when the treatment has been
administered, which represents the fact that the system is reset
to its initial state. The revealed controllability issue indicates
that there should be an observation informing the user when the
system is reset. Adding a reset observation makes the system
full-controllable and a minimal full-control mental model for
it can be generated, with 24 states.

The other issue with that system, the well-known one,
can also be detected with our framework, after fixing the
other issues in the model. If the operator is not aware of
the 8-seconds timer (or does not track the countdown), the
issue described in [2], [16] can also be found. It suffices to
turn the observation 8seconds into an internal transition τ and
to make the system being reset when the operator presses
enter after the treatment has been administered. The last
actions of the returned counterexample (the most relevant
part) is: 〈. . . , selectE,up,E-beam, selectX,E-beam〉. That
corresponds to the user selecting the electron beam mode, then
changing his mind by pushing on the up button and selecting
the X-ray mode. After that, the system may either be in E-beam
or X-ray mode.

B. The Video Cassette Recorder example

The second example is a model of a video-cassette recorder
(VCR). That model has been obtained from an ADEPT model
which has been translated into a JPF statechart Java program,
manually. The system has six main operating modes: play,
stopped, fast forward, rewind, pause and record. There is one
command to activate each of those modes and one additional

command to turn the system on or off. Moreover, there are
several speeds for the fast forward and rewind modes. Those
speeds are automatically chosen by the system according to the
remaining tape length. Finally, the system enters automatically
into the rewind mode when reaching the end of the tape. The
system model has 1088 states and 3740 transitions. There are
seven commands (one to activate each mode and a power button)
and two observations (tape moving forward and backward).

Analyzing the system against the full-control relation high-
lights some bad interaction that may happen and lead to
confusion by the operator. The issue comes from the [ON,
STOP, 0.01] state which corresponds to the VCR being turned
on, the tape being stopped and the remaining length of tape
being 0.01. In this state, when the user presses the play
command, the system can go to one of the two following
states: [ON, PLAY, 0.01] or [ON, REWIND FULL, 0.00]. In
the first case, the system just switches in the play mode. In the
second case, after the user presses the play button, the tape
has just moved forward until it remains zero, in which case the
system automatically goes to rewind mode. The controllability
issue pointed by the framework is that the pause command
is not available in the two states that are reachable from [ON,
STOP, 0.01] after executing the action play.

Such kinds of error can be harmful. For the VCR example,
suppose that the operator wants to press the play button and
then, someone calls him and he presses the pause button as,
for him, it is an authorized operation. When he comes back
to his VCR, he observes that the tape was rewinded up to
the beginning. That situation occurs because after pressing the
play button, the system can either transition into a state where
the pause button is enabled or in another state where it is
not. For critical systems, such an error can have more serious
consequences.



VI. CONCLUSION

This work describes a formal framework for the analysis
of human-machine interactions, with a focus on controllability
aspects of the system based on a distinction between commands
and observations. The analysis is based on a formal characteri-
zation of an adequate control of the system by the user. That
characterization, captured by the full-control property, is used
as a validation criterion for system models during the design
process cycle. The full-control property is a desirable property
since it helps to prevent the operator from being surprised when
interacting with a system. The framework has been implemented
in Java within the JPF model checker environment.

The paper demonstrated the use of the proposed methodology
and framework for the analysis on two realistic examples. These
examples show that our framework can detect problems in
system models and provides feedback that helps the designer
to identify problematic interaction scenarios and to redesign
the system.

Future work includes testing the framework with larger
and more realistic examples. It also includes developing an
automatic translator of ADEPT models into JPF statecharts.
That would make it possible to test our framework with more
examples and also to get an opportunity to merge the two tools,
that is, to integrate the analysis and generation capabilities
of our framework into ADEPT. We also intend to continue
developing the framework to increase the support for the process
of redesigning the system as a result of identified problems.

There are also perspectives of extension of this work, by
considering other kinds of properties to be checked between the
system and a mental model, like those checked in [5], [16] for
example: “can the effect of some commands be undone?” or

“does every action provide a visible feedback?”. Such analysis
could be done by exploiting the JPF model checker and more
classical model checking.

ACKNOWLEDGEMENT

This work was supported by the Human System Solutions el-
ement of NASA’s System-wide Safety Assurance Technologies
project and by the project MoVES under the Interuniversity
Attraction Poles Programme — Belgian State — Belgian
Science Policy.

REFERENCES

[1] A. Degani, Taming HAL: Designing Interfaces Beyond 2001. Palgrave
Macmillan, Jan. 2004.

[2] N. G. Leveson and C. S. Turner, “Investigation of the therac-25 accidents,”
IEEE Computer, vol. 26, no. 7, pp. 18–41, Jul. 1993.

[3] E. Palmer, “Oops, it didn’t arm. — a case study of two automation
surprises,” in Proceedings of the 8th International Symposium on Aviation
Psychology, 1996, pp. 227–232.

[4] J. Rushby, “Using model checking to help discover mode confusions and
other automation surprises,” Reliability Engineering and System Safety,
vol. 75, no. 2, pp. 167–177, Feb. 2002.

[5] J. C. Campos and M. D. Harrison, “Systematic analysis of control panel
interfaces using formal tools,” in Proceedings of the 15th International
Workshop on the Design, Verification and Specification of Interactive
Systems, ser. Lecture Notes in Computer Science, no. 5136. Springer-
Verlag, Jul. 2008, pp. 72–85.

[6] H. Thimbleby and J. Gow, “Applying graph theory to interaction design,”
in Engineering Interactive Systems 2007/DSVIS 2007, ser. Lecture Notes
in Computer Science, J. Gulliksen, Ed., no. 4940. Springer-Verlag, 2008,
pp. 501–518.

[7] J. C. Campos and M. D. Harrison, “Model checking interactor specifica-
tions,” Automated Software Engineering, vol. 8, no. 3–4, pp. 275–310,
2001.

[8] P. Curzon, R. Rukšėnas, and A. Blandford, “An approach to formal veri-
fication of human-computer interaction,” Formal Aspects of Computing,
vol. 19, no. 4, pp. 513–550, Nov. 2007.

[9] M. Heymann and A. Degani, “Formal analysis and automatic generation
of user interfaces: Approach, methodology, and an algorithm,” Human
Factors: The Journal of the Human Factors and Ergonomics Society,
vol. 49, no. 2, pp. 311–330, Apr. 2007.

[10] S. Combéfis and C. Pecheur, “A bisimulation-based approach to the
analysis of human-computer interaction,” in Proceedings of the ACM
SIGCHI Symposium on Engineering Interactive Computing Systems
(EICS’09), G. Calvary, T. N. Graham, and P. Gray, Eds. New York, NY,
USA: ACM, 2009, pp. 101–110.

[11] S. Combéfis, D. Giannakopoulou, C. Pecheur, and M. S. Feary, “Learning
system abstractions for human-machine interactions,” in (under submis-
sion).

[12] “JavaPathfinder (JPF),” http://babelfish.arc.nasa.gov/trac/jpf/.
[13] M. S. Feary, “A toolset for supporting iterative human – automation inter-

action in design,” NASA Ames Research Center, Tech. Rep. 20100012861,
Mar. 2010.

[14] H. Thimbleby, Press On: Principles of Interaction Programming. The
MIT Press, Nov. 2007.

[15] D. Navarre, P. Palanque, and R. Bastide, “Engineering interactive systems
through formal methods for both tasks and system models,” in Proceedings
of RTO Human Factors and Medicine Panel (HFM) Specialists’ Meeting,
no. RTO-MP-077, May 2002.

[16] M. L. Bolton, E. J. Bass, and R. I. Siminiceanu, “Using formal methods
to predict human error and system failures,” in Proceedings of the 2nd
Applied Human Factors and Ergonomics International Conference, Jul.
2008, pp. 14–17.

[17] M. L. Bolton, R. I. Siminiceanu, and E. J. Bass, “A systematic approach
to model checking human-automation interaction using task analytic
models,” IEEE Transactions on Systems, Man and Cybernetics, Part A:
Systems and Humans, 2011.

[18] M. L. Bolton and E. J. Bass, “Using task analytic models and phenotypes
of erroneous human behavior to discover system failures using model
checking,” in Proceedings of the 54th Annual Meeting of the Human
Factors and Ergonomics Society, vol. 54, Oct. 2010, pp. 992–996.

[19] J. Bredereke and A. Lankenau, “A rigorous view of mode confusion,” in
Proceedings of the 21st International Conference on Computer Safety,
Reliability and Security (SAFECOMP’02), vol. 2434. London, UK:
Springer-Verlag, Sep. 2002, pp. 19–31.

[20] ——, “Safety-relevant mode confusions—modelling and reducing them,”
Reliability Engineering and System Safety, vol. 88, no. 3, pp. 229–245,
2005.

[21] J. Tretmans, “Model based testing with labelled transition systems,” in
Formal Methods and Testing, ser. LNCS, R. M. Hierons, J. P. Bowen,
and M. Harman, Eds., vol. 4949. Springer, 2008, pp. 1–38.

[22] H. Thimbleby, “Creating user manuals for using in collaborative design,”
in Proceedings of the Conference Companion on Human Factors in
Computing Systems. New York, NY, USA: ACM, 1996, pp. 279–280.

[23] J. Nielsen, “The usability engineering life cycle,” Computer, vol. 25, pp.
12–22, Mar. 1992.

[24] F. Paternò, Model-Based Design and Evaluation of Interactive Applica-
tions. Springer-Verlag, Jan. 2000.

[25] J. Johnson and A. Henderson, “Conceptual models: Begin by designing
what to design,” Interactions, vol. 9, pp. 25–32, Jan. 2002.

[26] D. Javaux, “A method for predicting errors when interacting with finite
state systems. How implicit learning shapes the user’s knowledge of a
system,” Reliability Engineering and System Safety, vol. 75, pp. 147–165,
Feb. 2002.

[27] D. Harel, “Statecharts: A visual formalism for complex systems,” Science
of Computer Programming, vol. 8, pp. 231–274, Jun. 1987.

[28] P. C. Mehlitz, “Trust your model - verifying aerospace system models
with JavaPathfinder,” in Aerospace Conference, 2008 IEEE, Mar. 2008,
pp. 1–11.


